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ABSTRACT Bistability is a major mechanism for cellular decision making and usually results from positive feedback in bio-
chemical control systems. Here we show theoretically that bistability between unbound and bound states of adhesion clusters
results from positive feedback mediated by structural rather than biochemical processes, namely by receptor-ligand dissociation
and association dynamics that depend nonlinearly on mechanical force and receptor-ligand separation. For small cell-matrix
adhesions, we find rapid switching between unbound and bound states, which in the initial stages of adhesion allows the cell to
explore its environment through many transient adhesions.
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In cell-matrix adhesion, cells use integrin-based contacts to

collect information about their environment (1). The integrin

receptors form two-dimensional clusters in the plasma mem-

brane and are stabilized by connections to the cytoskeleton.

Their extracellular domains reversibly bind ligands from the

extracellular matrix like fibronectin, which present the ligand

epitope through a polymeric tether. To efficiently explore a

newly encountered surface and to commit itself to adhesion

only if an appropriate combination of local signals is present,

it is favorable for cells to start by establishing many small and

transient adhesion sites. In the following, we introduce a

simple theoretical model that predicts that small cell-matrix

adhesions are characterized by bistability between bound and

unbound states due to well-established principles of receptor-

ligand dynamics. For biochemical control structures, positive

feedback is well known to result in bistability and switch-like

behavior, for example in the cell cycle and in the MAPK-

cascade (2). Here we show that bistability in biological sys-

tems can also result from structural processes.

Fig. 1 shows the model studied in the following. The me-

chanical properties of the cell envelope holding the receptors

and of the polymeric ligands are represented by harmonic

springs. We consider a situation in which Nt receptor-ligand

pairs are arranged in parallel along the cell-substrate inter-

face. At a given time t, there are i closed and Nt-i open bonds.
The dynamic variable i ranges from 0 (completely unbound

state) to Nt (completely bound state). The probabilities

for the Nt 1 1 states are denoted by pi(t) (0 # i # Nt)

and their time evolution is described by a one-step master

equation

dpi
dt

¼ ri11pi111gi�1pi�1 � ðri 1 giÞpi: (1)

This equation states that i can either decrease due to rupture

of a closed bond (reverse rate ri) or increase due to binding of
an open bond (forward rate gi).

The reverse rate is ri ¼ ikoff(i) because any of the i closed
bonds can be the next to break. The single bond dissociation

rate increases exponentially with force according to the

Bell equation, koff(i) ¼ k0exp(Fb(i)/F0), with the unstressed

dissociation rate k0 and the internal force scale F0 (3). The

force Fb(i) acting on each of the closed bonds changes dy-

namically and follows from mechanical equilibrium for the

arrangements of springs depicted in Fig. 1:

FbðiÞ ¼
kb‘

11 iðkb=ktÞ
: (2)

Here, kb represents the stiffness of the polymeric tethers

carrying the ligands and kt represents the effective stiffness

of the cell envelope. The distance ‘ is the average distance

between receptors and ligands if the cluster is completely

unbound. Equation 2 shows that the more bonds are closed,

the less force acts on the single bonds because it is shared

between all closed bonds in the cluster.

The forward rate is gi ¼ (Nt-i)kon(i) because each of the

Nt-i open bonds can be the next to close. The single bond

association rate increases as the receptor-ligand distance xb(i)
decreases and can be written as

konðiÞ ¼
kon
Z
e
�1

2kbxbðiÞ
2
=kBT ; (3)

where Z is the partition function for a ligand in a harmonic

potential confined between �‘b and xb(i), kon is the single

bond on-rate if receptor and ligand are in close proximity,

and xb(i) ¼ Fb(i)/kb follows from Eq. 2. In our model,

temperature T essentially controls ligand mobility: the larger

T, the broader the ligand distribution. In the limit T/N
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(high ligand mobility, kon(i) ¼ kon) and kb � kt (soft

transducer, Fb(i) ¼ kt‘/i), our model simplifies to a case that

has been used before to study the stability of adhesion clus-

ters under force (4). However, only the full model introduced

here results in bistability.

To demonstrate that our model leads to bistability, it is

sufficient to consider the mean number of closed bonds,

NðtÞ ¼ +Nt

i¼0ipiðtÞ. Neglecting deviations from the mean, the

time evolution of N(t) is described by the ordinary differ-

ential equation

dN

dt
¼ gðNÞ � rðNÞ; (4)

where reverse and forward rate are now interpreted as

functions of a continuous argument. The same mean-field

approach has been used before to study the stability of

adhesion clusters under force in the limits of high ligand

mobility and soft transducer, both for constant (3) and

linearly rising force (5). In Fig. 2, we show the results of a

bifurcation analysis of Eq. 4. In Fig. 2 a, stable (solid lines)
and unstable (dashed lines) fixed points are shown as func-

tion of the dimensionless unloaded receptor-ligand distance

l¼ ‘/‘b and for different values of the dimensionless inverse

ligand mobility b ¼ kb‘
2
b=kBT. For small l, a single, stable

fixed point exists at finite N. Here, the adhesion cluster is

bound because force on a closed bond is small and the

density of free ligands close to the receptors is large, there-

fore rupture events are rare and can be balanced by rebind-

ing. For large l, there is a single, stable fixed point at N � 0.

Here, the adhesion cluster is unbound because forces are

large and ligand density at the receptors is small, therefore

rupture occurs frequently and cannot be balanced by rebind-

ing. The transition from bound to unbound proceeds via a

series of two saddle-node bifurcations, resulting in a window

of bistability. This bistability results from two positive

feedback mechanisms working in parallel. First, there is

positive feedback for rupture: as one bond breaks, force on

the remaining bonds is increased, thus increasing their dis-

sociation rate. Second, there is positive feedback for binding:

as one ligand binds, receptor-ligand distance is decreased

and the binding rate for the other ligands increases. Fig. 2 a
also shows that with increasing ligand mobility (decreasing

b), the bistable region shifts to larger l because the spatial

distribution of ligands becomes broader, thus stabilizing ad-

hesion clusters through rebinding. In Fig. 2 b, we construct a
stability diagram by plotting the l corresponding to the up-

per and lower bifurcation points as a function of b. Again we

observe that l decreases with increasing b. For the lower

bifurcation, we find the scaling l ; b-1/2. For large b (small

ligand mobility), the width of the two-state-region is fairly

constant, whereas it decreases for small b (large ligand mo-

bility) as the two curves converge.

To study the dynamics of adhesion clusters, the full sto-

chastic model of Eq. 1 has to be used. Bistability demon-

strated in the bifurcation analysis of the mean-field theory

FIGURE 1 Schematic representation of our model for an adhe-

sion cluster with Nt bonds, out of which i are closed at a given

time (here Nt 5 5 and i 5 3). The force transducer at the top and

the ligand tethers at the bottom are modeled as harmonic

springs, with rest lengths ‘t and ‘b and spring constants kt and

kb, respectively. The positions of the unloaded springs (dashed

lines) are separated by the unloaded receptor-ligand distance ‘.

The extensions of the loaded transducer and bond springs are

denoted xb and xt 5 ‘ � xb, respectively.

FIGURE 2 (a) One-parameter bifurcation diagram showing

stable (solid lines) and unstable (dashed lines) fixed points of

the mean-field equation Eq. 4 as function of unloaded receptor-

ligand distance l 5 ‘/‘b and for three values of inverse ligand

mobility, b 5 kb‘b
2/kbT 5 0.5, 1, and 2. The other parameters are

Nt 5 10, kon/k0 5 1, kb/kt 5 1, and kb‘b/F0 5 0.1. (b) Stability

diagram constructed from the location l of upper and lower

bifurcation points shown in a as function of b.
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now corresponds to bimodality of the stationary probability

distribution. Again, coexistence of bound and unbound

adhesion clusters is found for intermediate values of the

unloaded receptor-ligand distance l. In the stochastic de-

scription, the system is able to switch dynamically between

these coexisting macrostates. Using Eq. 1, average binding

and unbinding times can be calculated as mean first passage

times (6). In Fig. 3, we plot average binding and unbinding

times as function of the unloaded receptor-ligand distance l

for cluster sizes Nt¼ 10 (solid lines) and 25 (dashed lines). A
detailed analysis shows that their ratio effectively equals the

ratio of occupancy probabilities of the stationary solution of

the master equation. Therefore when binding and unbinding

times are equal, unbound and bound states are occupied with

equal probability, thus defining a stochastic transition point.

The shaded areas in Fig. 3 show the windows of bistability

derived from the mean-field approach. For Nt ¼ 10, the

stochastic transition point is below the deterministic range,

whereas for Nt ¼ 25, it falls into the deterministic range. The

definition of a range of bistability is less appropriate in the

stochastic case because here the existence of a bimodal

distribution is complemented by information on the transi-

tion times. For both deterministic and stochastic descrip-

tions, the l-values for bistability increase with Nt, so that for

a given l the bound state becomes the only stable macrostate

when Nt grows. In the stochastic treatment, this leads to a

super-exponentially fast increase of unbinding time with Nt

for fixed l, so that larger adhesions get effectively trapped in

the bound state and only small adhesions will show bistable

switching on an experimental time scale.

We finally discuss how our results apply to the integrin-

fibronectin bond. For the low affinity fibronectin-a5b1-integrin

bond k0 ; 0.13 Hz and F0 ; 10 pN have been measured (7)

and we assume kon/k0 ; 1. Fibronectin is a semiflexible

polymer with contour length L ; 62 nm, persistence length

Lp ; 0.4 nm and equilibrium length ‘b ; 11 nm. Therefore

the spring constant at small extensions can be estimated to be

kb ¼ 3 kBT/2 LLp ; 0.25 pN/nm. From this we get kb‘b/F0 ;

0.27 and b; 7.1. To estimate the effective spring constant of

the force transducer, we use the Hertz model for elastically

deforming the cell with a cylinder of radius a. Then kt ¼ 2

aE/(1 � n2) ; 0.27 pN/nm where we have used E; 10 kPa

for the Young modulus, n ; 0.5 for the Poisson ratio and

a; 10 nm for the size of the adhesion cluster. Thus the ratio

of force constants is kb/kt ; 0.9 and bistability for Nt ¼ 5 is

found from the full stochastic model around l ; 0.75. The

actual unloaded cell-substrate distance is the unloaded

receptor-ligand separation ‘ plus the ligand rest length ‘b,
that is 20 nm. This indeed is the range of cell-substrate

distance at which mature cell-matrix adhesion starts (8).

In summary, our model predicts that the early phase of

cell-matrix adhesion is characterized by rapid association

and dissociation of small adhesion sites that have attachment

times in the range of several tens of seconds. In the presence

of appropriate signals, commitment to firm adhesion can be

induced through different mechanisms, including recruit-

ment of additional receptors and changes in binding affinity,

which increase the escape time from the bound macrostate.

In this sense, the structural mechanism for bistability de-

scribed here resembles the switch-like behavior often

encountered in biochemical control structures.

ACKNOWLEDGMENTS

This work was supported by the Emmy Noether Program of the German

Research Foundation (DFG) and the Center for Modelling and Simulation

in the Biosciences (BIOMS) at Heidelberg.

REFERENCES and FOOTNOTES

1. Geiger, B., and A. Bershadsky. 2002. Exploring the neighborhood:
adhesion-coupled cell mechanosensors. Cell. 110:139–142.

2. Angeli, D., J. E. Ferrell, and E. D. Sontag. 2005. Detection of
multistability, bifurcations, and hysteresis in a large class of biological
positive-feedback systems. Proc. Natl. Acad. Sci. USA. 101:1822–1827.

3. Bell, G. I. Models for the specific adhesion of cells to cells. Science. 200:
618–627.

4. Erdmann, T., and U. S. Schwarz. 2004. Stability of adhesion clusters
under constant force. Phys. Rev. Lett. 92:108102.

5. Seifert, U. 2000. Rupture of multiple parallel molecular bonds under
dynamic loading. Phys. Rev. Lett. 84:2750–2753.

6. van Kampen, N. G. 1992. Stochastic Processes in Physics and Chemistry.
Elsevier, Amsterdam, The Netherlands.

7. Li, F., S. D. Redick, H. P. Erickson, and V. T. Moy. 2003. Force
measurements of the a5b1 integrin-fibronectin interaction. Biophys. J. 84:
1252–1262.

8. Cohen, M., D. Joester, B. Geiger, and L. Addadi. 2004. Spatial and
temporal sequence of events in cell adhesion: from molecular recognition
to focal adhesion assembly. ChemBioChem. 5:1393–1399.

FIGURE 3 Average binding and unbinding times in units of

k0 as function of unloaded receptor-ligand distance l 5 ‘/‘b for

Nt 5 10 (solid lines) and 25 (dashed lines) at b 5 1. The other

parameters are as in Fig. 2. The shaded areas marked by bars are

the windows of bistability (which overlap in the darker region)

from the mean-field theory for Nt 5 10 (left) and 25 (right).
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