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Supplementary Material 
 

Supplementary figures 
 

Figure S1: Dynamics of cell adhesion 
 
BRL- (upper row) and B16-cells (lower row) were cultured on patterned substrates in serum-
free medium, fixed and stained for actin (green), paxillin (red) and fibronectin (blue). Under 
these culture conditions, cell migration is largely reduced and cell spreading completed after 
one hour. A comparision of two cells cultured for 80 min with two cells cultured for 6 hours 
shows no differences in typical arc structures, indicating that the cells have established an 
almost stationary cell shape. 

 1



 
Figure S2: Dynamics of the tissue model 
 
Time series for a tissue model with embryonic fibroblasts and rat tail collagen. The image 
shown in Fig. 2A (also last image here) is the fixed version of the image at day 7 in the time 
series. After 2h, cells and collagen are still a uniform dispersion. Steel needles attached to the 
bottom of the dish provide mechanical resistance to cellular forces. After a few days, gel 
shape develops in response to the geometry of the pinning points. Cellular contraction is 
sufficiently large to lead to fracture in the gel close to the pinning points. 
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Figure S3: Parameter distribution for linear fits obtained from bootstrapping 
 
(a) Slope and intercept of a linear fit to the R-d-correlation from Fig. 3C of BRL (blue) and 
B16 cells (green). The difference between the R-d relationships is not significant since the 
parameter distributions do overlap. (b) Slope and intercept of a linear fit to the <R/d>(S) 
relationship from Fig. 7E for BRL control cells (blue), blebbistatin treated cells (red) and 
Y27632 treated cells (green). The difference between the two inhibition protocols is not 
significant. The correlation of the control cells is significantly different from the inhibited 
cells. 
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Figure S4: A longer fiber is not a stronger fiber 
 
Correlation coefficients C between spanning distance d and arc strength S are persistently 
small. (a) Control BRL: C=0.16. (b) Y-27632-treatment: C=-0.21. (c) Blebbistatin-treatment: 
C=0.04. 
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Figure S5: Variation in arc strength 
 
(a) R-d relations for weak (green, S<Sm) and strong (red, S>Sm) arc subpopulations. Lines 
show 100 bootstrap fits to the EC-model for the respective subpopulations. (b) Distribution of 
the fit parameter lf for weak (green) and strong (red) arcs. Weaker arcs lead to statistically 
significant smaller values of lf than strong arcs. Thus arc strength variations contribute to the 
spread in the R(d)-data for BRL-cells shown in Fig. 3C. 
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Figure S6: Theoretical effect of arc strength variation 
 
Model prediction for the variation of the averaged normalized arc radius <R/d> with arc 
strength S. Here we assume EA=cS with c=500 as estimated from the control data. The red 
line denotes the prediction of the model for BRL control cells in both cases. The blue line is 
the model prediction for inhibited cells. Experimental results are shown in Fig. 7E. (a) Model 
prediction with TC-model when inhibition causes an increase of fiber resting length α due to 
tension relaxation. (b) Model prediction by an alternative scenario in which additional elastic 
effects not captured by the arc strength cause an effective reduction in c without changing α. 
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Tension-elasticity model 
 
Computer Simulations 
 
In the following, the model is explained in terms of cell shape, but the same theory also 
applies to tissue shape as explained in the main text. Our computer simulations model the cell 
as an actively contracting two-dimensional cable network. We first generate nodes and links 
for a tension-free reference state. For regular networks, nodes are positioned on a square 
lattice, with each internal node linked to four adjacent nodes. For irregular networks, nodes 
were distributed at random, but with a required minimal distance to neighbouring nodes, such 
that internal nodes are typically linked to five to six neighbours. Each link represents a 
mechanical network element: in a fully elastic network each link denotes a harmonic spring 
with a linear force-extension relationship, while in a cable network, each link represents a 
cable which responds linearly to stretch but yields to compression. The contractile activity 
within the network is modelled as a homogenous distribution of pairs of opposing body forces 
that act on opposite nodes of a connecting link. This rule is applied to all links in the network. 
We then use a steepest descent algorithm to relax the network into mechanical equilibrium. 
 
Effective Contour Model 
 
(a) Mechanical Equilibrium 
The shape of a cell adhering to a flat rigid substrate is mainly represented by its two-
dimensional contour. The existence of circular arcs suggests that cell shape is determined by 
an effective surface tension σ, which acts to decrease cell area, and an effective line tension λ, 
which acts to decrease contour length between neighbouring sites of adhesion. Then the shape 
of a free part of the contour results from the local force balance between surface tension and 
line tension: 
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where  and  are normal and tangential vectors to the cell contour, respectively, s is the 
contour coordinate and R the radius of curvature. Therefore, the contour is a circular arc with 
radius R=λ/σ. This equation is the 2D analogue to the 3D Laplace law for the radius of a 
pressurized spherical (soap) bubble under surface tension in mechanical equilibrium. 
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(b) Adhesion Constraints and R(d)-relationship 
Although mechanical equilibrium between surface and line tension explains the experimental 
finding of constant radius R along the arcs, it cannot explain the additional experimental 
finding that radius R depends on the spanning distance d. This suggests an elastic effect as 
elasticity depends on absolute distances, in this case the spanning distance between the 
adhesion points anchoring the cell contour to the substrate. We therefore hypothesize that the 
effective line tension results from elastic strain along the cell contour. In the framework of 
linear elasticity theory: 

EAu=λ , (Eq.2) 
where E is the three-dimensional Young modulus of the strained material and A is its cross-
sectional area; therefore EA is the one-dimensional Young modulus or rigidity of the contour.  
The variable u is the relative deformation (strain) given by 
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where L is the actual arc length and L0 the resting length, that is the length the fiber relaxes to 
if all constraints were removed. Combining Eq.1 and Eq.2 we obtain: 
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ulR f= , (Eq.4) 
where lf=EA/σ is a length scale set by the ratio of rigidity and surface tension. In general the 
contour strain u depends on additional conditions set by the adhesion constraints. Thus line 
tension is not a constant parameter, but depends on adhesion geometry. As both lf and u are 
the same along a given arc, this theory explains both why arcs have constant radii (local 
mechanical equilibrium between surface and line tension) yet depend on spanning distances d 
(line tension depends on strain). In detail, the adhesion geometry imposes the following 
boundary condition obtained from simple trigonometry (Fig. 3B) since the contour is fixed at 
the adhesion points separated by a distance d: 
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This can be inverted to yield 
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An additional constraint is set by the conditions characterizing the tension free reference state 
of the contour, which here is represented by the resting length L0 of the fiber. As this quantity 
cannot be measured experimentally, we have to make some reasonable assumption. A natural 
choice is to assume that the resting length of the fiber scales with the spanning distance d, i.e.  

L0=αd,  (Eq.7) 
where α is a dimensionless rest length parameter. Combining Eqs.(3,4,6,7), we therefore 
arrive at an implicit equation for the arc radius R: 
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This implicit equation defines the desired relation R(d).  
 
Elasticity and Tension Control 
 
(a) Model Predictions 
The exact nature of the distance dependence of the arc radius R(d) emerging from Eq.8 
depends only on two parameters, the length scale scale lf characterizing the mechanical fiber 
response to tension and the resting length parameter α. Each parameter is linked to an 
independent control mode, which we term elasticity control (EC) and tension control (TC), 
respectively. 
 
Elasticity control results from structural changes in the contour fiber altering its mechanical 
rigidity EA. The structural properties of actin bundles are strongly regulated and are adapted 
quickly to both extra- and intracellular changes. A decrease in rigidity of the contour EA, i.e. 
a mechanically weaker fiber, results in a decrease of lf, which in turn leads to a decrease in arc 
radius R, because now the same surface tension σ is pulling in a mechanically weaker 
contour. 
 
Tension control is mediated by changes in the rest length parameter α, which might result 
from actomyosin contractility which can dynamically change the rest length of the fiber 
bundle by sliding actin filaments relatively to each other. As α increases, the fiber relaxes and 
arc radius R decreases, because more extra length can be drawn in by the surface tension σ. 
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There are three different regimes for R(d) as α is varied: 
 

1. If α<1, the fiber is under strain up=(1−α)/α even if no surface tension σ is pulling the 
cell contour inward. This results in a finite intercept radius R(0)=Rmin as the adhesion 
distance approaches 0 and a superlinear increase of R with d. For small values of d/R, 
a detailed mathematical analysis gives: 
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2. If α=1, the fiber is straight, but without strain in the absence of surface tension σ. This 
results in a R-d-correlation which increases more weakly than linear with d. For small 
values of d/R, the mathematical analysis gives: 
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3. If α>1, the tension free fiber is longer than d and has extra length stored in the 
contour. In this case, an infinitesimally small amout of tension σ will be sufficient to 
induce a strain free arc radius Rmax(a,d) for each d even for a rigid fiber (lf  a ), 
which simply corresponds to a circular arc of length L0 with a secant of d. The formula 
for Rmax(a,d) results from Eq.6 with L=L0=αd and results in a roughly linear R-d-
relationship. Any additional amount of tension σ for a fiber with finite rigidity or any 
softening of the fiber will then result in smaller radii. Hence as lf  increases and the 
strain in the fiber decreases, R(d) asymptotically approaches the limit Rmax(a,d). 

∞

 
(b) Comparison with experiment 
The tension-elasticity model was extensively used for fits to the experimental results. The fit 
parameters were estimated from a non-linear least square fit to the respective implicit model 
equations and statistically analysed with bootstrapping. However, allowing both lf and a to be 
free fit parameters leads to an ill-conditioned problem. Ill-conditioned fitting problems often 
indicate that one fit parameter can be eliminated. We therefore separately considered two 
scenarios defined by: 
 

Elasticity control (EC): lf is the only fit parameter. We choose a=1 to avoid constraining 
the fit by a a-determined Rmax asymptote. The determined  lf 
values denote a lower bound of the full model. 

Tension control (TC):  a is the only fit parameter. For this purpose we consider the 
asymptotic rigid fiber case lf  a ∞ . The determined fit values 
denote upper bounds of the full model. 

 
Indeed we find that both single parameter models (EC and TC) lead to satisfactory fitting 
results suggesting that the experimental data does not constrain the model enough to 
distinguish unambiguously between different scenarios. 
 
Arc Strength Variation 
 
(a) Model Predictions 
In order to derive model predictions for variations in arc strength, we assume that the rigidity 
EA of the fiber scales linear with arc strength S, such that: 

cSEAl f ==
σ

, (Eq.11) 
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where c is a function of the surface tension σ. For constant experimental conditions we may 
assume that c is constant and all variations in lf are caused by variations in arc strength S. For 
this situation our model predicts that increases in arc strength S will cause decreased arc radii 
via elasticity control (EC-model). Note that for a very large average lf  and α>1, R will 
approach its asymptotic value Rmax and hence R will become insensitive to arc strength 
variations. Hence a lack of correlation between S and R would indicate that shape is entirely 
controlled by rest length variation (TC-model). 
 
(b) Comparison with Experiment 
Experimentally arc strength S in BRL cells does vary from arc to arc and this variation is 
correlated with the arc radius R. Experimentally a 2-3 fold variation in S as measured for BRL 
cells has a pronounced effect on R, thus favouring a model involving elasticity as a mean to 
control cellular line tension. This also implies that the spread in R(d) for at a given distance d 
is in part due to a heterogeneous arc strength S varying from arc to arc. To further analyze this 
effect, we split arcs in two equally large groups of strong (S > Sm) and weak (S < Sm) arcs 
according whether their strength exceeds the median Sm of the arc strength distribution or not. 
The fits to the respective subpopulations according to EC-model to the data show that the 
strong arc subpopulation has a statistically significant larger lf values than weak arc 
subpopulation (Fig. S5). We have also considered the possibility that arc strength S varies 
with adhesion distance d per se and thus indirectly might cause a correlation of arc radius R 
with adhesion distance d, independent from the boundary and initial condition effects 
discussed in the tension-elasticity model. However, the experimentally determined correlation 
coefficients are consistently small for all experimental conditions (C<0.2, Fig. S4). This 
suggests that there exist no global correlation between arc strength and arc distance that 
would be sufficient to explain the observed strong positive correlation between R and d in the 
experiments. 
 
Motor Inhibition 
 
Inhibition of motor tension has manifold effects on cell shape and affects both line and 
surface tension. In addition it involves mechanosensitive feedback reactions that couple 
tension to structural reinforcement of the boundary. Hence a priori predictions are very 
difficult. Experimentally we find that motor inhibition causes a structural weakening of the 
arcs as quantified by significantly lower average arc strength S. This structural weakening is 
also reflected in the R(d) correlation since arc strength decreases considerably under motor 
inhibition. This raises the question whether cell shape is entirely controlled by arc strength 
variations. If this was the case, one would expect that structurally similar arcs, i.e. arcs with 
the same S, have the same radii for a given distance d regardless whether cells are motor 
inhibited or not. In order to obtain sufficient statistics we computed a distance normalized arc 
radius by computing the average of <R/d> as a function of arc strength S. 
 
(a) Model Predictions 
As motors are inhibited, tension in the fiber might relax, which effectively increases the rest 
length of the fiber, i.e. a increases (TC-model). We therefore computed the theoretical 
predictions for <R/d>(S) for the different a regimes using Eqs.(8,11). The numerical solutions 
approach the analytical predictions emerging from combining Eqs.(9-11). Assuming c to be 
constant, our theoretical model predicts that the effective sloping of <R/d> becomes shallower 
with S as a increases. As mentioned before, c may not be constant under inhibition. Indeed 
our model shows that a reduction of c without changing a effectively could cause a similar 
effect as variations in a keeping c fixed (Fig. S6). 
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(b) Comparison with Experiment 
We determined the functional relationship between <R/d> and S experimentally by median 
averaging over at least five R-d data points in a given interval of ΔS=0.25 (Fig. 7E). For BRL 
cells under control conditions we may estimate c from the fits estimating lf from the R(d)-
correlation. Keeping a=1,  lf for BRL cells was determined from fitting to lie between [500, 
2500]. We therefore chose c = lf /S=500. Then the emerging theoretical results obtained for 
the dependence of the normalized radius <R/d> on the arc strength S are in reasonable 
quantitative agreement with the experimental observations. Under inhibition of contractility 
<R/d>-values at the same arc strength S are considerably smaller compared to control cells 
and the effective sloping of R/d(S) is considerably shallower. This implies that additional 
effects must control arc radius other than arc strength. Our theoretical model predicts that 
tension control mediated an increase in fiber resting length under tension relaxation could 
explain this finding. Keeping c=500 the effective sloping behaviour predicted by our model 
becomes shallower with S as a increases. Hence, there is good qualitative agreement between 
the experimental observations with the model assuming an increase in effective fiber rest 
length under relaxed tension. 
 
The alternative scenario suggested by our model, namely a reduction of c, seems less likely. 
Motor inhibition is expected to reduce the surface tension to baseline levels determined by 
plasma membrane tension. This effect tends to actually increase c rather than decrease it. 
Hence myosin-dependent additional elastic effects, not captured by our arc strength 
measurement, would have to overcome the reduction in  s and cause an overall decrease in c. 
Note that this overcompensation must decrease lf by at least one order of magnitude. This 
seems unlikely. We therefore conclude that both elastic and tension control determine line 
tension and thus cell shape. 

 9


