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The measurement of cellular traction forces on soft elastic substrates has become a standard tool for many labs
working onmechanobiology. Here we review the basic principles and different variants of this approach. In gen-
eral, the extraction of the substrate displacement field from image data and the reconstruction procedure for the
forces are closely linked to each other and limited by the presence of experimental noise. We discuss different
strategies to reconstruct cellular forces as they follow from the foundations of elasticity theory, including two-
versus three-dimensional, inverse versus direct and linear versus non-linear approaches. We also discuss how
biophysicalmodels can improve force reconstruction and comment on practical issues like substrate preparation,
image processing and the availability of software for traction force microscopy. This article is part of a Special
Issue entitled: Mechanobiology.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Over the last two decades, it has become apparent that mechanical
forces play a central role for cellular decision-making, leading to the
emerging field of mechanobiology [1,2]. In order to understand how
forces impact cellular processes, it is essential to measure them with
high spatiotemporal resolution and to correlate them either statistically
or causally with the cellular process of interest. The most common
approach is to measure forces at the cell–matrix interface. This field
has grown rapidly over the last years and has become to be known as
traction force microscopy (TFM). Using this approach, it has been
shown e.g. that cellular traction often correlates with the size of adhe-
sion contacts [3–7] but also that this correlation depends on the growth
history of the adhesion contact under consideration [8,9]. For most tis-
sue cell types, high extracellular stiffness correlates with large traction
forces and large cell–matrix adhesion contacts. These large contacts
are thought to not only ensure higher mechanical stability, but also to
reflect increased signaling activity. This leads to a stiffness-sensitive re-
sponse of cells, e.g. during cell spreading and migration [10,11] or stem
cell differentiation [12–15]. While TFM has become a standard tool in
many labs working onmechanobiology, in practice the details of its im-
plementation vary significantly and the development of new ap-
proaches is moving forward at a very fast pace.
obiology.
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From a general point of view, forces are not an experimentally di-
rectly accessible quantity but have to be infered from the fact that
they create some kind of motion. Despite the fact that this motion can
follow different laws depending on the details of the system under con-
sideration (e.g. being elastic or viscous), a forcemeasurement essential-
ly requires to monitor some kind of dynamics. This is illustrated best
with a linear elastic spring. Here force is defined as F = kx, with spring
constant k and displacement x. Without a measurement of x, no state-
ment on F would be possible (k is a constant that can be obtained
from a calibration experiment). In order to measure x, the reference
state x= 0 has to be known, and therefore one typically needs a relax-
ation process to determine the absolute value of x. Thus even seemingly
static situations require some dynamical measurement. Another in-
structive example is the stress acting over a fictitious surface inside a
static but strained elastic body. In order to measure this stress directly,
in principle one has to cut the surface open and to introduce a strain
gauge that measures forces by the movement of a calibrated spring.
Alternatively one needs to use a model that allows one to predict this
stress from an elastic calculation.

In summary, each direct measurement of cellular forces has to start
with the identification of a suitable strain gauge. Thus a helpful classifi-
cation of thewide field of TFM can be introduced by considering the dif-
ferent ways in which a strain gauge can be incorporated in a cell culture
setup (Fig. 1). The most obvious way to do this is to replace the glass or
plastic dishes of cell culture by an elastic system that can deform under
cell forces. Early attempts to do so used thin elastic sheets, which buckle
under cellular traction and thus provide an immediate visual readout
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Fig. 1. Schematic representation of different setups for traction forcemicroscopy. (a) Thinfilms buckle under cell traction, therefore this setup is difficult to evaluate quantitatively. (b) The
standard setup are thick films with embedded marker beads as reviewed here. The substrate deformation field can be extracted with image processing and has to be deconvoluted to
obtain the cellular traction field. (c) Pillar arrays are local strain gauges and do not require any deconvolution; however, they also present topographical and biochemical patterns to
cells. (d) Fluorescent stress sensors typically use the relative movement of two molecular domains connected by a calibrated elastic linker to create a fluorescent signal, e.g. by Förster
resonance energy transfer (FRET) or by quenching.
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(Fig. 1 a) [16]. However, due to this non-linear response, it is difficult to
evaluate these experiments quantitatively. Therefore this assaywasfirst
improved by using thin silicone films under tension [17] and then thick
polyacrylamide (PAA) films that do not buckle but deform smoothly
under cell traction (Fig. 1 b) [18]. Today the use of thick films made of
different materials is a standard approach in many mechanobiology
labs. Fiducial markers can be embedded into these substrates and
theirmovement can be recorded to extract a displacement field. Solving
the inverse problem of elasticity theory, cellular traction forces can be
calculated from these data [18–22]. An interesting alternative to solving
the inverse problem is the direct method that constructs the stress
tensor by a direct mapping from a strain tensor calculated from the
image data [23–25]. Here we will review these methods that are
based on the experimental setup shown in Fig. 1 b.

A simple alternative to TFMon soft elastic substrates is the use of pil-
lar arrays, where forces are decoupled in an array of local strain gauges
(Fig. 1 c) [4,7,26–28]. Pillars can bemicrofabricated frommany different
materials, including elastomeres like polydimethylsiloxane (PDMS) or
solidmaterial like silicium, as long as they have a sufficiently high aspect
ratio to deform under cellular traction. One disadvantage of this
approach is that cells are presented with topographical cues and that
their adhesion sites grow on laterally restricted islands, making this
system fundamentally different from unconstrained adhesion on flat
substrates. Moreover it has recently been pointed out that substrate
warping might occur if the base is made from the same elastic material,
thus care has to be taken to correctly calibrate these systems [29].

A very promising alternative to macroscopically large elastic strain
gauges is the use of molecular force sensors (Fig. 1 d) [30–36]. Such a
sensor typically consists of two molecular domains connected by a cal-
ibrated elastic linker. In the example for an extracellular sensor shown
in Fig. 1 d, the distal domain is bound to a gold dot on the substrate
that quenches the cell-bound domain and fluorescence ensues as the
linker is stretched by cellular forces [35]. For intracellular sensors, one
can use Förster resonance energy transfer (FRET), which means that
fluorescence decreases as the linker is stretched [30]. Fluorescent stress
sensors give a direct readout ofmolecular forces, but for several reasons
one has to be careful when interpreting these signals. First the effective
spring constant of the elastic linker might depend on the local environ-
ment in the cell, even if calibrated in a single-molecule force spectrosco-
py experiment. Second the fluorescent signal is a sensitive function of
domain separation and relative orientation, thus a direct conversion
into force can be problematic. Third it is difficult to control the number
of engaged sensors, thus the fluorescent signal cannot easily be integrat-
ed over a larger region. Fourth the molecular stress sensor reads
out only part of the force at work in the cellular structure of interest
(e.g. the adhesion contact). Therefore fluorescent stress sensors are ex-
pected to complement but not to replace traditional TFM in the future.

One advantage of fluorescent stress sensors over soft elastic sub-
strates and pillar assays is that they can be more easily adapted to
force measurements in tissue, for example in developmental systems
with fast and complicated cell rearrangements, although the same is-
sues might apply as discussed above for single cells. Recently, however,
it has been shown that macroscopic oil droplets can be used to monitor
forces during developmental processes [37]. In principle, also subcellu-
lar structures such as focal adhesions, stress fibers, mitochondria or
nuclei can be used as fiducial markers for cell and tissue deformations
[38,39]. One disadvantage of this approach however is that subcellular
structures are usually highly dynamic and can exhibit their own
modes of movement, thus not necessarily following the overall defor-
mation of the cell. Nevertheless conceptually and methodologically
these approaches are similar to traditional TFM and also work in the
tissue context.

Another important subfield of TFM is estimating internal forces from
cell traction using the concept of force balance. This concept has been
implemented both for forces between few cells [40,41] and for forces
within laterally extended cell monolayers [42,43]. In the latter case
(monolayer stress microscopy), one assumes that the cell monolayer be-
haves like a thin elastic film coupled to the underlyingmatrix by stress-
es (alternatively one can assume coupling by strain [44,45]). Combined
with a negative pressure that represents the effect of actomyosin
contractility, the physics of thin elastic films is now increasingly used
to describe forces of cell monolayers in general [46–49]. Recently single
cell and monolayer approaches for internal force reconstruction have
been combined by tracking each cell inside a monolayer [50]. For single
cells, the combination ofmodeling and TFMhas recently been advanced
to estimate the tensions in the whole set of stress fibers within cells on
pillar arrays [51] and soft elastic substrates [52]. For the latter case an
actively contracting cable network constructed from image data has
been employed to model contractility in the set of stress fibers within
U2OS cells.

Despite the many exciting developments in the large field of TFM,
the most commonly used setup to measure cellular forces is traction
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force microscopy on soft elastic substrates [53–55]. Here we review the
underlying principles and recent advances with a special focus on com-
putational aspects. For the following, it is helpful to classify the different
approaches in this field. Because cells become rather flat inmature adhe-
sion on elastic substrates, traditionally only tangential deformations
have been considered (2D TFM). More recently, tracking of bead move-
ments in all three dimensions has been used to reconstruct also
z-direction forces (3D TFM) [23,24,56–58]. For both 2D and 3D TFM,
one further has to differ between linear and non-linear procedures. The
central quantity in this context is strain ε, which is defined as relative de-
formation and therefore dimensionless. If the substrate is sufficiently stiff
or the cell sufficiently weak to result in strain values much smaller than
unity (ε ≪ 1), one is in the linear regime and can work with the small
strain approximation [18–22]. The standard approach to estimating
forces is the solution of the inverse problem of linear elasticity theory
(inverse TFM). In the linear case, one can use the Green's function for-
malism that leads to very fast and efficient algorithms for force recon-
struction using inverse procedures, both for the standard case of thick
substrates and for substrates of finite thickness (GF-TFM) [59–61]. If in
contrast one is in the regime of large strain (ε ≫ 1), Green's functions
cannot be used. Oneway to deal with this problem is the use of the finite
element method (FEM-TFM) in a non-linear formulation. Moreover
FEM-TFM can also be used in a linear formulation [62,63]. For both
small and large strains, alternatively the stress can in principle be con-
structed directly from the displacement (direct TFM) [23–25,64].

In all approaches used, an important issue is the role of noise on the
force reconstruction. Most TFM-approaches use an inversion of the
elastic problem to calculate forces from displacement. However, this is
an ill-posed problem in the sense that due to the long-ranged nature
of elasticity, the calculated traction patterns are highly sensitive
to small variations in the measured displacement field and thus solu-
tions might be ambiguous in the presence of noise [20]. Also non-
conforming discretization of the problem can cause ill-posedness,
e.g. if the mesh is chosen too fine compared to the mean distance of
measured bead displacements. In order to avoid ambiguous solutions,
a regularization procedure has to be employed in one way or the
other, e.g. byfiltering the image data or by adding additional constraints
to the force estimation [21]. In model-based TFM (MB-TFM), this prob-
lem can be avoided if the model is sufficiently limiting [52]. In direct
TFM, care has to be taken how to calculate the derivatives from noisy
data [25]. Traction reconstruction with point forces (TRPF) can be
considered to be a variant of MB-TFM, but requires regularization if
one uses many point forces [20,21].

In Table 1 we list the different variants of TFM on soft elastic
substrates and their respective abbreviations. In the following we will
review recent advances in this field along the lines of this classification.
We startwith an introduction into TFMon soft elastic substrates, includ-
ing an explanation of inverse TFM versus direct TFM. We next discuss
GF-TFM, FEM-TFM and MB-TFM in more detail. We then discuss some
Table 1
Abbreviations for different variants of traction force microscopy (TFM) on flat elastic substra
Regularization is required to deal with experimental noise. The first five entries in the list exis
substrate model.

Abbreviation Meaning Comment

2D TFM Two-dimensional TFM Standard approach u
3D TFM Three-dimensional TFM Tracking of 3D defor
iTFM Inverse TFM Standard approach s
dTFM Direct TFM If superior 3D image
FEM-TFM Finite element method-based TFM FEM can be used for
GF-TFM Green's function-based TFM For small strains and
BEM Boundary element method iTFM in real space
FTTC Fourier transform traction cytometry iTFM in Fourier space
Reg-FTTC Regularized FTTC FTTC with regulariza
HR-TFM High resolution TFM Reg-FTTC with differ
TRPF Traction reconstruction with point forces Reconstruction of po
MB-TFM Model-based TFM To avoid regularizati
practical issues arising for TFM-users, namely experimental protocols,
image processing and software for force reconstruction. We close with
discussion and outlook.

2. Basic principles of elasticity theory and TFM

The reconstruction of traction forces on soft elastic substrates re-
quires continuum elasticity theory to describe substrate deformations
as a consequence of forces being applied to the substrate surface [65,
66]. Forces applied to the boundary of elastic solids are called traction
forces t and are measured in units of force per area, Pa = N/m2. They
lead to substrate deformationswhich in general are described by thede-
formation gradient tensor F, which is the Jacobian of the coordinate
transformation from the undeformed state x to the deformed state x′:

F ¼

∂x0

∂x
∂x0

∂y
∂x0

∂z
∂y0

∂x
∂y0

∂y
∂y0

∂z
∂z0

∂x
∂z0

∂y
∂z0

∂z

0
BBBBBBB@

1
CCCCCCCA
: ð1Þ

Alternatively one can work with the displacement vector field
u = x′ − x:

F ¼ 1þ ∇⊗uð ÞT : ð2Þ

Here 1 is the unit tensor, ⊗ is the dyadic product that maps two
vectors into a tensor ((a ⊗ b)ij = aibj) and ∇ the gradient operator in
the undeformed (Lagrangian) frame.

Both F and u are defined at any point in the body and therefore are
spatial fields. They have to be constructed from the image data and
then can be used to derive measures for local changes in distances and
angles during deformation. For this purpose it is useful to define several
types of non-linear strain tensors, in particular the Green–Lagrange
tensor E and the left Cauchy–Green tensor B:

E ¼ 1
2

FT � F� 1
� �

; B ¼ FFT : ð3Þ

In terms of the displacement vector field, the Green–Lagrange tensor
can be written as

E ¼ 1
2

∇⊗uð Þ þ ∇⊗uð ÞT þ ∇⊗uð Þ ∇⊗uð ÞT
� �

ð4Þ

which again shows its non-linear nature. Linearization for small strains
gives the linear strain tensor:

ε ¼ 1
2

∇⊗uð Þ þ ∇⊗uð ÞT
� �

: ð5Þ
tes as discussed in this review. The corresponding references are given in the main text.
t in both linear and non-linear versions. The other entries are typically used with a linear

sing only tangential deformations and forces
mations allows one to reconstruct 3D forces
olving the ill-posed inverse problem of elasticity
quality is available, the stress tensor can be calculated directly from the strain tensor
iTFM in particular for large strains or complicated geometries
simple geometries, Green's functions can be used for iTFM

tion to deal with noise
ently colored marker beads
int-like forces rather than stresses
on and to infer forces beyond traction forces, models can complement TFM



3098 U.S. Schwarz, J.R.D. Soiné / Biochimica et Biophysica Acta 1853 (2015) 3095–3104
In components this equation reads

εi j ¼
1
2

∂ui

∂xj
þ ∂uj

∂xi

 !
: ð6Þ

The linear strain tensor is non-dimensional and describes the
relative length changes in different directions. For simplicity, for the
following we assume small strains and thus proceed with the linear
strain tensor (geometrical linearity); later we will come back to the
large deformation case.

If in addition to small strains one can also assume that the substrate
material has a linear and isotropic constitutive relation (material
linearity), then a linear relation exists between the strain tensor ε and
the stress tensor σ describing the forces acting over internal surfaces:

σ i j ¼
E

1þ ν
εi j þ

ν
1−2ν

εllδi j
� �

ð7Þ

where summation over repeated indices is implied. This equation can
be inverted to

εi j ¼ 1
E

1þ νð Þσ i j � νσ llδi j
� �

: ð8Þ

Here E and v represent the two elastic constants of the linear and
isotropic substrate. For experiments with tissue cells like fibroblasts,
one typically uses a Young's modulus E ≈ 10 kPa; for weaker cells like
neurons, one typically uses E ≈ 100 Pa. The Poisson's ratio v ≈ 0.45
for PAA-films [67] and v ≈ 0.5 for PDMS-films [53]. Thus both material
systems are close to being incompressible (v ≈ 0.5).

The balance of internal and body forces, ∇σ = f, can be written as
partial differential equation for the displacement vector field, the
Lamé equation:

E
2 1þ νð ÞΔuþ E

2 1þ νð Þ 1−2νð Þ∇ ∇ � uð Þ ¼ f: ð9Þ

Due to its linearity, the general solution of Eq. (9) can be constructed
from the Green's function, which is the solution for the external force f
being a point force (represented mathematically by the delta function).
For example, a point force solution for infinite elastic space can be calcu-
lated (Kelvin solution) [65]. This solution decays like 1/(Er) with Young's
modulus and distance r (long-ranged decay) as the Lamé equation
Eq. (9) is similar to a Laplace equation. The angular parts of the Green's
function are determined mainly by the Poisson's ratio v.

In TFM, one typically has f= 0 for the body forces and deformations
arise from traction forces on the boundaries. However, due to the linear-
ity of Eq. (9), a propagator can be calculated for point traction forces that
in the following we also denote as Green's function. Most importantly
for TFM, such Green's functions are known for the elastic halfspace
(Boussinesq solution) [65] and for the elastic layer of finite thickness
[55,59–61]. Once such a Green's function is known, the general solution
follows as convolution integral:

u xð Þ ¼
Z

G x;x0ð Þt x0ð Þdx0: ð10Þ

The typical film thickness used in cell experiments is between 50 μm
and 80 μm. Then the displacement field decays sufficiently fast into the
substrate such that the boundary conditions at the bottom do not
matter and the Boussinesq solution can be used. For weak cell types,
even 20 μm may suffice. For strong cell types and if a thick substrate
does not fit into the microscope, one can use the Green's function for
finite substrate thickness.

The basic equations of elasticity theory reviewed here now suggest
two ways to construct forces from displacements. First one can invert
the convolution integral from Eq. (10) as onewants to infer the traction
forces t from the displacement data u (inverse TFM). Alternatively one
can directly construct the strain tensor ε from the displacement field u
using Eq. (6) and from this the stress tensor σ using Eq. (7). The traction
forces then follow as t= σnwhere n is the normal to the substrate sur-
face (direct TFM). In the large deformation case, the linear relation from
Eq. (7) has to be replaced by a non-linear material law. A standard
choice is the Neo–Hookean model leading to [64]

σ ¼ E

2 1þ νð Þdet Fð Þ5=3
B−

1
3
tr Bð Þ1

� �
þ E
3 1−2νð Þ det Fð Þ−1ð Þ1 ð11Þ

where B is the left Cauchy–Green tensor defined in Eq. (3). For small
strains, this simplifies to the linear relation from Eq. (7). We note that
Eq. (11) describes compressible materials and that the second term
diverges in the incompressible limit v = 0.5. For this case multi-field
formulations can be employed where incompressibility is treated
separately [66].

It is essential to note that all TFM-methods suffer from the presence
of noise in the experimental data. Noise in TFM-experiments has differ-
ent origins, including the limited optical resolution of the microscope,
the uncertainties in the image processing procedures and heterogene-
ities in the substrate material with its embedded marker beads. In
the case of inverse TFM, the inversion of the convolution integral
(a Fredholm integral equation of the 1st kind) in the presence of noise
is ill-posed due to the long-ranged (1/r) nature of the elastic Green's
function. This means that small changes in the displacement data can
lead to large changes in the reconstructed forces, thus rendering the
inverse procedure unstable. In the case of direct TFM, calculation of
the strain tensor amounts to taking 3D derivatives of noisy data and
therefore can be unstable, too. Therefore very good 3D image quality
has to be achieved and numerical derivatives have to be calculated
with appropriate noise filters, e.g. the optimal-11 differentiation kernel
[25]. For standard data sets it is therefore more feasible to proceed
with inverse TFM. Only recently has it become possible to implement
direct TFM based on much improved image processing procedures.
Therefore in the following we first discuss inverse TFM, in particular
its main variants, the Fourier method FTTC, which is a special version
of GF-TFM.

3. Green's function-based TFM and FTTC

The first quantitative reconstruction method to measure traction
patterns with sub-cellular resolution was proposed for pre-stressed sil-
icone sheets [17]. One disadvantage of this approach is that two-
dimensional Green's functions scale as ln(r). Because of the divergence
with large r, boundary effects become evenmore important than in the
case of the long-ranged but decaying Green's function with 1/r-scaling
in three dimensions. However, single cells are isolated systems that can-
not generate momentum and therefore to a first order approximation
their force monopole vanishes and they act as force dipoles [68]. This
means that the actual decay in such experiments should scale as 1/r
rather than as ln(r) even in two dimensions. Nevertheless the two-
dimensional decay of the Green's function is slow and therefore prob-
lematic. For this reason this technique was adapted to the case of thick
substrates [18], when the Green's function decays as 1/r2 for the force
dipole. With this faster decay, the inversion procedure becomes more
stable.

Due to the tensor nature of elasticity theory the Green's function G
(either for a halfspace or a finite thickness film) is actually a 3 × 3
matrix, which accounts for 3D substrate displacements. In most cases
it is sufficient and much more simple to record substrate deformations
only in lateral directions (2D), however, in this case it is amandatory re-
quirement that the substratematerial is nearly incompressible, which is
fulfilled by a Poisson's ratio of v ≈ 0.5. Only under these circumstances
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the matrix entries in lateral and vertical directions decouple. We then
have G(x, x′) = G(x − x′) with

G xð Þ ¼ 1þ νð Þ
πEr3

1−νð Þr2 þ νx2 νxy
νxy 1−νð Þr2 þ νy2

� �
: ð12Þ

Here r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the 2D distance. Note that G(x) can be inverted

everywhere (detG N 0) except at the singularity at x= 0. This singularity
however is effectively removed by the integration procedure in the con-
volution integral from Eq. (10).

The inverse problem can be solved with Green's functions either in
real space or in Fourier space. In real space, this is commonly done
using the boundary element method (BEM) [17,18,21]. The boundary
element method needs in addition to measured substrate deformations
the shape of the cell area, which gets spatially discretized by triangula-
tion. The traction field gets thereby represented by an interpolation
scheme based on a finite set of nodal traction values (similar to the
Galerkin method in FEM). Then Eq. (10) can be written as a linear alge-
braic equation, which represents a standard boundary elementmethod.
To invert the equation a priori information about expected traction field
needs to be incorporated. This is usually implemented by introducing
Tikhonov regularization. Here, an additional regularization term is
added to the corresponding optimization problem that replaces the in-
version of the elastic equation. This regularization term isweighted by a
regularization parameter λ that determines the strength of regulariza-
tion. In principle there are various choices of regularization terms possi-
ble which are characterized by their property to enhance or suppress
specific traction distributions. Because cells on flat substrates may
exert forces in different directions at neighboring adhesions, in contrast
to many other application areas for regularizationmethods smoothness
of the traction field (first-order Tikhonov regularization) is not an ap-
propriate choice. In practice onefinds that inversionwithout regulariza-
tion can lead to very large forces as the algorithm tries to reflect small
details of the noisy displacement field with large forcesworking against
each other. The most reasonable assumption therefore is that traction
forces should not become exceedingly large. One thus arrives at a
minimization problem with zero-order Tikhonov regularization:

t ¼ mint Gt−uð Þ2 þ λ2t2
� �

ð13Þ

where u is the experimentallymeasured displacement andGt is the dis-
placement predicted by the estimated traction (the convolution integral
is not written out here because in practice it is discretized and thus
becomes a matrix operation). The choice of the regularization parame-
ter λ can be based on Bayesian theory [22] or determined empirically,
for example with the L-curve criterion [69]. The BEM is a conceptually
straightforward but computationally expensive method to reconstruct
traction patterns. Its main advantages are that it can reach a high spatial
resolution and that it constrains traction to the segmented cell area.

Alternatively one can work in Fourier space (Fourier transform trac-
tion cytometry, FTTC) [19]. In Fourier space the convolution integral
Eq. (10) factorizes into a product and then can be inverted to give

~t kð Þ ¼ G kð Þ−1~u kð Þ: ð14Þ

Here the tilde denotes a Fourier transform. The traction reconstruc-
tion is achieved in principle by fast Fourier transform of the displace-
ment field, multiplication with the inverse matrix and fast Fourier
transform of the result back into real space. The 2D Green's function
from Eq. (12) becomes in Fourier space

G kð Þ ¼ 2 1þ νð Þ
Ek3

1−νð Þk2 þ νk2y −νkxky
−νkxky 1−νð Þk2 þ νk2x

 !
: ð15Þ
FTTC as suggested initially is not regularized and thus could lead to
problems in the presence of noise. In practice, this issue can be attenu-
ated by smoothing the image data and cutting away fast Fourier
modes. A more rigorous approach however is to introduce a regulariza-
tion scheme into FTTC (Reg-TFM) [21,22]. Eq. (14) is then replaced by

~t ¼ GTGþ λ21
� �−1

GT ~u ð16Þ

where we have left out the k-dependence for notational simplicity. For
regularization parameter λ=0, we get back the unregularized solution
Eq. (14).

FTTC benefits from a very fast computation time and that no addi-
tional information apart from the measured displacement field is re-
quired. Currently it is the most widely used traction reconstruction
technique and we show examples of FTTC in action in Figs. 2 and 3.
FTTC has been implemented bymany labs and also is available as ImageJ
plugin [71]. When working with it, however, one should keep some ca-
veats in mind. In general one has to note that the resolution of the final
traction field strongly depends on the local resolution of substrate de-
formations according to the Saint-Vernant's principle, which states
that the difference between the displacement fields caused by traction
distributions that are different but have the same highest order force
multipolar moment decays quickly with the distance from the traction
source. Therefore in experiments it is essential to record the substrate
deformation close to the force generating processes to resolve the de-
tails of the traction pattern. In practice thismeans that the deformations
right under the cell body aremost relevant.We next note that according
to the Nyquist criterion, the spatial resolution is mainly determined by
the bead density as it can be resolved in the image processing proce-
dures. Therefore nanobeads are preferred over microbeads, which
have the additional advantage of less disturbing themechanical proper-
ties of the substrate. We also note that fast Fourier transform requires
interpolation onto a regular lattice and therefore a homogeneous distri-
bution of marker beads is essential. We further note that for high reso-
lution TFM, one should also keep track of the depth atwhich themarker
bead images are taken; then an appropriatelymodified Green's function
in Fourier space has to be used [22,55]. In general, these comments
again show that the force reconstruction cannot be separated from the
quality of the image data and its processing.

4. FEM-based TFM

Standard TFM assumes both geometrical and material linearity. If
these assumptions are not justified anymore, then finite element
methods (FEM) can be used. This might be the case for soft substrates
or strong cells, and usually is the case if cells are embedded in a 3D elas-
tic matrix [63,72–74]. Moreover FEM-TFM can also be used in the linear
case [62,63]. Here we briefly comment on some applications of this
approach.

We first note that the boundary element method (BEM) introduced
early by Dembo andWang [18] can be considered to be some variant of
FEM-TFM. However, here only the cell and not the substrate is
discretized. It has been shown that TFM can also be completely based
on such a discretized approach, for example in order to take into
account finite substrate thickness [62]. Here the agreement between
measured and simulated displacements has been optimized using a
FEM-formulation. A mathematically very elegant way to reconstruct
traction with FEM has been introduced by Ambrosi and coworkers
[75,76]. The basic idea here is to consider the traction reconstruction
as PDE constraint optimization problem. Thus one searches for the sta-
tionary state of a Lagrangian type functional that incorporates the elastic
PDE as Lagrangian restriction. This leads to a coupled system of Lamé-
type equations associated with the forward and the adjoint problems.
By doing this one prevents costly numeric optimization procedures
since the optimization problem is reduced to the solution of a coupled
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systemof PDEs,which can be solved in parallel. One disadvantage of this
approach is that it assumes thin substrates and plane stress.

For thick substrates, another FEM-approach has been suggested by
Hur and coworkers [56,77]. They avoid the inversion of the elastic
equations by considering the elastic problem as mixed boundary value
problem (BVP). Here, FEM is used as suitable tool to solve the elastic
equationswith respect to the Cauchy stressσ, whilemeasured bead dis-
placements enter the equations as boundary condition. The substrate
region is considered as cuboid discretized domain and the equation sys-
tem that has to be solved is represented by inversion of the constitutive
relation from Eq. (8). The cellular traction at the substrate surface fol-
lows as t= σn. The approach does not use regularization and therefore
might be vulnerable to noise. The authors validated their method with
simulated data contaminated with additive Gaussian noise of different
strengths and measured a relative deviation of the root mean square
Δt = ‖tsim − trecon‖ of traction up to 25% for a Gaussian noise standard
deviation of 200 nm. They further applied themethod to data sets of bo-
vine aortic endothelial cells (BAECs) and found prominent non-zero
traction stresses in normal direction. These normal forces have now
been measured also in other approaches that reconstruct z-direction
forces [24,57,58].

Another FEM-based approach was proposed by Legant and
coworkers to reconstruct traction force patterns of cells embedded in
3D elastic matrix [63]. Compared to the BVP approach by Hur and co-
workers, this method utilizes FEM not to solve the problem directly,
but to calculate a discretized Green's function based on each individual
data set including the segmented and triangulated 3D cell shape. For
each facet of the cell surface triangulation the displacement responses
for unit loads are calculatedwith FEM to construct an individual discrete
Green's function. Based on the calculated Green's function then
a

c

Fig. 2. Example of force reconstructionwith differentmethods [70]. (a) Phase contrast image of
derived from the displacement of embedded fluorescent marker beads. (c) Reg-FTTC traction r
traditional traction reconstruction is applied using inversion of the con-
volution formulation from Eq. (10). Legant et al. inverted the problem
by minimizing a least square estimate with a zero-order Tikhonov
with respect to the facet loads similar to the TRPF method. The de-
scribed method represents a smart hybrid method. While it uses the
strength of FEM numerics to calculate PDEs on complex geometries, it
also traces the problem back to well-established standard TFM. Com-
pared to the Hur approach this represents a higher degree of flexibility,
e.g. beads do not have to be distributed directly at the substrate surface.
Because this is a Green's function approach, however, this method is
limited to linear elasticity theory after all.

Fig. 2 depicts a direct comparison of traction reconstruction with
standard FTTC and a FEM-based TFM for a cardiac myocyte on a
E = 15 kPa PDMS substrate. The implementation of the FEM-based
method used here is described in detail in [70]. The general idea behind
this technique is the replacement of the convolution integral Eq. (10) by
the direct elastic PDE, which is solved with respect to a freely chosen
traction boundary condition. This boundary condition is parameterized
by an interpolation scheme, which consists of a certain number of trac-
tion degrees of freedom analogue to the discretization used in FTTC.
Traction fields here are reconstructed by repeated calculation of the
PDE, while optimizing the traction boundary condition with respect to
measured bead displacement fields (beads distributed either on sub-
strate surface or within substrate volume). Note that by replacing the
convolution formulation (Eq. (10)) by the FEM-calculation step all con-
strictions regarding material model and substrate geometry can be
overcome, which designates the method to applications like non-
planar geometries and non-linear substrate material behavior. Visual
comparison of Fig. 2 c and d demonstrates that both methods lead to
identical traction fields and resolutions.
b

d

a cardiacmyofibroblast on an E=15 kPa PDMS-substrate. (b) Substrate displacement field
econstruction. (d) FEM-based traction reconstruction. Data courtesy of Merkel group.
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Fig. 3. Model-based traction force microscopy (MB-TFM) with active cable networks [52]. U2OS-cell on E = 8.4 kPa PAA substrate. (a) Actin fluorescence image. Scale bar is 10 μm.
(b) Paxillin fluorescence image. (c) Segmented actin stress fibers from actin image. (d) Segmented focal adhesions from paxillin image. (e) Reg-FTTC traction force pattern from substrate
deformations. (f) MB-TFM traction force pattern based on an active cable cell model. The insets illustrate the different levels of detail obtained from FTTC versusMB-TFM reconstructions.
Data courtesy of Gardel group.
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5. Model-based traction force microscopy

All previous TFM reconstruction methods focused on finding a cor-
rect distribution of traction forces with respect to a measured field of
substrate deformations. However, this does not tell us how forces are
distributed inside the cells. This restriction has been lifted for cellmono-
layers by the introduction of monolayer stress microscopy which
models the cell monolayer as thin elastic sheet [42,43,50]. The strategy
of combining traction reconstruction with modeling assumptions is
very general and recently has also been applied to the stress fibers in
single cells as an example of model-based TFM [52].

The main idea behindMB-TFM is to combine TFMwith quantitative
cell modeling. In practice image processing is used to identify promi-
nent mechanical features of the cell based on fluorescence images of
focal adhesion proteins and the actin cytoskeleton. Fig. 3 a–d shows
how these structures can be segmented in live cells (TFM microscopy
is only possible in combination with live cell microscopy due to the
need to also acquire a reference image). This information is subsequent-
ly used to build an individual 2D biophysical model for each cell that
represents their mechanical behavior as best as possible while keeping
amoderate level ofmodel parameters. For this purpose the cell is repre-
sented by a network of contractile active cables. Segmented stressfibers
are embedded in the network and after its simulated contraction the
resulting forces are transmitted to the substrate at those points where
focal adhesion have been segmented before. By doing so, one arrives
at a quantitative mechanical cell model with typically 30 to 100 free
parameters to optimize, which is much less compared to traditional
TFM reconstruction. A comparison of both reconstructions is shown in
Fig. 3 e and f.

MB-TFM has several advantages compared to standard techniques.
First, the incorporation of the cell model allows us to reveal correlations
between substrate deformations and the distribution of intracellular
tension. E.g. for U2OS cells it could be shown that forces generated in
actin stress fibers make up most of the overall traction force, while
forces originated from distributed actin networks are in most of the
cases negligible. Further it could be validated that different stress fiber
types, which have been classified by their assembly mechanism, vary
statistically in their contraction strength. Second, the additional model
restriction and according reduction of the parameter space is sufficient
to abolish the need for regularization in most cases, while the model
filter undertakes the task of a regularization scheme and guarantees
that traction field solutions agree with biophysical considerations in-
cluding e.g. the overall balance of forces. The drawback of this approach
is the restriction to a 2D model, the need for very good image data (in
order to perform the segmentation and to arrive at a realistic model),
the requirement to image different channels simultaneously (one for
the marker beads and at least two for adhesion and cytoskeletal pro-
teins, respectively) and the high demand on computer power. With
the rapid advances in 3D imaging, in the future this approach might
also be carried into the third dimension. However, although 3Dmodels
for contractility of adherent cells already exist [78,79], it is certainly
challenging to acquire the image data needed to parameterize such 3D
models through traction data.

6. Experimental data and image processing

We finally comment on some practical issues that arise in TFM. A
typical TFM-experiment proceeds as follows. Polymer monomers and
crosslinkers are mixed at a ratio that corresponds to the desired sub-
strate stiffness. Then marker beads (commonly used diameters range
from μmdown to 40 nm) are added to this mixture and a drop is depos-
ited on a first coverslip. A second coverslip is used to sandwich the drop
and the gel is polymerized. The top coverslip is removed again and the
surface coated with extracellular matrix. This culture substrate is then
inserted into the microscope. Sometimes the beads are centrifuged
down towards the substrate surface in order to facilitate image process-
ing. It is difficult to dissolve the beads in the substrate material (e.g. in
PDMS), then the substrate can be made in a two-step process with the
beads deposited on the surface of the first film. The rigidity of the final
substrate can be measured with different techniques, ranging from mi-
croscopic probes like the AFM ormagnetic beads tomacroscopic probes
like film stretching under gravity or rheometers. Ideally measurements
with different setups should give the same results.

Over the years, different protocols have been published for the prep-
aration of TFM-substrates. An early and very rich resource is volume 83
of Methods in Cell Biology edited by Yu-Li Wang and Dennis E. Discher
[54]. The standard system used for TFM are polyacrylamide (PAA) sub-
strates that can easily be tuned over a large stiffness range [67,80,81].
For high resolution TFM, these protocols can be modified to use differ-
ently colored marker beads [22]. Surface functionalization is usually
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achieved by activating the surface with Sulfo-SANPAH or hydrazine,
which then can bind ECM-ligands such as collagen or fibronectin.
Because acrylamide monomers are toxic (for example, they react with
the amino acid cysteine), care has to be taken that the substrates are in-
deed completely polymerized before being used for cell culture. Typical-
ly one prepares a stock solution that can be kept for several years and
then prepares working solution on demand.

An alternative system to PAA-substrates is silicone-oil based sub-
strates (mainly PDMS, that is commercially available as Sylgard 184) for
which also different protocols are available [53,55]. Their high index of re-
fractionmakes themsuitable for simultaneoususewith TIRF [82]. Howev-
er, they are also more difficult to handle in regard to inclusion of marker
beads, which often are added in a multiple-step process between two
PDMS-layers [55]. Alternatively, the good patterning properties of PDMS
can be used to create some surface features that can be followed in
phase contrast [3]. Another issue with PDMS-substrates is that they are
very sticky and therefore hard to handle; at the same time, it is difficult
to achieve the kPa-stiffness needed for cell experiments. Motivated by
the widespread use of TFM-substrates in mechanobiology, recently the
difference between PAA- and PDMS-substrates for stem cell differentia-
tion have been investigated in great detail [14,15].

An exciting development in TFM is the combination with
micropatterning approaches, which allow one to normalize cell shape
and intracellular organization [83]. Different techniques have been
developed to pattern soft elastic substrates, including microcontact
printing [84–87] and deep-ultraviolet illumination of PAA-substrates
[88–90] as well as lift-off techniques on PDMS-substrates [91]. Combin-
ing TFM and cell patterning can also be accomplished in three dimen-
sions, e.g. using direct laser writing [92,93].

Whenworkingwith soft elastic substrates, one always has to keep in
mind that many different physical processes might cause them to devi-
ate from the ideal elastic behavior assumed in the force reconstruction
procedure. For the soft kPa-substrates required for TFM, care has to be
taken to avoid viscous components (e.g. PDMS at 0.1 kPa [14]) or het-
erogeneities (e.g. PAA at unfavorable mixing ratios [80]) because both
cell behavior and the force reconstruction procedures are affected by
such substrate properties. If substrates with dissipative elements are
used, their viscoelastic properties (creep and relaxation functions)
should be characterized in detail [94]. For the widely used PAA-
substrates, another effect that one has to keep in mind is the possible
uptake and release of water by the deformed hydrogel [95].

In a TFM experiment, one typically acquires a stack of fluorescence
images, including at least one image for the substrate deformation. At
the end of the experiment, one has to remove the cell (typically by
trypsination or by adding similar enzymes, but alternatively by
scratching or by adding calyculin such that the cell rips itself off the sub-
strate) in order to obtain a reference image. Then the deformation vec-
tor field has to be constructed by image processing and comparison of
the deformed and the undeformed images. There exist two standard so-
lutions plus a number of hybrid approaches [55]. In single particle track-
ing, one uses a low number of fiducial markers such that one can track
them one by one. In correlative tracking, also known as particle image
velocimetry (PIV) or digital image correlation (DIC), one tracks patterns
rather than single particles. Often one uses a combination of both ap-
proaches, e.g. PIV to get a first estimate and then single particle tracking
(possibly augmented by neighborhood features) for amore precise one.
Table 2
List of helpful software for TFM.

Description

ImageJ plugin FTTC by Qingzong Tseng
Finite thickness TFM from Dufresne group
Regularization tools by Per Hansen
MatLab PIV toolbox by Nobuhito Mori
Particle tracking code by Daniel Blair and Eric Dufresne
Large deformation 3D TFM from Franck group
The 3D variant of DIC is known under the term digital volume correla-
tion (DVC). In addition, in HR-TFM, one can use the correlation between
different colors [21,22].

Over the last years, different software packages have been devel-
oped for the image processing and force reconstruction tasks. In
Table 2 we list some of them for the convenience of the TFM-user. The
ImageJ plugin for FTTC is a ready-to-use solution to implement standard
TFM [71]. The finite thickness software is required when cells are very
strong or the substrate is very thin [55]. The regularization tools by
Hansen can be used for regularized optimization strategies in inverse
TFM based on optimization, compare Eq. (13) [69]. Helpful image pro-
cessing tools are available also from other fields like environmental
physics, fluids dynamics, microrheology, single molecule imaging or
super resolution microscopy. A standard choice for correlative tracking
is the MatLab PIV toolbox. Alternatively one can use single particle
tracking routines. For large deformation 3D TFM, a specialized code
has been developed very recently [25].

7. Conclusion and outlook

Here we have reviewed recent progress in TFM on soft elastic sub-
strates from the computational perspective. Our overview shows that
this field is moving at a very fast pace and that many different variants
of this approach have been developed over the last two decades, each
with its respective advantages and disadvantages. Thus the situation is
similar to the one for optical microscopy, a field in which also a lot of
progress has been made over the last decades at many different fronts
simultaneously, ranging from super resolution microscopy (STED,
PALM, STORM, SIM) through correlative and fluctuation microscopy to
light sheet microscopy (SPIM). Like in this field, too, for TFM the choice
of method depends on the experimental question one is addressing and
in many cases a combination of different approaches will work best.

Our review shows that force reconstruction cannot be separated
from data analysis and image processing, in particular due to the noise
issue. Irrespective of the approach used, care has to be taken to deal
with the experimental noise that is always present in the displacement
data. Each of the methods discussed above includes some kind of regu-
larization, either implicitly through image filtering or explicitly through
some regularization scheme.

For 2D TFM, the standard approach is FTTC and this has become the
common procedure in many labs working in mechanobiology due to its
short computing times. Reg-FTTCmakes computation time only slightly
longer but introduces amore rigorous treatment of the noise issue. FTTC
can be extended easily to 3D TFM, but only if the image data is of very
good quality. The simplest version of 3D TFM implies tracking ofmarker
beads in z-direction on planar substrates. As such experiments usually
require relatively soft substrates, one typically leaves the linear domain
and large deformationmethods have to beused for force reconstruction.
Similar techniques can then be used also in full 3D TFM, e.g. when cells
are encapsulated in hydrogels. Here however care has to be taken that
the cellular environment is indeed elastic; otherwise a viscoelastic or
even plastic theory has to be employed.

The more complex the questions and experiments become that are
conducted in mechanobiology, the more difficult it will get to extract
meaningful correlations and cause–effects relations. We therefore envi-
sion that in the future, such experiments will be increasingly combined
URL
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with mathematical models that allow us to extract useful information
from microscopy data in a quantitative manner. Simple examples
discussed above are TRPF and MB-TFM, which use the assumptions of
localization of force transmission to the adhesion contacts (TRPF) and
force generation in the actin cytoskeleton (MB-TFM) to improve the
quality of the data that one can extract from TFM-experiments. In a
similar vein, we expect that in the future, more and more data will be
extracted from microscopy images based on some Bayesian assump-
tions that have been validated before by other experimental results. An-
other very exciting development is the combination of TFM with
fluorescent stress sensors, which complement it with molecular infor-
mation and which can be more easily used in a tissue context.
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