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� Abstract
The actin cytoskeleton modulates a large variety of physiological and disease-related
processes in the cell. For example, actin has been shown to be a crucial host factor for
successful infection by HIV-1, but the underlying mechanistic details are still unknown.
Automated approaches open up the perspective to clarify such an issue by processing
many samples in a high-throughput manner. To analyze the alterations in the actin
cytoskeleton within an automated setting, large-scale image acquisition and analysis
were established for JC-53 cells stained for actin. As a quantitative measure in such an
automated approach, we suggest a parameter called image coherency. We successfully
benchmarked our analysis by calculating coherency for both a biophysical model of the
actin cytoskeleton and for cells whose actin architecture had been disturbed pharmaco-
logically by latrunculin B or cytochalasin D. We then tested the influence of HIV-1
infection on actin coherency, but observed no significant differences between unin-
fected and infected cells. ' 2009 International Society for Advancement of Cytometry

� Key terms
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SYSTEMS biology of animal cells tends to focus on biochemical aspects like gene

expression and signal transduction. However, it is equally important to develop

methods to study the structural and mechanical aspects of a cell. In particular, a com-

plete understanding of the cell as an integrated system has to include models for the

microtubule and actin cytoskeletons, as they determine mechanical stability (1) and

spatially organize cellular processes such as signal transduction (2) and motor-based

transport (3).

Because of its importance for the spatial coordination of the host cell, the cyto-

skeleton is also one of the major targets for changes induced by cellular pathogens

(4,5). Despite the large medical relevance of this interaction, the exact underlying

mechanisms are in many cases still unknown. In our study, we investigated HIV-1 as

a medically highly relevant pathogen whose specific effect on the actin cytoskeleton is

not yet well understood (6). Viruses rely on cellular metabolism for their replication

and can be used also as probes to study the host system. Thus, viruses are also impor-

tant tools to better understand the biology of the cell. In the case of HIV-1, binding

to the cell via its envelope glycoprotein has been reported to induce actin remodeling

(7), calcium signaling (8), and chemotaxis (7). The life cycle of HIV-1 is known to

relate to various additional aspects of the cytoskeleton. This includes virus surfing

along actin rich cell protrusions to reach the cell body (9), crossing the cell cortex

after fusion (10), transport towards the nucleus (11), and spreading of the newly

synthesized virions to new target cells in the proximity (12,13). Indeed, it has

been shown earlier that an intact actin cytoskeleton is necessary for successful HIV-1
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infection (14), but the details of this phenomenon are still

unknown. The rapidly increasing availability of high-through-

put microscopy setups now opens up the perspective that such

an issue can be clarified within an automated approach. How-

ever, such an approach requires the development of new tech-

niques for cell culture and data processing, including quantita-

tive measures which are able to characterize alterations in the

host cytoskeleton in a high-throughput manner.

Recently, large efforts have been made to find meaningful

measures describing the structural organization of cytoskele-

ton constituents on different length scales. On a subcellular

scale, certain filament features like fiber length or orientation

have been extracted from fluorescence microscopy images for

actin bundles and microtubules (15), and from electron mi-

croscopy images for single actin fibers (16). In the latter case,

the experimental data have been compared with theoretical

models for actin networks (17). On a cellular level, cell-based

screens have been developed to classify morphological pheno-

types (18,19). This method has already been applied success-

fully to drug profiling (20), quantifying viral infection (21),

and determining drug effects on cell adhesion (22).

Automated high-throughput imaging of infected cells

combined with quantitative analysis of the actin cytoskeleton

opens the perspective to establish the precise role of the actin

cytoskeleton upon HIV-1-entry. In general, this approach

combines several advantages. First, automation permits analy-

sis of very large data sets, including independent repetitions to

account for morphological variability in a biological system.

Second, the structural phenotype may be subtle, and thus, not

accessible to the human eye. As an established cell culture sys-

tem for infection, we used a HeLa-derived reporter cell line in

a setup suitable for automated high-throughput microscopy.

To analyze a large amount of images in an automated fashion,

appropriate methods have to be developed to quantify mor-

phological changes in the actin cytoskeleton. Here, we com-

bined automated fluorescence microscopy and image process-

ing with biophysical modeling to arrive at a validated work-

flow which allows us to quantify structural changes in the

actin cytoskeleton of adherent cells.

A fluorescence image of a biological system is a two-

dimensional quantized representation of the density of a

specific marker molecule, and care has to be taken to extract a

relevant and operative measure from these images. Here, we

suggest that image coherency is an adequate quantitative pa-

rameter for the problem at hand. In contrast to pattern recog-

nition approaches like neural networks or vector-support

machines based on motion-invariant image features like the

Haralick texture features or Zernike moments (23–25), which

are well-suited for classification of distinct subcellular pheno-

types, the coherency measure appears to be particularly suited

to characterize gradual changes in fibrous textures like the

actin cytoskeleton. By its definition, coherency extracts the

relative strength of the edges of structures compared to their

surroundings (26). Thus, the parameter is a measure for the

quality and amount of clear structures in an image. It has been

used before to detect features of moving filaments in actin-

myosin motility assays (27), but not yet as a measure for the

organization of the actin cytoskeleton. To benchmark its value

for characterizing the actin cytoskeleton, we followed a dual

strategy. On the theory side, we used a simple model for the

random geometry of the actin cytoskeleton, the random fiber

or Mikado model, which consists of a random arrangement of

cross-linked filaments (28), and applied our image processing

procedure to a large number of its realizations. On the experi-

mental side, we perturbed the actin cytoskeleton by using

depolymerizing actin drugs (latrunculin B and cytochalasin

D). Having successfully established these controls, we then

assessed the impact of HIV-1 on actin coherency. We did not

observe significant differences in actin coherency between

uninfected and virus-infected cells. This could either mean

that HIV’s influence on the actin cytoskeleton is not related to

detectable structural alterations, or that structural changes are

of a more subtle nature than monitored in our setup. In

future, our setup can be applied to other combinations of

viruses and cell types.

MATERIALS AND METHODS

Cell Culture and HIV-Infection

Since its discovery as causative agent of AIDS in 1983

(29), extensive efforts have been made to study HIV-1. Cell

lines are a reliable system to reproducibly analyze viral replica-

tion. Besides lymphocyte-derived suspension cell lines, HIV-1

can also infect adherent HeLa-derived cell lines like JC-53

(30). These cell lines were engineered to express the HIV-1

receptor CD4 (31) and its co-receptors CXCR4 and/or CCR5

and are thus fully permissive for HIV-1 infection.

JC-53 cells adhere to surfaces suitable for two-dimen-

sional tissue culture. As they are flat, they occupy a large area

on the cover glass which is virtually in one plane. Staining of

actin with fluorescent phalloidin conjugates exhibits actin

structures such as focal adhesions, stress fibers, filopodia, and

the actin cortex, which can be easily monitored by epi-fluores-

cence microscopy. Furthermore, the large amount of actin

structures in the focal plane on the cover glass combines sev-

eral advantages: (a) The signal-to-noise ratio is excellent. (b)

The choice of the very bottom of the cell decreases blurring

from out-of-focus signal to a minimum as there is no blurring

from below and only a small proportion from the less actin-

dense structures from above. (c) The point-spread-function is

sharpest close to the cover glass (32).

For treatment of JC-53 with cytochalasin D and latruncu-

lin B, cells were cultured in Dulbecco’s modified Eagle me-

dium (DMEM)-Glutamax (Gibco) with 10% fetal calf serum

(Biochrom) and penicillin/streptomycin at 378C and 5% CO2.

Before seeding, cells were washed and detached using 3 mM

EDTA in PBS. A total of 3 3 104 cells was seeded into a well of

a 8-chambered Lab-Tek cover glass (Nunc), coated with bo-

vine fibronectin (Sigma Aldrich), and allowed to settle down

for 3 h. Subsequently, they were incubated for another 40 min

with cytochalasin D or latrunculin B (Biomol) prior to fixa-

tion and permeabilization according to the PHEMO fixation

protocol (33). Cells were blocked for 30 min with 1% BSA

in PBS and stained for actin and microtubules using a
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monoclonal mouse-anti-a-tubulin antibody (Cell Signal), a

rabbit-anti-mouse IgG coupled to Atto-633 secondary anti-

body (Sigma Aldrich), and phalloidin-TRITC (Invitrogen) at

a concentration of 1 lg/ml.

For the preparation of non-infectious fluorescent HIV-1

either bearing or lacking the viral envelope glycoprotein, HEK

293T cells were transfected using the PEI (polyethylene imine,

Sigma Aldrich) method with plasmids encoding for (a) an

Env-deficient NL4-3-derived non-infectious HIV-1 wt, (b) an

MA-eGFP-tagged variant of (a), and (c) with or without NL4-

3-derived Env-plasmid at a ratio of 3:3:1 (34). Supernatants

were harvested after 48 h and purified through a 20% sucrose

cushion. Fibronectin-coated 8-chambered Lab-Teks were pre-

coated with fluorescent HIV-1, bearing or lacking the Env gly-

coprotein, for 1 h at 48C. JC-53 cells were added and allowed

to settle down. Pre-coating with virus thus allowed us to pre-

ferentially explore the Env-specific effect of HIV-1 on the actin

cytoskeleton in the defined focus plane.

Automated Microscopy and Image Processing

For this study, we used an Olympus inverted autofocus

multicolour epi-fluorescence microscope with an automated

stage and a 60x oil immersion objective (NA 5 1.35). The oil

immersion objective was used to obtain high resolution

images. To combine it with the high throughput approach

requiring large movements of the objective, oil was applied to

the entire cover glass (alternatively an oil pump could be used

to continuously deliver oil to the objective). Images were

recorded by a 12bit EM-CCD camera. Acquisition of three-

colour z-stacks at 100 positions for each well of a Lab-Tek

8-chambered cover glass was carried out sequentially without

any interruption to ensure a maximum of comparability. The

positions were defined as a 10 3 10 matrix with an arbitrary

row and column spacing of 300 lm, whereas the center point

of the matrix was determined manually to be in the middle of

the chamber. Z-stacks (n 5 20; Ds 5 400 nm) were acquired

to compensate for failure of autofocus and to be able to ana-

lyze the whole cell actin morphology or virus distribution, if

necessary. Using these methods, we performed a screening-like

image acquisition resulting in 48,000 raw images for a single

experimental setup to be computationally processed and

analyzed.

The complete image processing was done in Matlab.

Because for our purposes the 12bit image depth was not

required, each image was first converted into an 8bit grays-

cale version to decrease computational effort. Then, the

mean local contrast of all associated actin stained images

was approximated for each z-stack. For this purpose, the

cell area lying whithin the stack was estimated by applying

Matlab’s graythresh function which uses Otsu’s method (35)

for segmentation to one representant image of the stack. Af-

ter subsequent hole filling of the cell area, the relative local

contrast, i.e., the mean relative difference of a center pixel

to all of its eight neighbors, was calculated for a large num-

ber of random positions within the boundaries of the cell.

Afterwards, the mean of the contrasts from all of these posi-

tions was taken as an estimate for the mean local contrast

of the image. For each z-stack, the image with the highest

mean local contrast was chosen for the following evaluation,

assuming that it carries the most important structural fea-

tures of the cytoskeleton. As the stacks were taken at ran-

dom positions within the sample, not every image contained

a sufficient amount of information to be evaluated. To can-

cel out empty or nearly empty image-stacks, the coherency

(cf. the section ‘‘Coherency as a quantitative measure for

structure’’) was calculated, and only those pictures exceeding

a constant threshold for the total area of non-vanishing

coherency pixel underwent further analysis. Feature analysis

was performed, consisting of the calculation of the relative

actin density per cell area, the relative coherency per cell

area, the mean coherency per image, and the statistical eva-

luation of these parameters. We evaluated an estimator for

the parameter-mean and its corresponding standard devia-

tion from all images for each sample. This estimator was

visualized in a box plot, which additionally indicates the

median with its 90% confidence interval, the lower and

upper quartile values, the most extreme values within 1.5

times of the interquartile range, and outliers of the meas-

ured distribution of parameters. The whole calculation took

about 90 s per stack (20 z-images per stack/position) on a

standard PC (Pentium D 2.80 GHz, 1 GB RAM). Apart

from pre-processing steps and the statistical evaluation of

the results, this included finding the sharpest image of each

stack based on the local contrast estimation (�20 s) and

calculating the structure tensor components and from those

the coherency measure (�45 s).

Coherency as a Quantitative Measure for Structure

Cellular actin networks are organized in a complex

manner over a hierarchy of different length scales. The exact

structure of a given actin network is stochastic, because regula-

tion by actin-binding proteins determines the molecular rules

of network generation (like nucleation, branching, and cap-

ping of single filaments), but not its exact realization in space

(36). In addition, the structure of actin networks depends on

variable signals received from the environment, including the

position of the cell adhesion contacts. Because of these

stochastic effects, it is quite challenging to quantify specific

structural changes. Finding a suitable parameter which is sen-

sitive to the relevant changes in the network is a key issue,

whereas different networks realized for the same set of rules

should be ideally indistinguishable.

Because of the limited optical resolution of standard opti-

cal microscopes, like the ones used here, it is not possible to

resolve the fine structure of the fibrous actin network in the

cell. Thus, our analysis focused on prominent actin structures

like stress fibers and the cortex at the cell boundaries, which

lead to a typical spatial distribution of edges in the overall sys-

tem. These considerations made us consider image coherency

as a possible quantitative measure for alterations in the actin

cytoskeleton. Coherency is defined through the structure ten-

sor, which evaluates the local orientation in a small region of

an image (26). A strategy to extract the local orientation n̂ is
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to assume that it deviates least from the gradient direction of

the image gray values. This amounts to an extremum

principle,

Z1
�1

wð~x �~x0Þ n̂ � rgð~x0Þð Þ2
d2x0 ! max; ð1Þ

where wð~x �~x0Þ is a window function, constraining the neigh-

borhood around pixel ~x ¼ ðx1; x2Þ, and n̂ is a unit vector

defining the local orientation. In this consideration, the

discrete gray values of the image are treated as a continuous

scalar field gð~xÞ. The optimization problem can be solved by

rewriting Eq. (1) as

n̂T Jn̂ ! max; ð2Þ

where the structure tensor J is defined as,

Jpqð~xÞ ¼
Z1
�1

wð~x �~x0Þ @gð~x0Þ
@x0p

@gð~x0Þ
@x0q

 !
d2x0: ð3Þ

Using operator notation, the integral can be formulated as a

convolution with a filter G which has the shape of the window

function, whereas partial derivatives are approximated by dis-

crete derivative operators Dx1
and Dx2

, for which we chose the

optimized Sobel filters (26),

J pq ’ G Dxp � Dxq

� �
: ð4Þ

Here, pixelwise multiplication is denoted by ‘‘�’’ to distinguish

it from the successive application of convolution filters.

The structure tensor is symmetric; it is therefore reduced

to a diagonal matrix by a suitable coordinate rotation. Hence,

it is easy to show that the eigenvector to the largest eigenvalue

k1 of the structure tensor maximizes Eq. (2) and defines the

local orientation, whereas the magnitude of the squared gradi-

ent in this direction, averaged with respect to the window

function, is related to the corresponding eigenvalue. To get a

quality measure for the orientation, one can define the coher-

ency by the squared relative difference of the two eigenvalues

k1 and k2,

cc ¼
k1 � k2

k1 þ k2

� �2

¼ J22 � J11ð Þ2þ4J 2
12

J11 þ J22ð Þ2
: ð5Þ

This parameter differentiates the two extreme cases: an area of

constant gray values (k1 5 k2 5 0) and an isotropic gray value

structure (k1 5 k2 = 0). Additionally, it serves as a measure

for the difference of the dominant gradient compared to the

gradient orthogonal to its direction (as the structure tensor is

symmetric, its two eigenvectors are orthogonal and the eigen-

values are non-negative). Furthermore, it can be calculated

right from the structure tensor components, Eq. (3), without

the need to solve the eigenvalue problem. In general, the

coherency varies continuously between 0, in regions without

any dominant orientation, and 1, at perfectly oriented struc-

tures. Hence, it is also able to distinguish large-scale cytoskele-

ton constituents, like stress fibers or the cortex, from smaller

actin speckles or the diffuse background in the cytosol and

measures the amount and quality of structures in the cells on

our images, accordingly. To overcome numerical instabilities

when evaluating Eq. (5) at the singularity k1 1 k2 5 0, we

chose cc to be zero for a small or vanishing denominator.

As the coherency is readily defined by the structure tensor

in Eq. (3), the only free parameters in the calculations are

determined by the shape and size of the window function,

given by G. We used a rotationally symmetric Gaussian

smoothing operator of size hG with standard deviation aG. For

good working conditions, the size and spread of the window

function should be larger than the fine structure of edges to

average out small-scale variations within the structures. How-

ever, finding the right size of the window function remains a

trade off between averaging out noise and small artifacts,

increasing its size, but sacrificing information about smaller

structures.

Fig. 1 compares an original actin stain of a latrunculin B

treated cell (a) with its coherency mapping as a function of

the size of the window function (b–d). Apart from prominent

cortical actin structures, small speckles are visible within the

cell body, as a result of the treatment with the actin drug in

the original image. The impact of such smaller structures is

averaged out more and more in the feature images with

increasing size of the window function. The large-scale struc-

tures, however, remain clearly visible and maintain a high

coherency. On the basis of visual inspection of such images,

we chose an intermediate size for the window function (hG 5

15 and aG 5 5 pixel) to evaluate the images in section

‘‘Results’’.

Since we are using an automated image acquisition with-

out any preselection for our experiments (cf. section ‘‘Auto-

mated microscopy and image processing’’), the cell area as

well as the number of cells in each image varies. To statistically

evaluate and compare the results of several pictures with each

other, some normalization procedure for the extracted param-

eters had to be introduced. On the one hand, we measured the

total coherency of an image relative to the total cell area within

the image and, on the other hand, the mean coherency.

The coherency per cell area accounts for the amount or

density of structures within the cells, whereas the mean coher-

ency per image is a measure for the quality of the structures,

independent of the frequency of their occurrence.

We segmented the cell area by applying Matlab’s gray-

thresh function to obtain a binary image and a subsequent

hole filling procedure on the images. Concerning the experi-

ments with adherent cells on HIV-1 coated substrates (section

‘‘HIV infected cells’’), we used the actin stain for this routine,

as it did not change in a way that altered the segmentation.

However, for cells which were treated with actin drugs (section

‘‘Cells Treated with Actin Drugs’’), we used an independent

microtubule (MT) stain for the area estimation to rule out

strong correlations between changes in the actin coherency/

density and the cell area (Fig. 2). For all cytoskeleton model
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images, the area was chosen to be constant (section ‘‘Analysis

of the Model Cytoskeleton’’).

Biophysical Model for the Actin Cytoskeleton

Modeling the spatial organization of the actin cytoskele-

ton is a very active and increasingly sophisticated research

field. To obtain a benchmark for our image processing setup,

we used one of the simplest models, the Mikado model, or

random fiber network (RFN), which has been used before to

model the elasticity of the actin cytoskeleton (28). RFNs

consist of an ensemble of randomly distributed and oriented

straight rods in a two-dimensional environment. The network

Figure 1. Impact of size and shape of the window function on the coherency image. (a) JC-53 cells treated with latrunculin B and stained

for F-actin. In these cells, large-scale cortical structures are present, as well as small speckles due to the drug treatment. (Scale bar shows

10 lm) (b—d) Coherency images with hG ¼ 9; aG ¼ 3 (bÞ; hG ¼ 15 aG ¼ 5 (c), and hG ¼ 30 aG ¼ 10 (d). The size and spread are given in pixel.

With increasing size of the window function, small structures are averaged out and lose weight in the coherency image.

Figure 2. Effect of treatment with 1 lM latrunculin B. (1) Control cells; (2) inhibited cells; (a) actin stain; (b) MT stain; (c) segmented cell

area for normalizing the extracted coherency and actin density according to Matlab’s graythresh function using the actin (green) or MT

(red) stain. The original actin stain is shown as well. For the control cells, the area segmentation according to both stains yields similar

results, whereas, for the cells treated with latrunculin B, the size of the cell area is systematically under-estimated. To rule out correlations

of the actin coherency and density with the segmented cell area, the segmentation was done according to an independent microtubule

stain for the actin toxin experiments (section ‘‘Cells Treated with Actin Drugs’’). Scale bars always represent 10 lm in the images. [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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holds a certain number Nfib of fibers, each of which is charac-

terized by its position, orientation and length lfib. In its

original version, the model represents the ultrastructural

F-actin network in the cell. However, as this length scale is

beyond the resolution of our microscope, we had to adjust the

model accordingly. For our purpose, each fiber in the network

represents a bundle of actin filaments. Hence, we introduced

two additional parameters in the model, namely the bundle

strength sfib and width wfib, which parameterize the density and

spatial extension of the bundle. We chose the position and

orientation of each fiber uniformly randomly, whereas its

length, number, width, and strength were either held constant

or chosen from Gaussian random distributions, which are char-

acterized by their mean and their standard deviation. Our

simulated networks do not claim to reflect the detailed organi-

zation of single cells, but rather represent the average degree of

network formation over an ensemble of many cells. Therefore,

the simulated samples presented below (cf. Figs. 3–6) do not

resemble the images of single cells, although the feature extrac-

tion does. Thus, it is possible to mimic versatile situations for

structural changes in cells: the number of fibers, their length,

strength, and width are increased individually to simulate the

variable degree of structure formation in the cell. For a constant

total fiber length in the images (which corresponds roughly to a

stationary overall gray value density), the number of fibers is

reduced. This mimics the depolymerization of actin bundles

and the occurrence of small speckles induced by actin drugs.

RESULTS

Analysis of the Model Cytoskeleton

To evaluate the sensitivity of our image processing

approach to changes within the actin cytoskeleton, we first

applied it to our biophysical model. Computer-generated rea-

lizations of random fiber networks (RFNs) were used to eluci-

date the effect of changes in the modeling parameters (fiber

number Nfib, length lfib, strength sfib, and width wfib) on the

feature parameters, which we extract from the images. We cre-

ated five realizations of a single network as a function of one

or two model parameters. As we initially analyzed only a single

image as a representant for each realization, we first had to

avoid strong stochastic variations in the networks. Therefore,

all parameters, which were not changed explicitly, as well as

the initial random positions and orientations of the fibers

were kept constant throughout the different realizations. How-

ever, later we demonstrate the benefit of an automated tech-

nique, when dealing with large variations in the parameters

over many realizations. In this case, the model parameters are

not defined explicitly but rather the mean and the standard

deviation of the corresponding Gaussian distributions. Subse-

quently, we applied our automated approach to a large num-

ber of images for each ensemble of networks.

We first tested the sensitivity of our image feature extrac-

tion to certain structural changes in the cytoskeleton. The nas-

cence and growth of actin bundles due to cell adhesion was

mimicked, increasing the fiber number, length, strength, and

width individually. The disruption of stress fibers by depoly-

merizing actin drugs is simulated by an increasing fiber (or

speckle) number for a constant total fiber length in the RFNs.

For an increasing number of fibers in the artificial net-

works (Figs. 3a–3e), the relative fiber density per area (blue),

as well as the coherency per area (green), was increasing as

expected (Fig. 3f). The mean coherency of the images (red)

decreased with an increasing fiber number. As this parameter

measures the average quality of structures independent of their

Figure 3. Networks with an increasing total number of fibers. (a) Nfib 5 100, (b) Nfib 5 300, (c) Nfib 5 500, (d) Nfib 5 700, (e) Nfib 5 1,000. (f)

Plot of the extracted parameters, namely the averaged gray value density, the coherency per area, and the mean coherency of each image.

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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amount, it is in general possible that an image with only one

fiber with perfectly oriented edges might have a higher mean

coherency than an image with several fibers. In these exam-

ples, the quality was actually decreasing, because the crossing

points between different fibers did not hold clear structural

details. As their number increased, the mean coherency

decreased. Similar results were obtained for constant fiber

number with an increasing length of each fiber (not shown).

For the simulated images, both coherency measures were

not sensitive to an increase in fiber strength (i.e., mean gray

Figure 4. Networks with increasing fiber strength. (a) sfib 5 0.2, (b) sfib 5 0.4, (c) sfib 5 0.6, (d) sfib 5 0.8, (e) sfib 5 1.0. The fiber strength sfib
is defined as the intensity of the fiber gray values in the image in the range from 0 to 1. Gaussian white noise was added to the images. (f)

Plot of the extracted image features. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 5. Networks with constant density. As the fiber length is reduced, their number is increased accordingly: (a) Nfib 5 50, lfib 5 8, (b)

Nfib 5 100, lfib 5 4, (c) Nfib 5 200, lfib 5 2, (d) Nfib 5 400, lfib 5 1, (e) Nfib 5 800, lfib 5 0.5; (The fiber length lfib is defined relative to the net-

work size 10 3 10.) This way, large-scale structures evolve, which can not be detected in the gray value density, but rather with either of

the two relative coherency measures (f). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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value of the fibers). This is due to the fact that the coherency

does not measure the absolute gradient at the fiber edges, but

rather compares the difference of the dominant squared gradi-

ent to its orthogonal counterpart, i.e., the two eigenvalues of

the structure tensor. As we put perfect rods without any back-

ground noise in our benchmark images, there was basically

just one non-vanishing gradient at the boundaries of the

fibers, whereas the magnitude of the gradient orthogonal to

the fiber edges was negligible. Therefore, the fiber strength

itself was not detected by the coherency (not shown). How-

ever, the situation dramatically changed when we introduced

additional Gaussian white noise to the same images, reflecting

conditions of biological experiments (Fig. 4). In this case, the

smaller eigenvalue of the structure tensor holds a finite value,

and the absolute strength of the fibers indeed causes a differ-

ence in coherency. Both coherency measures are able to detect

the difference in fiber strength much better than the relative

fiber density.

In the previous examples, structural changes were

not only detected by the coherency but also by the fiber

density per area. In the following, however, the density of

fibers was kept constant by increasing the fiber number,

while reducing their length accordingly (Fig. 5). This proce-

dure should simulate the disruption of stress fibers and

occurrence of small speckles due to depolymerizing actin

toxins. Here, both coherency measures were sensitive to the

changes, but the relative actin density differed only slightly.

Figure 6. Examples for different network ensembles. The Gaussian parameter distributions of the fiber number, strength, and length have

been chosen such that the mean gray value density remains roughly constant, but the quality and amount of the inherent structures

increases: (a) hNfibi 5 2,250, hlfibi 5 1, hsfibi 5 0.2, (b) hNfibi 5 1,500, hlfibi 5 1.2, hsfibi 5 0.25, (c) hNfibi 5 750, hlfibi 5 1.5, hsfibi 5 0.4, (d) hNfibi 5
375, hlfibi 5 2, hsfibi 5 0.6, (e) hNfibi 5 150, hlfibi 5 3, hsfibi 5 1; The standard deviation of the Gaussian distributions is always chosen relative to

the corresponding mean at 0.5 hXfibi.

Figure 7. Box plots of the density per area (blue), coherency per

area (green), and mean coherency (red), extracted from the net-

work ensembles in Figures 6a—6e. For each parameter, the box

plots indicate the estimated mean and its corresponding standard

deviation (black dot with error bars), the median (horizontal line

dividing the box), the lower and upper quartile, i.e., 25th and 75th

percentile (lower and upper boundary of the box), the farthest

measurement still within the 1.5 interquartile range (whiskers),

outliers (1), and the symmetric 90% confidence intervals of the

median (notches). Although the randomly chosen images in Fig-

ures 6a—6e cannot be clearly distinguished by eye, due to the

strong variations in the parameters of the different ensembles,

the statistical evaluation of the coherency from a large number of

these images is able to average out non-specific variations, and is

therefore sensitive to the changes in the network parameters.

[Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]
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Thus, in this case, extraction of coherency was required for

correct analysis.

The benefit of computer-aided automatic image feature

extraction clearly is the correct statistical evaluation of a large

number of images, omitting the observer bias. Figures 6a–6e,

feature randomly chosen representants of network ensembles,

with respect to changing Gaussian distributions for the fiber

number, strength, and width. Additionally, background noise

was incorporated. These networks are highly variant, and it is

now much harder to detect significant changes from the

example images here by eye. The statistical evaluation of the

coherency of a hundred images for each network type, how-

ever, was able to clearly detect the changes in the network

structures (Fig. 7). As we averaged the parameters over several

images for each network ensemble, an estimator for the stand-

ard deviation of the mean can be given accordingly, as well as

a box plot of the measured parameter distribution. These net-

works were created with a roughly constant gray value density,

and the density parameter was not able to detect a clear tend-

ency in the changes. In contrast, both coherency measures

revealed a clear tendency in the network differences from (a)

to (e). These theoretical results justify to apply our newly

developed procedure to experimental data.

Cells Treated with Actin Drugs

We next applied the automated image processing setup to

cells treated with the actin toxins cytochalasin D and latruncu-

lin B. Cytochalasin D leads to the depolymerization of F-actin,

whereas latrunculin B inhibits actin polymerization by seques-

tering globular actin, resulting in the disruption of F-actin

over time. We analyzed 96–100 images per assay in this experi-

ment. Figure 8 shows an example for each experimental condi-

tion and Figure 9 displays the coherency results. Cells were ei-

ther treated with increasing concentrations of one of the two

actin toxins, or with solvent only.

Cytochalasin D treated cells exhibited a substantial

decrease in either of the two coherency measures (c–e)

compared to the controls (a and b), but no concentration-

dependent differences. Measuring the actin density, in con-

trast, was unable to clearly differentiate the samples treated

at the two lower concentrations of the toxin from the con-

trols. For the lowest concentration of cytochalasin D, the

relative actin density per cell area (c) was even larger than

observed for the control populations. For latrunculin B (f–

h), both parameters showed a clear decrease in coherency

at higher toxin concentrations, whereas no difference was

observed at the lower toxin concentration. No structural

Figure 8. Randomly chosen images for the different assays: (a) control DMEM, (b) control DMSO, (c) cytochalasin D 0.5 lM, (d) cytochalasin
D 1 lM, (e) cytochalasin D 2 lM, (f) latrunculin B 0.25 lM, (g) latrunculin B 0.5 lM, (h) latrunculin B 1 lM; each scale bar represents 10 lm.
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differences were observed by visual inspection of cells trea-

ted with this toxin concentration, either. In all cases, a

detailed analysis showed that the actin structures at the cell

borders played a minor role for the coherency measure,

which was dominated by the actin structures in the cell

body due to its larger extension (data not shown).

We performed two-sided statistical tests of the null hy-

pothesis which states that the means of two different assays in

Figure 9 are equal, with a significance level of 5%. The corre-

sponding P-values are given in Table 1. Under these circum-

stances, we accepted the hypothesis for the means of the two

controls (a,b) in all three parameters. When we tested the hy-

pothesis pairwise for actin toxin treated samples and the two

controls, we could not reject the hypothesis for (a,d) and (b,d)

in the density as well as (a,f) in both coherency measures, and

(b,f) in the coherency per cell area, respectively. We conclude

from this analysis, that actin density shows strong non-specific

variations in the experiments and is therefore not a reliable

measure for the structural changes of the actin cytoskeleton.

However, coherency is able to detect and quantify morpholog-

ical differences induced by the actin toxins.

HIV-Infected Cells

We finally checked if HIV-1 binding to and entry into the

cell, which is mediated by the viral envelope glycoprotein,

detectably alters the actin cytoskeleton. To yield a maximum

of virus-cell interactions in the focal plane at the bottom of

the cell, JC-53 cells were seeded on 8-chambered Lab-Teks

which were precoated with HIV-1 (cf. Fig. 10). To test whether

possible effects are specific for HIV-1 and not simply due to

the steric properties of the viral spheres, HIV-1 particles bear-

ing or lacking the envelope glycoprotein were used.

Two independent experiments were performed, and the

mean values of both coherency parameters as well as actin

density were compared pairwise (cf. Figs. 11a and 11b). Apart

from the usual variations, no difference in any of the three

parameters was found over both experiments. We additionally

performed similar statistical tests as before. They did not

reveal a clear tendency for an HIV-1-specific effect on the

structure of the actin cytoskeleton, concerning all three pa-

rameters for two independent experiments. Thus, interaction

Figure 9. Box plots including the estimated mean and its standard

deviation for the actin coherency and density of the cell ensem-

bles shown in Figure 8. Control cells [(a) with DMEM and (b) with

DMSO] are compared to cells treated with two concentrations of

cytochalasin D [(c) 0.5 lM, (d) 1 lM, and (e) 2 lM] and latrunculin
B [(f) 0.25 lM, (g) 0.5 lM, and (h) 1 lM]. The box plot setup is simi-
lar to Figure 7. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Figure 10. Example for JC-53 cells on Lab-Teks which were pre-

coated with HIV-1. Because of the experimental procedure, the

plane of prominent actin structures (red) coincides with most HIV-1

particles (green). The scale is 10 lm. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

Table 1. P-values of the two sided statistical tests with the null hypothesis which states that the means of two different assays are

equal

(b) (c) (d) (e) (f) (g) (h)

Density per area (a) 0.236 0.0008 0.456 0.0005 �1024 �1024 �1024

Density per area (b) 0.0003 0.214 0.01 �1024 �1024 �1024

Coherency per area (a) 0.276 �1024 �1024 �1024 0.486 �1024 �1024

Coherency per area (b) �1024 �1024 �1024 0.292 �1024 �1024

Mean coherency (a) 0.07 �1024 �1024 �1024 0.33 �1024 �1024

Mean coherency (b) �1024 �1024 �1024 0.0005 �1024 �1024

ORIGINAL ARTICLE

Cytometry Part A � 77A: 52�63, 2010 61



of HIV-1 and the actin cytoskeleton might simply not result in

detectable remodeling of the actin architecture. Yet another

interpretation, fitting our experimental results, would be that

remodeling rather occurs on the single particle level (e.g., only

directly at the position of virus entry), and may only become

evident at higher resolution. In these cases, our established

microscopy workflow and image feature analysis would not be

sensitive enough to deal with such subtle rearrangements of

the actin structures.

CONCLUSION

We have shown that image coherency, i.e., the quality and

amount of clear structures in an image, is a suitable measure

to detect global alterations in the organization of the actin cy-

toskeleton. We could verify this theoretically, by artificially

modeling a network with exactly defined properties, and

experimentally, by measuring the impact of actin-disrupting

drugs on coherency. We thereby established an automated

workflow, combining high-content advanced fluorescence mi-

croscopy with a screening-like approach, subsequent compu-

tational image analysis and biophysical modeling. Because of

our high-throughput approach, statistical failure was very low.

We are therefore able to reliably detect even a very small effect

on the actin coherency. Furthermore, an automated image ac-

quisition and analysis excludes artifacts due to observer bias.

This procedure could be implemented for a wide range of

biological applications dealing with structures accessible to

microscopy. Here, we show that infecting susceptible cells with

HIV-1 has no effect on the coherency of the actin cytoskeleton

in the range of our resolution and detection limits, independ-

ent of virus amount and time. We cannot conclude that HIV-1

has no effect on the spatial organization of actin in its early

lifecycle, but our results suggest that these effects — if any —

are rather subtle. Either HIV-1-induced effects do not affect

actin coherency, or a potential impact on the coherency may

only become evident at a higher resolution, and thus, needs

super-resolution light or electron microscopy. Thus, even

almost three decades after identification of HIV-1, exploring

its interactions with the cytoskeleton remains a challenge.

Our study also shows that high-throughput microscopy

not only requires automated image processing and statistical

data analysis, but also can benefit from biophysical modeling.

For the lamellipodium, the rapidly polymerizing actin net-

work used by many cell types for propelling the cell forward,

such an approach has already been adopted by different

groups (17,37,38). Here, we introduce a similar approach for

the actin cytoskeleton of stationary adherent cells. Without

using the random fiber model, it would be difficult to appro-

priately benchmark the coherency measure. The underlying

reason is that, although the actual structure of the cytoskele-

ton is determined by molecular rules guiding its assembly and

disassembly in response to extracellular and intracellular sig-

nals, these rules determine the average structural features but

not the exact details of each realization. As demonstrated here,

one therefore has to use statistical modeling to assess the rele-

vance of quantitative measures for spatial processes, like the

structure of the actin cytoskeleton. We expect that, in the

future, model-based analysis of high-throughput microscopy

data becomes an important tool to study cellular structure on

a systems level.
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11. Döhner K, Nagel CH, Sodeik B. Viral stop-and-go along microtubules: Taking a ride
with dynein and kinesins. Trends Microbiol 2005;13:320–327.

12. Jolly C, Sattentau QJ. Retroviral spread by induction of virological synapses. Traffic
2004;5:643–650.
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