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Abstract

Compliant environments can mediate interactions between mechanically active cells like fibroblasts. Starting with a phenomenological
model for the behavior of single cells, we use extensive Monte Carlo simulations to predict non-trivial structure formation for cell com-
munities on soft elastic substrates as a function of elastic moduli, cell density, noise and cell position geometry. In general, we find a
disordered structure as well as ordered string-like and ring-like structures. The transition between ordered and disordered structures
is controlled both by cell density and noise level, while the transition between string- and ring-like ordered structures is controlled by
the Poisson ratio. Similar effects are observed in three dimensions. Our results suggest that in regard to elastic effects, healthy connective
tissue usually is in a macroscopically disordered state, but can be switched to a macroscopically ordered state by appropriate parameter
variations, in a way that is reminiscent of wound contraction or diseased states like contracture.
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1. Introduction

In order to develop and maintain tissues, cells in multi-
cellular organisms have to interact with each other and the
extracellular matrix (ECM). Cellular communication pro-
ceeds mainly through specific interactions provided by
receptor-ligand binding. In solution, gradients in ligand
concentration encode spatial information. For example,
morphogen gradients guide cell differentiation [1], and gra-
dients of chemoattractants or chemorepellants direct cell
motility (chemotaxis) [2]. For cells adhering to each other
or to the ECM, physical properties of the environment like
topography and mechanics provide additional information
supplementing specific biochemical cues. In particular, cells
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in their natural environment typically orient along fiber
bundles of the ECM, a principle termed contact guidance
[3] In general, cells preferentially orient along surface
directions with minimal curvature [4]. While contact guid-
ance provides only a bidirectional cue for cell migration,
unidirectional cues result from spatial gradients in adhe-
siveness (haptotaxis) [5], substrate rigidity (durotaxis) [6]
and substrate tension (tensotaxis) [7,8].

Tissue cells like fibroblasts in the connective tissue con-
stantly remodel their structural environment by degrading
old and secreting new ECM. Moreover they can exert
forces large enough to actively reorganize the ECM after
it has been laid down [9]. Hence, cells not only respond
to the physical properties of their environment, but also
actively modulate them. This results in indirect, matrix-
mediated interactions between cells. In particular, cell trac-
tion-induced reorganization of collagen fibers can mediate
a mechanical interaction between cells via contact guidance
[10,11]. In the same vein, elastic interactions between cells
can result from stress and strain in the ECM induced by
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cell traction. During recent years, the sophisticated use of
elastic substrates has proven that cells indeed respond to
purely elastic features in their environment, including rigid-
ity, rigidity gradients and prestrain [12,6,13-16]. It now
appears that many cell types, including fibroblasts, smooth
muscle cells, and endothelial cells (but not neutrophils or
neurons), respond to the mechanical properties of their
environment with a common preference for large effective
stiffness [17-19]. Here the term effective stiffness comprises
both rigidity of and tensile strain in the environment, which
can be actively sensed by cells via mechanotransductory
processes at cell-matrix adhesions [20-23]. These mechan-
ical cues play an important role in a variety of physiologi-
cal processes, including development, tissue maintenance,
angiogenesis, myotube fusion, wound healing and metasta-
sis [24-27]. In particular, if coupled to cell division, stress
and strain become major determinants of tissue morpho-
genesis [28,29]. In general, tissue function arises from the
close relationship between cell behavior in and material
properties of the ECM [30-32].

We have argued before that elastic interactions contrib-
ute to the way single cells position and orient themselves in
compliant environments [33-35]. However, it has not been
discussed in detail before how this individual behavior
translates into collective behavior of cell ensembles in com-
pliant environments. In a recent short report we have
shown that elastically interacting cells assemble into strings
of cells which then leads to screening of the cellular traction
patterns [36]. Although this effect in principle suppresses
macroscopic order, we have also found that macroscopic
order can exist at high cell density, with an interesting com-
petition between string- and ring-like structures as a func-
tion of the Poisson ratio of the surrounding material. In
our recent report, this effect has been especially analyzed
for ordered (lattice) arrangements of cells, which can be
decomposed into strings. Since cellular systems are intrinsi-
cally noisy, in this paper we focus on stochastic effects
using extensive Monte Carlo simulations, which allow the
prediction of collective effects in the presence of noise. In
the following, we mainly consider the case of cells adhering
to the top of a soft elastic substrate, because this setup
might be the easiest way to experimentally verify our theo-
retical predictions. Commonly used materials for elastic
substrates are polyacrylamide or polydimethylsiloxane,
which can be described by linear isotropic elasticity theory.
Since we are interested in the interactions mediated by an
elastic environment, we only consider situations without
cell-cell contact, which experimentally could trigger differ-
ent cellular responses to mechanical signals. Therefore in
our theoretical work we first fix cell positions and then
relax cellular orientations using standard Monte Carlo
techniques. Experimentally, this might be done by using
microcontact printing, thus restricting cells to adhesive
islands, or by using non-motile cell lines, which adhere at
random positions and then do not move. By freezing in cell
positions, we are also able to control cell density. For
the position geometry, we consider ordered (lattice)

arrangements, random perturbations around ordered posi-
tions and arrangements which are completely random. We
calculate structural phase diagrams as a function of elastic
moduli, cell density, noise and cell position geometry using
Monte Carlo simulations. We then briefly investigate
collective elastic effects in three-dimensional elastic
environments and finally discuss our results in the context
of wound healing.

2. Model and simulations
2.1. General concepts

In order to sense the mechanical properties of their envi-
ronment, tissue cells pull on it with actomyosin contractil-
ity. In many cases, this contractile mechanical activity is
directed along the long axis of the cell body, especially
when confronted with a mechanically anisotropic environ-
ment. The mechanical action of such an anisotropic force
pattern can be modeled as an anisotropic force contraction
dipole P; = PI;, where the unit vector T specifies cell orien-
tation. In contrast to electric dipoles in electrostatics, which
are vectors, force dipoles in elasticity theory are tensors of
rank two. P specifies the dipole strength, which typically
has |P| = Fd~10"'"J, corresponding to two opposing
forces F=200nN separated by a distance d= 60 pm
[37]. We will consider cells with anisotropic force patterns
only and assume that the magnitude P is constant for all
cells. A mechanically active cell generates an elastic strain
field u;;(7), which again is a tensor of rank two. The strain
induced by P can be calculated from the elastic Green
tensor Gy (#,7) which describes the deformation of the
medium at 7 caused by a point force at 7. In general
G;; depends on material properties and boundary condi-
tions. For translationally invariant situations, one has
G;(7,7) = G;(# —7). Elastic interactions between two
cells result if the mechanical activity P;; of one cell responds
to the elastic field u; induced by another cell. In the frame-
work of a general field theory elastic interaction can then
be represented by a coupling of u; and Pj;. Since cells are
active and moreover often show a regulated response, the
exact form of the coupling between P; and u; cannot be
predicted from first principles. In a first order approxima-
tion we may assume that Pj; and u; are linearly coupled.
For mechanically active cells like fibroblasts, experimental
observations suggest that indeed they adopt positions and
orientations in such a way as to effectively minimize the
scalar quantity W= Pju; [34,35]. For tensile strain, this
implies that contractile cells actively align with the external
field. Because they pull against the external stretch, cells
reduce displacement. For fibroblast-like cells, this behavior
might have evolved in the context of wound healing, when
cell traction is required to close wounds. A biophysical
interpretation of the origin of the extremum principle
regarding W is to note that W has dimensions of energy.
Physically W can be interpreted as an extra energy contri-
bution to the deformation energy required to build up a
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force dipole in the presence of strain u;; [34,35]. Using the
analogy of a harmonic spring the basic idea can be
explained easily: for a given spring constant K, it takes
the work W = F*/(2K) to build up the force F. Therefore
larger stiffness K corresponds to smaller work W required
to reach the force F. In this way W may be interpreted as
the inverse of an effective stiffness of the environment and
the extremum principle in W corresponds to the experimen-
tal observation that cell-matrix contacts grow stronger in a
stiff environment, thus eventually determining cell orienta-
tion. Using this extremum principle, we have been able
before to unify many diverse observations which have been
reported for the organization of single cells on elastic sub-
strates and in physiological hydrogels [34,35]. For example,
it predicts that single cells prefer to align in parallel and
perpendicular to free and clamped surfaces of finite sized
samples, respectively. It is however important to note that
the cellular response to the actively sensed effective stiffness
of the environment is very different from the cellular
response to cyclic external stretch with a 1 Hz frequency,
which is relevant for the physiology of lung tissue and
the cardiovascular system. In this case, many cell types
tend to orient away from the direction of stretch [38,39],
possibly to avoid the recurrent deformation of their
cytoskeleton.

For two cells, the above reasoning leads to the following
effective interaction potential [34,35]

ZP”a a,

ij.k,l

W = Pju; = Gu(¥ —7)Py, (1)
where we consider only situations with translational invari-
ance. The optimal cell configuration is described by the
minimum of W in regard to cell positioning and orienta-
tion. Since in general Gy scales as ~1/(Er), where r is dis-
tance and E an elastic modulus, W scales as NPZ/(EV3) and
has units of energy. Since in a linear material the cellular
strain fields superimpose, the functional that describes elas-
tic interactions of a system of N cells reads:

1 M
= N Z Z Wi, (2)
=1 o7y

where W, is the interaction between two cells y and J as
described in Eq. (1). The factor 1/2 is required to avoid
double counting and the factor 1/N for per cell normaliza-
tion. The optimal structure is given by the configuration
which minimizes Eq. (2) as a function of all cellular orien-
tations and positions and we may refer to this structure as
the ground state, in analogy to interacting passive particles
in physical systems.

2.2. Monte Carlo simulations

In the presence of noise any system will deviate from its
optimal state. In the cellular systems discussed here, noise
results both from intracellular processes (like the intrinsic
stochasticity of gene expression and signal transduction)

and from heterogeneities in the material properties of the
environment. In order to introduce a stochastic element
into the structure formation process, we perform Monte
Carlo simulations using the standard Metropolis algorithm
to generate typical configurations in the presence of noise
[40]. This implies the use of an Gibbs ensemble, which in
our case is the simplest choice given that we do not know
the exact details of the cellular decision making process
(in information theory, the Gibbs ensemble arises from
maximizing the measure for disorder, the Shannon
entropy, under the constraint of a prescribed average
energy). Starting from an arbitrary configuration, a cell is
selected at random and its orientation randomly varied.
The new configuration is always accepted when it decreases
W. Otherwise it is accepted with the probability exp(—A W/
kgT), where kg is the Boltzmann constant and 7' is temper-
ature. In our context kg7 represents a measure for the
degree of stochasticity involved in cellular decision making.
Other studies on modelling cellular structure formation
have used the same concept before and found an effective
value of kgT=5x10"""T [41-43]. Since this quantity
comprises all molecular interactions between a cell and its
environment, it is six orders of magnitudes larger than ther-
mal energy. In our case, the competition between elastic
and stochastic effects can be characterized by the reduced
temperature

kg TRED®
™ = BT, (3)

which measures the relative importance of noise with re-
spect to the average elastic interaction strength. Here & is
the average distance between two cells which is related to
the averaged cell density by (p) = 1/b* in two dimensions
(2D) and by (p) = 1/b* in three dimensions (3D). As we
will see below, typical values in our simulations range
from 7% =0.1 to 3.0. Using P=10"'"J, E=10kPa,
b=100pm and a typical value 7% =1, we obtain
ksT =3 x 10~1° J. Therefore our choice for the noise level
is in exactly the same range as the earlier estimates [41-43].
As the effective temperature is decreased towards zero,
T* — 0, W decreases and the ground states become
increasingly favorable. This process is known as simulated
annealing and is often used to identify optimal structures
[44]. In the vicinity of an optimal structure, almost all
Monte Carlo moves are rejected. In contrast, when
T* — oo, every Monte Carlo move is accepted and the
structures get disordered. One Monte Carlo sweep corre-
sponds to N such Monte Carlo moves. After thermal equil-
ibration (typically about 10°~10* Monte Carlo sweeps), the
Metropolis algorithm samples the important configura-
tions typical for a given temperature 7*. One can then cal-
culate statistical properties of structures at defined noise
level by averaging the quantity of interest over many con-
figurations generated by the Metropolis algorithm.

To study stochastic effects using our Monte Carlo simu-
lations we typically consider N = 1000 dipoles. In order to
minimize the effects of boundaries and finite size, we apply
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periodic boundary conditions (pbcs), such that each dipole
has the same number of next neighbors and experiences the
same local geometry. We implement pbcs using the minimal
image convention, i.e. we only consider the interactions of
the dipole with its N — 1 nearest (image) dipoles [40]. Note
that in the two-dimensional situation of cells on top of an
elastic half space, the 1/r* interaction effectively constitutes
a short-ranged potential, because its area integral does not
diverge with system size ( | “rdr(1/r%) ~ 1/L where L is sys-
tem size). Thus, boundary effects are expected to play only a
minor role in this case and the minimal image convention is
a good approximation.

2.3. Additional assumptions

We now make some additional assumptions which will
simplify our subsequent calculations and which will allow
for a direct comparison of our theoretical calculations with
appropriate experiments. First, we assume that the envi-
ronment can be described by isotropic linear elasticity
theory, which is a reasonable assumption for the synthetic
substrates like the ones made from polyacrylamide or poly-
dimethylsiloxane commonly used to study mechanical
effects in cell culture [45,37]. Thus there are two elastic con-
stants: the Young’s modulus £ describes the rigidity of the
material and the Poisson ratio v the relative importance of
compression and shear. In particular we mainly consider
the situation of cells adhering to the top surface of a thick
elastic film. Such a situation can be theoretically repre-
sented by an elastic half-space geometry with dipolar
orientations constrained to the x—y-plane. Therefore the
Young’s modulus E and the Poisson ratio v are 3D quan-
tities. The maximal value for v is 1/2, e.g. for strongly
hydrated polymer gels. If such a material is tensed in one
direction, the shear mode is excited and it contracts in
the perpendicular directions (Poisson effect). For common
materials, the minimal value for the Poisson ratio is v =0,
e.g. in dehydrated fibrous polymer gels. Then the volume
mode prevails and uniaxial tension does not translate into
lateral contraction. For cells exerting tangential forces on
top of an elastic substrate one can use the Boussinesq
Green function of an elastic half space [46] to specify
Eq. (1) to [35]

aP? ,
W",’& = ;—3/{(9; 0 ) 0()7 (4)

where 7 is the distance between cells and the cellular orien-
tations 0, 0" and o are defined via the scalar products
cosf=1-7cos0 =1 -7and cosa=[-1I'. fis given by
£(6,0,0) = 3(cos> 0 + cos* 0 — 5cos> Ocos™ 0 — 1)
— (1 —ay)cos® o — 3(ay — 3) cosacos Ocos
()
where a; = v(1 +v)/(zE) and a> = (1 — v)/v.

Secondly, because here we focus on elastic effects, we
want to avoid cell-cell contacts, which are known to

change the mechanical state of adhering cells [16]. There-
fore we attribute an exclusion disc of radius «a to each cell.
Moreover in most of our simulations cell positions are fro-
zen and only orientational degrees of freedom are consid-
ered. Experimentally, this situation might be achieved by
using non-motile cell lines or appropriate drugs to suppress
cell motility. Alternatively, one might use microcontact
printing to prepare well-defined adhesive islands constrain-
ing cell positions.

Finally, while the focus of our paper is on structure for-
mation on planar synthetic substrates to allow a direct
comparison of theory and experiment, we also briefly con-
sider cells in a three-dimensional (3D) environment. For
computational simplicity we keep the assumption of linear
isotropic. For cells embedded in an infinite 3D isotropic
elastic environment, the interaction law stays the same
as Eq. (5), but with different constants a; = (1+v)/
(87E(1 — v)) and a, = (3 —4v) which now follow from
the Kelvin solution for the full elastic space [46]. In 3D,
the elastic interactions are truly long-ranged, in the sense
that now the volume integral over the elastic interaction
diverges with system size ([“72dr(1/r?) ~InL where L
is system size), thus boundary effects become more
important.

3. Results and discussion
3.1. Structure formation for dipolar lattices

3.1.1. Phase diagrams under thermal noise

We first consider structure formation in the presence of
noise when cells adopt regular positions on an infinite
square (s) and hexagonal (h) lattice. In general we find a
strong dependence of structure formation on lattice geom-
etry, Poisson ratio v and noise level T*. In particular our
simulations show an interesting competition between
string-like and ring-like structures at low noise levels,
which we have also found before in a detailed analysis of
optimal structures [36]. For the square lattice low noise
structures are always string-like. The lattice geometry
favors the formation of strings directed along one of
the principal lattice vectors 77 = (1,0) or # = (0,1) for all
v. The limit v — 0 shows structural degeneracy, that is,
additional structures, e.g. parallel strings aligned along
= (1,1), become equally favored as parallel (1,0)-string
structure. Enhanced structural degeneracy of string-like
structures in the limit of vanishing Poisson ratio occurs
also on the hexagonal lattice. Most interestingly, however,
on the hexagonal lattice string- and ring-like structures
exchange stability as a function of Poisson ratio. For
v>0.32 the Poisson effect favors ring-like structures over
strings, with rings composed of four dipoles each rotated
by 90 degrees relative to its neighbor. On both lattice types
the orientational order imposed by elastic interactions is
gradually destroyed with increasing noise levels. When
elastic interactions dominate, dipoles typically fluctuate
weakly around their optimal orientations forming
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long-ranged ordered structures. At intermediate noise lev-
els, long-ranged order is decreased, but there are still
ordered domains which locally adjust to elastic signals.
As noise increased further, domain size decreases and local
fluctuations become stronger, eventually giving eventually
rise to completely random dipole arrangements.

The loss of long-ranged order with increased noise can
be quantified by calculating the temperature behavior of
appropriate order parameters. For string-like structures
all dipoles point along a common direction #. A suitable
parameter to quantify the degree of global alignment there-
fore seems to be the angle f between dipole orientation 7
and 7, where cos f§ = I -7i. Note that force dipoles have a
bipolar symmetry and thus dipole orientations Il and —7
are equivalent. Thus, the average (cospf)=0. However,
the average (cos2 f) becomes one when all dipoles point
along 7, while for an isotropic structure (cos” ) = 1. Thus,
we define an alignment order parameter p as

p = 2(cos’ B) — 1, (6)

which is non-zero only for globally aligned structures and
zero otherwise. From our Monte Carlo simulations we
compute p as a function of 7% and Poisson ratio for both
lattice types. As shown in Fig. 1(a), on the square lattice a
globally aligned structure p — 1 always develops regardless
of the Poisson ratio when the noise level becomes suffi-
ciently low. The transition temperature T from a state
without into a state with long-ranged orientation correla-
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Fig. 1. Effect of noise on global alignment order. (a) The order parameter
p for alignment on a square lattice as a function of noise 7* for Poisson
ratio v=10,0.1,0.2,0.3,0.4,0.5 (from left to right). For low noise, aligned
structures develop for all values of the Poisson ratio. (b) The radial
distribution of the dipolar orientations on a square lattice with
T* = 1.5,2,3 for Poisson ratio v = 1/2. The two peaks correspond to an
aligned structure with bipolar symmetry below T¥ = 3. (c) On a hexagonal
lattice, p =0 for v=10.4,0.5 and p — 1 for v=10.3,0.2,0.1,0 from left to
right. At low noise, aligned structures are unstable for large values of the
Poisson ratio. (d) The radial distribution function on a hexagonal lattice
with 7" = 0.5, 1,2 for Poisson ratio v = 1/2. The four peaks correspond to
a ring-like structure below T* = 2.

tions, i.e. where p # 0 for the first time, decreases approx-
imately linearly with v. This might be attributed to the
general enhancement of elastic interactions with increasing
Poisson ratio W~ (1 +v). In Fig. 1(b) we show how the
probability distribution to find a dipole with a given orien-
tation  evolves with increasing noise levels. At low T*
almost all dipoles point along 7 and the orientation distri-
bution is strongly peaked; with increasing 7* the distribu-
tion broadens and finally for 7% > T¥ all orientations
are—on a global scale—equally likely (circle). In contrast
to the square lattice, where long-ranged order always im-
plies alignment, the type of long-ranged order developed
on a hexagonal lattice depends on Poisson ratio. Fig. 1(c)
shows that an aligned structure develops only for
v <v. = 0.32. Interestingly, in this case the relation between
the transition temperature T* and Poisson ratio is also re-
versed compared to the square lattice: T¥ stays roughly
constant for v < 0.2 and then drops quickly around v = v..
Moreover, towards v, the transition seems to become more
discontinuous and in our simulations p suddenly jumps
from a low to a large value, indicating bistability and a first
order phase transition. The T scaling with v might be
explained by the simultaneous overall decrease in elastic
signal strength with decreasing v within strings compen-
sated for by an increase in lateral string—string coupling
favoring global alignment at small v. For larger Poisson
ratio (v = 0.4) we find p =0 at all temperatures. At low
T* < T¥ a macroscopic isotropic long-ranged ring-like
order exists build up by small rings composed of four
dipoles oriented at 90° with respect to each other. That
is, at 7% < T, there are two equally large subpopulations
of dipoles oriented at 90° with respect to each other. This
corresponds to the two peaks in the radial orientation dis-
tribution shown in Fig. 1(d) (v =0.5). For v = 0.5 the tran-
sition temperature into the ordered ring-like structure 7% is
slightly larger than 1 and significantly lower than 7¥ ~ 2
observed for the string structures on the square lattice at
equal dipole densities.

In Figs. 2 and 3 we summarize our results for ordered
structures in the form of v—T™ phase diagrams for square
and hexagonal lattices, respectively. We have included rep-
resentative snapshots of typical dipole configurations at
noise levels well below T¥ in the globally ordered state,
approximately at the phase transition 7* and well above
T¥ in the disordered phase for v =0.1 and v = 0.5, respec-
tively. It is important to note that despite the loss of global
order at elevated noise levels 7 > T, elastic interactions
still locally manifest themselves in characteristic domain
formation. For example, at 7* = 3 elastic interactions still
cause local order on a square lattice and one finds short
string-like domains preferentially oriented along the princi-
pal lattice vectors. On incompressible substrates (v = 0.5)
we furthermore often observe cooperative excitations and
the formation of ring-like domains. This may reflect the
competition between ring- and string-like domains which
is modulated by the Poisson ratio. In fact, as we have
shown before, at v=0.5 ring-like structures are only
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Fig. 2. Schematic phase diagram as a function of noise level 7" and
Poisson ratio v for the square lattice. For illustration, typical Monte Carlo
snapshots are added. Both decreasing 7* or increasing v favors the
ordered string-like phase. For v=0.1, the dipoles typically weakly
fluctuate around the string-like ground state. For v = 0.5, the dominant
fluctuations around the optimal state are ring-like.

slightly disfavored with respect to the string-like structures
[36]. Nevertheless, it may seem surprising that ring-like
domains are excited so easily already at very low 7™ even
before coexistence of the equally favorable (1,0) and
(0,1) domains occurs (see snapshot at 7% = 1). The reason
is probably a large domain interface penalty for two (1,0)
and (0, 1) string domains compared to the interface penalty
of a string and an adjacent ring-domain.

For the hexagonal lattice local structural characteristics
of elastic interactions under noise are again string-like
domains preferentially oriented along directions specified
by lattice geometry. For large v, a characteristic signature
for elastic interactions is the formation of 4-cell-ring or lad-
der-domains with cells having approximately perpendicular
orientations with respect to each other. Thus, although
experimentally noise might be too strong to allow for glo-
bal ordering, elastic interactions might be still detected by
their local signatures of characteristic domain formation.

3.1.2. Effect of weak positional disorder

Experimentally cells may not adopt perfect lattice posi-
tions, in particular when adhesive islands are used which
are large compared to cell size in order to minimize the
effects of island shape on cellular force distribution
[47,48]. We therefore investigate the effect of positional
fluctuations at low thermal noise intensities. For this pur-
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Fig. 3. Schematic phase diagram as a function of noise level 7* and
Poisson ratio v for the hexagonal lattice. For illustration, typical Monte
Carlo snapshots are added. Ordered phases are favored by decreasing 7™,
but the ordered phases are string- and ring-like for small and large values
of v, respectively.

pose we randomly displace the dipole positions within a
circle of radius r around the lattice positions before relax-
ing the orientations. The degree of positional disorder
can be quantified by the ratio f=r/b of the radius with
respect to the lattice constant 5. In the following we focus
on the square lattice and v = 0.5, since synthetic polymer
gels typically have v = 0.5. For this value of the Poisson
ratio, Fig. 1 predicts a lattice geometry dependent transi-
tion from a string-like structure on a square lattice to a
ring-like structure on the hexagonal lattice. However, rings
are thermally excited easily on the square lattice. Hence the
string-like structure might also be easily destabilized under
positional disorder.

In Fig. 4 we show Monte Carlo snapshots at a low
reduced temperature (7% = 0.1) for f=0.1,0.25,0.5. The
simulations show that a 10% deviation from the lattice
positions has only a minor effect on orientational ordering.
For f=0.25, string-like as well as ring-like domains form
and long-ranged orientational order disappears. As for
thermal noise, ring-domains typically localize to interfaces
between string-like domains with perpendicular orienta-
tions. With increasing f domains shrink and structures
appear increasingly disordered. Thus, moderate deviations
from the square lattice positions are not sufficient to desta-
bilize string-like structures with respect to ring-like struc-
tures on incompressible substrates. Possibly because
under uniform positional noise dipoles still find themselves
in a local fourfold coordination with other dipoles (that is,
each dipole has typically for next neighbors as on the
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Fig. 4. Snapshots of Monte Carlo simulations at reduced temperature 7* = 0.1 for cellular force dipoles randomly displaced from an ideal square lattice
for f=10.1,0.25,0.5 from left to right for v = 0.5 (a—c) and v = 0 (d—f), respectively. Increased positional disorder f'destroys long-ranged orientational order

in a similar way as an increase in 7* on a perfect lattice.

square lattice), string domains are stabilized. We conclude
that positional disorder affects structure formation in a
similar way as increasing the temperature 7 on a perfect
lattice.

3.2. Phase behavior on homogeneous substrates

On a homogeneous substrate, non-motile cells usually
adhere more or less at random positions. Therefore we next
study typical structures on elastic substrates with com-
pletely randomized but fixed positions as described above.
Cellular structure formation on elastic substrates is now
governed mainly by three control parameters, namely
reduced temperature 7, Poisson ratio v and cell density.
Since in our model each cell is characterized by an exclu-
sion radius a, we introduce a reduced density

Nrna?
p* = W (7)
which is a dimensionless variable describing the ratio of the
area occupied by N circular disks of radius a to the area of
the (simulation) box with length L.

Fig. 5 shows typical snapshots of structures at 7% = 0.1
for cells on an elastic substrate with v =0,0.25,0.35,0.5
(top-bottom) for p* =0,0.4,0.5 (left-right). At low densi-
ties cells predominantly optimize locally the interaction
between them by forming short strings with no long-range
correlation between string-like clusters. We attribute this
finding to the strong tendency of dipoles to form strings
and the strong elastic screening of string—string interactions
[36]. This results in rather robust pattern formation that
does not differ qualitatively as the Poisson ratio is varied
(see Fig. 5(a)). One expects that these patterns represent
typical cellular structures formed by strongly interacting

cells when cells in dilute concentrations are suspended on
an elastic substrate and adhere at random positions
(p* — 0). With increasing p* the respective structures at
low noise intensity show a strong dependence on the Pois-
son ratio v. For incompressible substrates (v = 0.5) we find
isotropic ring-like structures (see Fig. 5(IVc)). With
decreasing Poisson ratio string-like patterns emerge. For
v=0.35 we find coexistence of string-like and ring-like
domains (compare Fig. 5(I1lc)). For substrates with Pois-
son ratio below v <0.32 string-like structures dominate
at intermediate densities. With increasing density strings
start to interact and domains of aligned parallel strings
form which increase in size with increasing p* (see
Fig. 5(IIb,IIc)). Highly compressible substrates (v — 0)
favor cell alignment along a common direction at high cell
densities and in Fig. 5(Ic) we find a globally aligned struc-
ture. Here, the rotational symmetry of the structure is
spontaneously broken along an arbitrary direction in space
despite lacking long-ranged positional order. In this respect
we may speak of a nematic structure in analogy to nematic
phases formed by liquid crystals which are characterized by
orientational order but positional disorder.

As before one can quantify the development of anisoso-
tropic long-ranged order with the order parameter p
defined in Eq. (6). In contrast to the lattice structures where
preferred string direction # was determined by lattice
geometry, the orientation of the director # on homoge-
neous substrates is arbitrary. This is taken into account
by defining a two-dimensional analog of the nematic
order parameter p used in the theory of liquid crystals
[49]. We first introduce_ the ordering matrix 0O, =
Ly (1717 —16,), where I* is the orientation vector of
the ath particle and the sum runs over all particles in the
simulation box. The largest eigenvalue A of the symmetric
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1024 cellular force dipoles at random, but fixed positions on an
0.1. Diamonds mark p < 0.4, squares p > 0.4 and

0.4. We find three different phases: a high-density aniso-

dependent ordering transition, the nematic structure

In Fig. 6(c) we show the phase diagram in the v—p*-plane
tropic string-like structure, a high-density isotropic ring-like
structure and a low density disordered structure. The gen-
eral features of this phase diagram are very similar to the

for T

occurs at any density p* or temperature 7, because
ordered structures are ring-like. In addition to the den-

sity
p for v=0 at different values of the reduced temperature

T*. The critical density p

increases with 7% and p
the dashed line denotes our estimate for the isoline

agonal lattice. For v > 0.4 no nematic ordering p
is also destabilized by increased noise. In Fig. 6(b) we plot

measured on the hexagonal lattice.

a critical T

p

0.1 for N
top-bottom). The reduced area density increases from left to right as p*

which is the

corresponding eigenvector to the maximal eigenvalue.

b}

i

(

0 isotropic structures. Since
0.907, which is the maxi-

we freeze in positions, we first thermally average p for a

fixed configuration of the dipole positions and subse-

(v) and below a critical value

of the Poisson ratio (see Fig. 6(a)). The degree of structural
alignment increases with increasing p* and approaches

0.1 a nematic structure forms
p — 1 toward the maximal p*

*

C

22. As before p measures the degree of orientational
1 implies nematic and p

Fig. 5. Snapshots of Monte Carlo simulations at reduced temperature 7

elastic substrate with v =0,0.25,0.35,0.5, respectively

while the average cell density (p) remains constant.
quently average over at least 20 random position configu-

rations obtained for the same p*. In Fig. 6 we show the
v and reduced temperature 7% on nematic ordering. At

constant temperature 7

beyond a critical density p
mal packing density achieved for disks arranged on a hex-

ordering matrix Q corresponds then to the order parameter
quantitative effects of the reduced density p*, Poisson ratio

order with respect to the current director

p
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Fig. 6. Averaged nematic order parameter p as a function of model
parameters. (a) Simulation results for v=0,0.25,0.3 (left-right) and
v=0.4,0.5 (bottom), respectively. Thus nematic ordering occurs only on
compressible substrates and above a critical density. (b) Simulation results
for v=0 at T =0.1,0.6,1.1 (top-bottom). Thus nematic ordering
disappears above a certain noise level. (c) Phase diagram for 7™ = 0.1
for dipoles on elastic substrates obtained by Monte Carlo simulations. All
points below diamonds have p < 0.4 and all points above squares yield
p > 0.4. The long dashed line is our estimate for the isoline with p = 0.4.
The horizontal dashed line marks the maximal p* possible for a hexagonal
lattice.

thermal phase diagram for hexagonal lattices shown in
Fig. 3 but with the role of 7™ and (inverse) density p*
exchanged. Note, that at p* = 0.907 dipoles in fact adopt
hexagonal lattice positions, because disks must order into
a hexagonal lattice due to the non-overlap constraint. Thus,
reducing the density from p* =0.907 in our model is in
some sense equivalent to introducing position fluctuations
around hexagonal lattice positions (see above), which qual-
itatively has similar consequences as raising the effective
temperature. These results also show the importance of
local position geometry and dipole coordination. At high
p* dipoles have six next neighbors and all interactions are
equal in magnitude. Because elastic interactions are
strongly anisotropic and dependent on Poisson ratio, non-
trivial structure formation as a function of local dipole
coordination and Poisson ratio results. Decreasing p* the
number of next neighbors decreases and at low p* dipoles
typically only have one or two next neighbors, which favors
dipole alignment and string formation. Due to screening of
the traction patterns in a string, adjacent strings hardly
interact and we obtain a largely disordered structure even
at low T*. In our calculations the degree of position corre-
lation is controlled by p*, which therefore plays a similar
role as lattice geometry before. In contrast to relative den-
sity effects described by p*, absolute density effects can be

subsumed into the effective temperature 7* (see Eq. (3)).
This is due to the fact that by increasing cell density the
screening efficiency of string—string interactions also
increases. The only way to overcome screening and intro-
duce lateral coupling between dipoles is to insure that
dipole—dipole distances within a string and the distance to
an adjacent string are comparable. Increased dipole coordi-
nation, however, is controlled by p* rather than by (p).

We note that the order—disorder transition with p*
might also represent a spin-glass transition. Such transi-
tions are common for magnets, where spins represent mag-
netic moments. In magnets global ordering of spins can
result in a ferromagnetic state, where all spins point along
a common direction and a macroscopic magnetic field
builds up. Anti-ferromagnetic order results when spins
are globally ordered but with equal numbers of up and
down spins, such that no macroscopic polarization builds
up. A spin-glass transition occurs when e.g. due to disor-
dered positions of spins no ferro- or anti-ferromagnetic
order develops even at low temperatures. In analogy,
dipoles in our model represent spins. The aligned structure
therefore might be called a ferroelastic phase, because a
macroscopically anisotropic polarization stress develops
spontaneously. In analogy, the ring-like structure might
be called an anti-ferroelastic phase, because the macro-
scopic stress exerted by the dipoles remains isotropic.
When p* < p*, no global order develops even in the limit
T* — 0; instead, many equally favorable states exist.
Because we do not allow dipoles to adjust positions, they
cannot relax into an ordered ferro- or anti-ferroelastic
state. Thus, the disordered low temperature phase might
also represent a spin glass. There is an interesting difference
between thermally disordered states and density disordered
states at low 7. In both cases, dipoles can be aligned by
application of an external field. The former might be called
a paraelastic phase because it relaxes into the unpolarized
disordered state after the external field is switched off with
a single time-scale 7 oc (T — T.)’. In contrast, the latter
might represent a spin-glass state and relaxation into the
disordered state cannot be described by a single power
law. In fact a characteristic feature of spin glasses is a fast
relaxation to a remanent polarization and then a slow
relaxation into the unpolarized state, which may exceed
experimental time-scales.

4. Elastic effect in 3D environments

Although cell behavior in 3D is not the focus of this
paper, we now spell out a few predictions resulting from
our model in this case. Calculations for cells positioned
on a simple cubic lattice suggest that in incompressible
environments (v = 1/2) the optimal structure is effectively
isotropic with a hedgehog-like unit cell, where all dipoles
at the corners point to the cube’s center (see Fig. 7(a)),
while for v =0 spontaneous symmetry breaking along a
principal lattice vector occurs (see Fig. 7(b)). This indicates
that similar transitions between ring-like and string-like
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Collective effects can modify preferred cell organization close to a clamped boundary, which for single cells is perpendicular. For small intercellular
distances (o = b/d < 2.3) and sufficiently many cells in a string (N > N,), the parallel orientation becomes more favorable.

structures as a function of Poisson ratio v exist in 3D as
they do in 2D. String-like structures might also be favored
by anisotropies in the effective mechanical properties of the
environment. For example, fiber alignment or external
strain fields might cause cell alignment with the external
perturbation, which could be further stabilized by elastic
interactions between cells. In Fig. 7(c) we show a corre-
sponding snapshot of a Monte Carlo simulation with 100
cells modeled as hard spheres with an elastic dipole
moment at their center. Here we allowed for both orienta-
tional and positional degrees of freedom (7* =2,v = 1/2),
where the position dependence of W from Eq. (2) is used
for additional Monte Carlo moves. Moreover we applied
a homogeneous strain field along the z-direction. Cells
respond by an alignment with the external field and the for-
mation of strings as has been observed experimentally [50].
Without external field but with mobile cells we typically
observe formation of “networks” of cells at low tempera-
ture and intermediate densities and disconnected uncorre-
lated strings at elevated noise levels and low densities,
respectively. In general, we expect that the low to interme-
diate density regime of a three 3D phase diagram for
mobile elastically interacting force dipoles will resemble
the phase behavior of electric dipolar fluids [53,54]. In both
systems string formation dominates and string—string inter-
actions are screened in the same way [55]. At high dipole
densities our lattice calculations in 3D suggest that phase

transitions as a function of Poisson ratio may occur and
we find evidence that again a low Poisson ratio of the mate-
rial tends to favor global cell alignment.

In finite 3D environments the geometry and boundary
condition of the sample may also affect structure forma-
tion. The presence of a boundary modifies the direct elastic
interaction between cells by boundary induced strain fields,
which, depending on boundary condition, introduce either
attractive or repulsive contributions to the elastic interac-
tion plus a direct interaction term with the boundary
[34,35]. An instructive example for the competition
between the direct interaction of a cell with the boundary
and cellular interactions is the elastic half space with a
clamped boundary. When cells are located close to the
boundary, the direct interaction with a clamped boundary
favors cellular orientations pointing toward the surface
[34,35]. On the other hand, interactions between cells favor
the formation of strings and thus parallel orientations. Our
calculations suggest that the transition between these two
configurations is a function of the ratio o = b/d, where d
is the distance to the boundary and b is the distance
between cells, and the number of interacting cells N. Above
a critical value o~ 2.3 the direct interaction with the
boundary dominates and cells are expected to point toward
the surface. For « <o, orientations in parallel to the
clamped surface are favored when sufficiently many cells
are present, N > N(o). In Fig. 7(d) we plot N, as a function



L B. Bischofs, U.S. Schwarz | Acta Biomaterialia 2 (2006) 253-265 263

of . Thus, collective effects may alter preferred cell organi-
zation close to clamped boundaries. In contrast for a free
surface the direct interaction with boundary favors parallel
alignment, which is further stabilized by collective elastic
effects between cells. This may explain the robust parallel
alignment of cells with respect to free surfaces which has
been observed experimentally [51,52].

5. Conclusion and outlook

Using a simple mathematical model and extensive Monte
Carlo simulations, we have analyzed structure formation
due to elastic effects for fibroblast-like cells with anisotropic
force patterns. Our model predicts in a quantitative way how
structure formation is controlled on soft elastic substrates by
the Poisson ratio v, the reduced cell density p*, the relative
strength of elastic interactions with respect to noise (repre-
sented by the reduced temperature 7*) and the geometry
of cell positioning. Up to intermediate cell densities, we pre-
dict the formation of uncorrelated strings of cells (paraelas-
tic phase or spin glass). This finding can be explained by
noting that the cellular traction patterns in strings screen
each other, as we have demonstrated before by an analytical
calculation [36]. For high cell densities, we find an interesting
competition between isotropic ring-like and anisotropic
string-like structures. The string-like (ferroelastic) phase is
reminiscent of the nematic phase for liquid crystals. In con-
trast, the nematic order parameter vanishes in the ring-like
(anti-ferroelastic) phase, because local ordering principles
preclude nematic order on the macroscopic scale.

The Poisson ratio v allows to switch between these
phases. It strongly affects cellular structure formation due
to the non-trivial way in which stress and strain propagates
in the elastic environment. The anti-ferroelastic phase is
expected to occur on synthetic elastic substrates made from
e.g. polyacrylamide or polydimethylsiloxane, which are
characterized by v~ 1/2. In order to obtain the nematic
phase, new kinds of polymer gels for cell culture are
needed, with considerably lower values for the Poisson
ratio (namely below v. = 0.32). One possible route might
be the design of biocompatible polymer gels with large
mesh sizes but little hydration, thus avoiding the incom-
pressibility effect of bound water. As it is an open issue
on which time and length scales cells sense the mechanical
properties of their environment [19], design and testing of
new materials is crucial for progress in this field.

Like the Poisson ratio, also the other determinants of
cellular structure formation are in principle accessible
experimentally. The Young’s modulus E directly affects
the reduced temperature and can easily be varied in exper-
iments. Nevertheless it does not appear to be a reasonable
control variable for experiments, mainly because the pre-
dicted structure formation might be expected to take place
only in a small range of E-values, namely the ones corre-
sponding to physiological rigidities (around kPa). Other
control parameters of interest are cellular contractility
(which affects 7™ through the force dipole moment P and

which might be varied for example by administering
LPA, which stimulates Rho-mediated contractility) and
the average distance b between cells (although, in order
for the force dipole approximation to remain valid, the typ-
ical distance between cells should not be smaller than the
typical cell length). The most important experimental con-
trol parameter next to the Poisson ratio v might be the
geometry of cell positioning, which can be controlled with
patterning techniques (including microcontact printing in
two dimensions).

Elastic effects are likely to contribute to large scale tissue
organization and to the structure—function relationship of
tissues. Our results indicate that for sparsely populated tis-
sues, elastic interactions, despite their long-ranged charac-
ter, might have only a rather local effect. This is a result of
the local tendency for cells to align into strings combined
with the resulting screening of elastic fields. In this regime
the system remains macroscopically disordered over a wide
range of variations in material properties and cell density,
effectively making the composite material of matrix and
cells robust against perturbations. It is well known that
the sparsely populated connective tissue is a rather disor-
dered structure. Our simulations suggest that without mac-
roscopic external fields elastic interactions between cells
favor isotropic disordered structures. In this case the aver-
age stress in the tissue resulting from cells is isotropic, that
is 0;= Ppd;, where p is the cell density. The situation
changes when an external field is applied (e.g. resulting
from a wound). Then highly aligned structures may prevail.
In this case cells orient their mechanical activity in such a
way that the average cellular stress in the medium
o; = p(P;) becomes anisotropic in response to homoge-
neous uniaxial stress, that is, the cellular stress is directed
opposite to the externally applied stress (e.g. as to close
the wound). It is an interesting question what happens after
the external alignment field has decreased to zero. Our cal-
culations suggest that eclastic interactions may stabilize an
aligned structure even in the absence of external fields. In
particular, disordered tissues (like the connective tissue)
may become aligned due to an external field. Due to elastic
interactions the transition from the aligned state back into
the normal disordered state upon switching off the external
field could be dramatically slowed down, in analogy to sim-
ilar effects observed in magnetic spin glasses. This could
have implications for wound healing and scar formation.
Polarization also occurs spontaneously in our model. Inter-
estingly, this state is reminiscent of the disease state called
contracture, when certain tissues (like skin or muscle) start
to tighten up, eventually preventing movement of body
parts. It is an interesting speculation whether the mechan-
ical properties of extracellular matrices are altered by (dis-
eased) cells in such a way as to effectively induce variations
in the Poisson ratio, which could trigger transitions
between ferro- and anti-ferroelastic states. In order to
investigate this point in more detail, our model should be
extended to include viscoelastic and plastic effects as well
as fiber degrees of freedom.



264 L B. Bischofs, U.S. Schwarz | Acta Biomaterialia 2 (2006) 253-265

Mechanotaxis also plays an important role for dynamic
rearrangement of groups of cells in tissues, including devel-
opment, wound healing, capillary sprouting and tumor
growth. The work presented here builds on experimental
observations which suggest that cells migrate toward high
strain areas and orient their mechanical activity in such a
way as to pull back in response to external tensile strain.
Such tensile strain is certainly present e.g. close to wounded
areas or tumors. Future studies will show in which sense
our model can be adapted to these more specific situations.
The current study shows in a general way that many inter-
esting structure formation processes arise from mechanical
effects in communities of mechanosensitive cells and there-
fore might help not only to understand the corresponding
physiological situations, but also to program new tissue
functions by guiding the design of novel material with
appropriate mechanical properties.
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