
Article
Extracellular Matrix Geom
etry and Initial Adhesive
Position Determine Stress Fiber Network
Organization during Cell Spreading
Graphical Abstract
Highlights
d Spreading trajectories depend strongly on initial adhesive

positions

d Cells bridge non-adhesive regions with an invaginated actin

arc that drives spreading

d Stress fibers are generated in a periodic manner behind the

advancing front

d The stress fiber network retains a spreading memory for

�50 min
Kassianidou et al., 2019, Cell Reports 27, 1897–1909
May 7, 2019 ª 2019 The Authors.
https://doi.org/10.1016/j.celrep.2019.04.035
Authors

Elena Kassianidou, Dimitri Probst,
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SUMMARY

Three-dimensional matrices often contain highly
structured adhesive tracks that require cells to turn
corners and bridge non-adhesive areas. Here, we
investigate these complex processes using micro-
patterned cell adhesive frames. Spreading kinetics
on thesematrices depend strongly on initial adhesive
position and are predicted by a cellular Potts model
(CPM), which reflects a balance between adhesion
and intracellular tension. As cells spread, new stress
fibers (SFs) assemble periodically and parallel to the
leading edge, with spatial intervals of �2.5 mm, tem-
poral intervals of �15 min, and characteristic life-
times of �50 min. By incorporating these rules into
the CPM, we can successfully predict SF network ar-
chitecture. Moreover, we observe broadly similar
behavior when we culture cells on arrays of discrete
collagen fibers. Our findings show that ECM geome-
try and initial cell position strongly determine cell
spreading and that cells encode a memory of their
spreading history through SF network organization.
INTRODUCTION

Cell migration is essential for many tissue-level processes,

including development, wound healing, and cancer metastasis

(Ridley et al., 2003). Productive migration requires the integration

of several subcellular processes, particularly advancement of

the cell front and retraction of the rear. Leading-edge advance-

ment is governed by a mechanical balance between actin poly-

merization, membrane tension, and myosin-driven retrograde

flow, whereas trailing-edge retraction requires strong contractile

forces to detach existing adhesions. Both processes are strongly

regulated and connected by actomyosin stress fibers (SFs),

which are nucleated according to the location and architecture
C
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of new adhesions at the cell front and produce the high forces

needed to rupture old adhesions at the rear (Blanchoin et al.,

2014). In this way, the actin cytoskeleton choreographs a

highly dynamic interplay with the matrix involving continuous

and spatially targeted creation and dissolution of adhesions

(Schwarz and Gardel, 2012).

Cell spreading, the process through which newly attached

cells encounter and engage the extracellular matrix (ECM), is a

crucial prerequisite for cell migration and requires the coordina-

tion of the same subcellular processes. Investigation of the initi-

ation and control of spreading has therefore yielded valuable in-

sights into the fundamental principles of cell migration. The rate

of spreading, final spreading area, and total traction force during

spreading on 2D substrates coated evenly with ECM tend to in-

crease with both ligand concentration and substrate stiffness

(Engler et al., 2004; Reinhart-King et al., 2005; Nisenholz et al.,

2014), with membrane tension constraining and potentially ter-

minating lamellipodial protrusions (Raucher and Sheetz, 2000).

While very high ligand concentration in 2D culture is known to

decrease cell spreading (Palecek et al., 1997; Engler et al.,

2004; Gupton and Waterman-Storer, 2006), this is not expected

to be a major factor in 3D gels with sufficiently large mesh sizes

for cell migration (Wolf et al., 2013). It has been observed that 2D

cell spreading often occurs in a periodic manner (Giannone et al.,

2004; Burnette et al., 2011), in good agreement with predictions

from mathematical models suggesting that an actin-based gel

pushing against a tensed membrane and flowing over mechano-

sensitive cell matrix adhesions can have oscillatory solutions

with regard to protrusion velocity, the deposition of new adhe-

sions, and the formation of new actin structures (Shemesh

et al., 2009, 2012). A recent experimental study has identified

the interplay between membrane tension and actin dynamics

as a key regulator for the formation of new adhesion sites (Pontes

et al., 2017). As the actin network polymerizes against the mem-

brane, membrane tension rises and starts to feed back by com-

pressing the lamellipodium. Nascent adhesions below the lamel-

lipodium mature into focal adhesions (FAs) and prevent the

lamellipodium from flowing backward, eventually leading to its
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mechanical disintegration and allowing the cycle to begin again.

This scenario also provides an explanation for the formation of

transverse arc SFs behind the lamellipodium, namely through

non-muscle myosin II-assisted (NMMII) assembly of actin fila-

ments that originate from the disintegrating lamellipodium.

These transverse arcs then flow retrograde and fuse into ventral

SFs (Tojkander et al., 2015). A similar coordination of lamellipo-

dial protrusion, membrane tension, and adhesion site formation

has recently been described both experimentally and by a math-

ematical model for lateral waves during keratocyte migration

(Barnhart et al., 2017). The spatial and temporal periodicity of

the subcellular structures formed during cell spreading may

also be related to recent findings describing the actin cytoskel-

eton as a locally excitable medium (Bement et al., 2015; Graessl

et al., 2017), although in the context of cell spreading, membrane

tension and global coordination can also play an important role

(Diz-Muñoz et al., 2016).

While such studies have provided tremendous insight into the

mechanisms of cell spreading, they have almost always been

conducted on homogeneously coated, 2D ECM surfaces. This

leads to spreading with a broad and convex lamellipodial front,

which is constrained by ECM rigidity and adhesiveness but not

by ECM spatial organization. Physiological matrices, however,

are often highly structured and compel cells to spread along

pre-defined ECM tracks (e.g., collagen fibers) and form SFs

and lamellipodial structures that span non-adhesive regions,

thus leading to stellate cell shapes and concave fronts (Cukier-

man et al., 2001; Grinnell and Petroll, 2010; Owen et al., 2017).

In general, ECM structure is known to dictate the mode and ki-

netics of cell migration (Gardel et al., 2010; Doyle and Yamada,

2016). Understanding the biophysical and molecular parameters

that control spatially restricted spreading would produce

important new mechanistic insights into processes such

as development, wound healing, and tumor invasion, all of which

often proceed in highly structured matrix environments. For

example, in tumor invasion through collagen-rich ECMs, leader

cells often align collagen fibers, facilitating the invasion of subse-

quent follower cells (Wolf et al., 2007; Carey et al., 2013). Simi-

larly, Drosophila embryonic rotation facilitates the deposition of

an aligned, fibrillar ECM that guides subsequent cell migration

and tissue assembly (Haigo and Bilder, 2011).

Adhesivemicropatterns have emerged as a valuable paradigm

for studying the effect of structured ECMs on cell processes in a

standardized way that can be quantified and modeled (Théry,

2010; Albert and Schwarz, 2016b; Ruprecht et al., 2017). For

example, adhesive micropatterns have been used to describe

the formation of peripheral SFs in response to the geometry of

the extracellular environment (Théry et al., 2006) and their retrac-

tion dynamics after laser cutting within SF networks (Kassiani-

dou et al., 2017). We reasoned that such micropatterns could

also be used to mimic some of the aspects of cell spreading in

3D structured environments (Doyle et al., 2009; Ramirez-San

Juan et al., 2017). Earlier approaches of this kind have mainly

focused on mimicking the 1-dimensional (1D) nature of cell

migration along one fiber but have not addressed the effect of

corners and concave fronts. A recent study using flower-shaped

micropatterns has addressed how cells span concave regions

but not how cells spread along fiber-like structures that are
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typical of 3D ECM (Chen et al., 2019). Here, we use micropat-

terns to force a cell to spread along preexisting matrix geome-

tries with corners while assembling SFs that span non-adhesive

regions, thereby recapitulating several important features of

migration in 3D fibrillar environments encountered in vivo. Our

main focus is on the dynamic formation of the SF network in

the spreading cell. We show that the spreading process in struc-

tured, micropatterned matrices is strongly guided by ECM ge-

ometry and initial cell positioning. More specifically, spreading

along 1D legs of the patterns is characterized by the periodic for-

mation of FAs and SFs, as has been observed for cells spreading

on homogeneous matrices. By performing detailed comparisons

between different types of micropatterns, we identify geomet-

rical bottlenecks for cell spreading and adhesion, which dictate

the location and timing of the SF assembly. Our observations

of the organization of the SF network can be closely recapitu-

lated with a relatively simple mathematical framework consisting

of a cellular Potts model (CPM) for shape dynamics supple-

mented by the experimental observation that in our paradigm,

new SFs are deposited with a typical distance along the 1D

spreading trajectory. These observations and predictions are

supported by the imaging of cells migrating on arrays of discrete

collagen fibers. Our findings offer general regulatory principles

that should be directly applicable to understanding and control-

ling cell spreading in fully 3D environments.

RESULTS

Cell Spreading Rate Depends on Pattern Geometry and
Initial Adhesive Position
To investigate cell spreading in standardized ECM geometries,

we designed 2 rectangular patterns of aspect ratio 1.9 (48 3

25 mm) with a 15-mm gap located at either the top (‘‘top pattern,’’

Figure 1A) or the side of the pattern (‘‘side pattern,’’ Figure 1B),

which were coated with fibronectin (FN). We then seeded

U2OS red fluorescent protein (RFP)-LifeAct cells and conducted

time-lapse epifluorescence imaging to visualize the actin dy-

namics during cell spreading. It has previously been shown

that after sedimentation from solution, cell binding to an adhe-

sive substrate is a random and spatially uniform process (Rött-

germann et al., 2014). However, a micropattern breaks this

symmetry and offers the opportunity to ask how initial adhesive

position influences spreading kinetics. The cells seeded ex-

hibited 3 possible initial attachment positions for each pattern.

For the top pattern, cells attached to either the short edge of

the pattern (left or right; treated as identical due to vertical sym-

metry) or the long edge (Figure 1A). For the side pattern, cells

adhered to the left short edge or at either the top or bottom

long edge (treated as identical due to horizontal symmetry) (Fig-

ure 1B). As cells adhered, they initiated spreading along the

FN-coated lines, analogous to 1D spreading along a stripe

(Doyle et al., 2009). As cells encountered a corner, they turned

and spanned the non-adhesive region in the center of the pattern

using a peripheral SF. As expected, this spanning started much

earlier for cells that attached to the short sides than to the long

sides, with cells adherent to short sides already forming bridges

by the first time point of observation (Figures 1A and 1B, left col-

umns). As spreading progressed, cells deposited many internal
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Figure 1. Spreading Kinetics Depend on Pattern Geometry and Initial Cellular Adhesive Position

(A and B) Schematic of (A) top pattern and (B) side pattern, where dark red represents the region where FN is present. Shown below are representative images of

U2OSRFP-LifeAct cells spreadingoneachpattern initially adhering toeither theshort edge (left) or longedge (right) of eachpattern at different timepoints (VideoS1).

(C) Spreading kinetics for cells shown in (A) and (B), expressed as the percentage of the final area at each time point.

(D and E) CPM simulation of a cell adhered to and spread on (D) top pattern or (E) side pattern (Video S2).

(F) Simulations of cell area over time as cells adhere to and spread on each pattern. Scale bars, 10 mm.

See also Figures S1 and S2.
SFs that bridged the legs of the pattern. After the completion of

spreading, each cell covered the whole pattern, with 1 peripheral

SF located at the position of the adhesive gap and a network

of internal SFs dispersed throughout the cell. Using differ-

ential interference contrast (DIC) and epifluorescence micro-

scopy, we observed that during spreading, cells formed 2

lamellipodia, 1 at each end of the peripheral SF spanning from

one side of the pattern to the other (Figure S1, circled regions).

In contrast to the broad lamellipodium that is typically encoun-

tered during cell spreading on homogeneously coated sub-
strates, these lamellipodia were locally restricted and reminis-

cent of those encountered during spreading along single fibers

in 3D ECM (Doyle et al., 2015; Doyle and Yamada, 2016).

We next quantified area changes over time for each pattern

geometry and initial position (Figures 1C and S2). The spreading

area of both individual cells (Figure 1C) and averages of many

cells (Figure S2A) followed a hyperbolic curve, as previously

observed (Reinhart-King et al., 2005). We then fitted individual

cell trajectories and extracted exponential time constants (Fig-

ure S2C). Cells that adhered to the short edges of the top pattern
Cell Reports 27, 1897–1909, May 7, 2019 1899



exhibited a statistically larger time constant than cells that

adhered to the long edge (Figures 1C, black versus gray empty

circles, and S2C; Video S1, A and B). This shows that the

spreading path is dictated by the initial adhesive position and

strongly influences the rate of cell spreading. Specifically, cells

that attached to the short edge of the top pattern were forced

to rotate and bridge the long diagonal of the pattern (Figures

1A and 1B, images at 200 min), whereas cells that attached

to the long edge of the top pattern did not go through this diag-

onal configuration. In contrast, cells that attached to the long

edges of the side pattern exhibited statistically indistinguishable

spreading kinetics from cells that attached to the short edge of

the side pattern (Figures 1C, black versus gray filled circles,

and S2C; Video S1, C and D). Our results suggest that con-

straints on spreading trajectories imposed by ECM geometry

strongly influence the spreading process, especially if it involves

turning corners and bridging long distances.

Cell Spreading Trajectories and Spreading Rates Are
Predicted by a CPM
To understand the biophysical mechanisms that underlie the

experimentally observed spreading dynamics, we used our

previously published 2D CPM (Albert and Schwarz, 2014,

2016a) to simulate cell spreading on patterns (Figures 1D–1F;

Video S2). We modeled cells at the initial point of adhesion

as ellipses with a minor axis of 5 mm and a major axis such

that they cover the corresponding edge of the pattern to mimic

experimental observations. We first needed to determine CPM

parameters, which are specific to each cell-matrix context (Al-

bert and Schwarz, 2016a). One important CPM parameter is

the adhesion strength, which governs the ability of cells to

spread on the micropatterns, and was chosen to be just strong

enough to allow spreading (W = 10 nN/mm). Cell shape during

spreading is determined by a balance between this adhesive

energy and the surface tension, the simple line tension, and

the elastic line tension (Bischofs et al., 2008; Albert and

Schwarz, 2014, 2016a, 2016b; Brand et al., 2017). The surface

tension represents cortical contractility over the whole surface

and was previously estimated to be approximately s =

0.7 mN/m for keratinocytes (Mertz et al., 2012). The simple

line tension represents the tension along the cell periphery

and, similar to the surface tension, is expected to be generated

primarily by NMMII motors. The simple line tension is also the

main determinant of traction force at FAs pinning the contour

of strongly adhesive cells between inward curved peripheral

SFs, which typically is on the order of a few nanonewtons (Bis-

chofs et al., 2009). For these simulations, we chose the simple

line tension as ls = 7 nN. The elastic line tension represents

additional forces in the cell periphery generated by actin cross-

linkers such as a-actinin that are stretched in peripheral SFs.

The corresponding elastic modulus is estimated by applying

the tension-elasticity model (Bischofs et al., 2008) (see STAR

Methods for more detail), which recently has been confirmed

for cells in 3D scaffolds (Brand et al., 2017; Tabdanov et al.,

2018). To calculate the elastic 1D modulus, we fitted circular

arcs to the peripheral SFs of all analyzed cells and extracted

the corresponding arc radii (Figures S2D and S2E). Using the

arc radius extracted from the side pattern, the elastic 1D
1900 Cell Reports 27, 1897–1909, May 7, 2019
modulus was found to be EA = 238 nN. We adopted this value

for our simulations.

With these parameters, CPM predictions of cell shape during

spreading (Figures 1D–1F) aligned nicely with the corresponding

experimental measurements (Figures 1A–1C). For the top

pattern, we observed qualitatively similar trends between the

CPM and the experimentally obtained data (Figures 1C and 1F,

open circles); in particular, the spreading of cells that initially

adhered to the long edge was much faster than for cells that

initially adhered to the short edge. For the side patterns, the dif-

ferences between the spreading kinetics of cells adhered to

either the short or long edge were small both experimentally

and computationally (Figures 1C and 1F, filled circles). The simu-

lation captures a delay in spreading at the first corner, but not a

slowdown at the second corner (Figure S2A). Overall, the good

agreement between experiments and model suggests that the

interplay between the gain in cellular adhesion energy and ten-

sion is sufficient to explain the global dynamics of cell spreading

onto these patterns. In our experimental system, cells always ex-

hibited round arcs during spreading, suggesting that cell shape

is determined mainly by the mechanical equilibrium between

cortical and peripheral tensions at each time point and that

contractility is the main determinant of spreading kinetics for

cells with concave shapes bridging adhesive gaps, as assumed

in the CPM. This is in contrast to cells spreading on uniformly

coated ECM substrates, where actin polymerization and forma-

tion of many adhesions over a broad front lead to convex shapes

(Burnette et al., 2011; Shemesh et al., 2012).

A Memory of ECM Geometry Is Encoded in the SF
Network
We next asked whether the final SF configuration of cells

spreading on either pattern depends on the initial adhesive posi-

tion, thus allowing cells to develop a memory of their spreading

history. To answer this question, we tracked SF formation in cells

spreading onto the patterns by measuring the mean angular SF

orientation relative to thebottom longedgeof eachpattern. Ama-

jor issue that complicates this analysis over time is the fact that

cells spread on different timelines, creating significant variability

in the time of adhesion and initial spreading as well as time spent

per corner. To adjust for these offsets, we brought these kinetics

into register by identifying specific time points at which cells

achieved intermediate spread morphologies that can be used

as benchmarks (illustrations in Figures 2A–2D; Figure S5 for

spreading rates of individual cellswithin each specific timepoint).

Specifically, we normalized cells adhering at the long edge of the

side pattern by assessing the SF formation starting at time point

t1, where the cell has covered 50% of the pattern and has

assumed a triangular shape (Figure 2A, schematic). The mean

orientation of SFs in cells attached to the long edge (both top

and bottom) of the side patterns was initially approximately 20�.
As spreading proceeded, the peak at 20� decreased in frequency

(Figure 2A, left graph, light blue todarkblue) andanewpeakclose

to90� started forming (vertical to the longedges) (Figure 2A, dark-

est blue curves). Similarly, cells that initially adhered to the short

edge of the side patterns were normalized using time point t1
(Figure 2B, schematic). Cells exhibited an initial mean SF orienta-

tion with a peak at approximately 50�, and as the spreading
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Figure 2. Final SF Orientation Is Dependent

on ECMGeometry and Is Independent of the

Initial Binding Position

Top row of each panel: schematic showing the

time points used to normalize individual cells

bound on the short or long edges of each pattern

to allow for comparisons to be made. (A) and (B)

illustrate adhesion onto a side pattern at the long

edge and short edge, respectively. (C) and (D)

illustrate adhesion onto a top pattern at the long

edge and short edge, respectively. t1 (light blue)

represents the initial time point, t2 (blue) is an in-

termediate time point, and t3 (dark blue) is the final

time point at which the cell has spread fully on the

pattern. Snapshots show the typical SF architec-

ture, with highlighted SFs at the given time points

as given by FilamentSensor. Bottom row of each

panel: mean distribution of SF orientations for

naive U2OS RFP-LifeAct and blebbistatin-treated

U2OS RFP-LifeAct (+ Bleb.) (n = 33, 32, 17, and 56

cells normalized according to schematic for U2OS

RFP-LifeAct mean SF orientations; n = 17, 14, 11,

and 23 cells normalized according to schematic

for blebbistatin-treated U2OS RFP-LifeAct mean

SF orientations). Five independent experiments

were conducted for the spreading of the U2OS

RFP-LifeAct control cells, and 3 independent ex-

periments were conducted for blebbistatin-treated

spreading. See also Videos S1 and S2 and Figures

S3 and S4.
continued, the mean SF orientation approached 90� (vertical to
the long edges of the pattern) (Figure 2B, left graph). Thus, both

initial adhesive positions on the side pattern evolved toward a

final mean SF orientation that approached 90�.
Cells that adhered to the long edge of the top pattern were

normalized to time point t1, where the cell covered 50% of the

short edge (Figure 2C, schematic). At t1, the mean SF orientation

was approximately 10�, and as the spreading proceeded, it ap-

proached 0� (Figure 2C, left graph). Finally, cells adhering to the

short edges of the top patterns were normalized at time point t1,
Cell
which was defined by cells fully covering

half of the bottom long edge (schematic

and representative images in Figure 2D).

Cells at t1 had an initial mean SF orienta-

tion with a peak at approximately 40�,
and as the spreading process occurred,

the mean SF orientation approached

0� (horizontal to the long edge of the

pattern) (Figure 2D, left graph). Overall,

both binding positions on the top pattern

resulted in a mean SF orientation of 0�.
We therefore conclude thatmatrix geome-

try and initial adhesive position together

determine the SF orientation dynamics.

This suggests that cells establish a mem-

ory of their spreading history through the

organization of their SF network.

To quantify how the orientation distri-

butions converge toward the final distri-
bution, we calculated the Kullback-Leibler divergence (see

STAR Methods) as a function of time. We compared the angular

distribution at each time point to the final configuration and found

that the curves start with positive values and approach zero, as

expected (Figure S3A). The overall magnitude of the Kullback-

Leibler (KL) divergence is much smaller for the side-short and

the top-long cases, which is explained by the fact that these cells

do not have to turn during the spreading process, again demon-

strating that the spreading histories depend strongly on ECM

geometry and binding position.
Reports 27, 1897–1909, May 7, 2019 1901
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Figure 3. Blebbistatin-Treated Cells Have a

Lower Peripheral Line Tension

(A) Average intensities of naive or blebbistatin-

treated U2OS cells spreading on each pattern with

different initial adhesive positions (intensities of n =

33, 32, 17, and 56 naive cells and n = 17, 14, 11, and

23 blebbistatin-treated cells). White arrowheads

point to the arc of the peripheral SF, whereas white

arrows point to the confinement of the SF network

relative to the peripheral SF (Video S3).

(B) Snapshots from CPM simulations of one cell with

higher line tension (l = 6 nN,s= 0.2 nN/mm, and EA=

300nN) at the top and lower line tension (l=3nN,s=

0.2nN/mm,andEA=100nN)at thebottom(VideoS3).

(C) Comparison of the line tension l, surface

tension s, and elastic rigidity EA of control and

blebbistatin-treated cells. The box represents

the 25th and 75th percentiles; whiskers extend

from the first datum >Q1 �1.5*IQR to the last

datum <Q3+1.5*IQR, with Q1 andQ3 being the first

and third quartiles and IQR being the interquartile

range. Five independent experiments were con-

ducted for the spreading of the U2OS RFP-LifeAct

control cells, and 3 independent experiments were

conducted for blebbistatin-treated spreading.

See also Figure S2 and Table S1 for statistical

comparisons.
Cells with Mild Blebbistatin Treatment Show Faster
Spreading Kinetics and a Less-Well-Defined Actin
Cytoskeleton
Based on the CPM simulations (Figure 1), we conclude that

contractility is the main determinant of spreading over non-adhe-

sive regions. For homogeneously coated ECM substrates, some

studies have shown that reduced contractility increases the

extent and/or rate of spreading (Cai et al., 2010), while others

showed no effect (Dillard et al., 2014). We therefore repeated

our experiments in the presence of 3 mM blebbistatin, an NMMII

inhibitor (Figure S2A; Video S3). Application of blebbistatin in

the usual dose range of 10–50 mM completely inhibited cell

spreading and/or SF assembly (data not shown), requiring us to

apply a much smaller dose (Bischofs et al., 2008; Aratyn-Schaus

and Gardel, 2010; Pasapera et al., 2010; Aratyn-Schaus et al.,

2011). Such low-dose blebbistatin treatments have previously

been used to investigate actin flow on patterned cells (Kumar

et al., 2014). Blebbistatin-treated cells spreading on the side pat-

terns exhibited fewer SFs and increased peripheral SF curvature

(Video S3, C and D) as compared to control cells (Video S1, C

and D). The same observations were true for blebbistatin-treated

cells spreading on the top patterns (Video S3, A and B) as

compared to control cells (Video S1, A and B). We also observed

that the relations between spreading rates and initial adhesive po-

sitions on each pattern remained the same. Specifically, cells that

initially adhered to the long edge of the top pattern spread faster

than cells that adhered to the short edges (Figure S2C, blue

bars), whereas cells spread with similar kinetics on the side

pattern, irrespective of binding position (Figure S2C, blue bars).

Finally, we observed similar spreading kinetics between blebbis-

tatin-treated U2OS and control cells (Figures S2B and S2C).

Given the qualitative differences observed in SF architecture,

wewonderedwhether blebbistatin-treated cells also established
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a memory of spreading history via SF network organization.

Compared to the mean SF orientation of control cells, the

mean SF distributions of blebbistatin-treated cells underwent

similar transitions for all starting positions and patterns during

cell spreading, evolving toward a preferred SF orientation

perpendicular to the direction of the missing edge of the pattern

(Figure 2, ‘‘+ Bleb.’’ graphs). Specifically, cells spreading on top

patterns transitioned closer to 0�, whereas cells on side patterns

transitioned closer to 90� orientations. The peaks of the final SF

distributions (dark blue), however, were not as sharp as those

observed in control cells, especially for cells spreading on top

patterns. The width of the dark blue curve suggests that after

spreading, cells reorient their SFs to transition the mean SF

orientation toward 90�—in other words, vertical SFs—for all

patterns. Moreover, when comparing the divergence of U2OS

versus blebbistatin-treated U2OS cells at each time point (Fig-

ure S3B), the angular distributions do not approach one another

significantly over time. This suggests that while control and bleb-

bistatin-treated cells spread with similar mean SF orientations,

blebbistatin-treated cells do so faster and develop less-well-

defined SF networks.

Blebbistatin Treatment Lowers the Line Tension of
Peripheral SFs
To qualitatively visualize the average effect of blebbistatin

compared to control cells, we overlaid the SF network architec-

ture of all of the analyzed cells at time point t2 (as shown in Fig-

ure 2). The average SF intensity of blebbistatin-treated cells

spreading on the side pattern (Figure 3A) exhibited amore invag-

inated arc than control cells (Figure 3A, white arrowhead), in

agreement with earlier results (Bischofs et al., 2008). Moreover,

the SF network was not confined to the spreading edge as tightly

as in control cells (white arrows). Similarly, the average SF
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Figure 4. Both Control and Blebbistatin-

Treated Cells Form SFs at Spatial Intervals

of �2.5 mm and Temporal Intervals of

�15 min

(A) LifeAct intensities of spreading cells registered

along horizontal and vertical lines close to the FN

lines of the pattern, depicted in orange (close to

boundary) and blue (center of the pattern). We

separately categorized distances between hori-

zontal SFs (‘‘H’’ distances) and distances between

vertical SFs (‘‘V’’ distances). The plots on the right

are intensity profiles across the color-coded lines

for the 2 example images.

(B) Representative spatiotemporal plots of the

image intensities along a horizontal line showing

the occurrence of SFs of an individual control cell

bound on the short edge of the side pattern, for the

line close to the boundary (orange line) and the line

in the center (blue line).

(C) The spatial distances between SFs follow a log-

normal distribution with mean m = 2.5 ± 1.0 mm for

naive U2OS cells and m = 2.5 ± 1.1 mm for bleb-

bistatin-treated cells.

(D) The average temporal distance between subsequent SFs is T = 1.58 ± 11.1 min and T = 14.2 ± 12.5 min for control and blebbistatin-treated cells, respectively

(first letter: S, side pattern; T, top pattern; second letter: L, long edge binding; S, short edge binding). Mann-Whitney non-parametric tests were performed to

determine statistical differences between conditions and no statistical differences were observed. n = 16, 15, 9, and 25 naive cells and n = 15, 9, 3, and 16

blebbistatin-treated cells in the order side-long (SL), side-short (SS), top-long (TL), and top-short (TS) were analyzed. The box represents the 25th and 75th

percentiles; whiskers extend from the first datum >Q1�1.5*IQR to the last datum <Q3 +1.5*IQR, with Q1 and Q3 being the first and third quartiles and IQR being

the interquartile range. Five independent experiments were conducted for the spreading of the U2OS RFP-LifeAct control cells, and 3 independent experiments

were conducted for blebbistatin-treated spreading.

See also Figure S4.
intensity of blebbistatin-treated cells spreading on the top

pattern also exhibited increased curvature (white arrows in Fig-

ure 3A). Specifically, we observed a rearrangement of SFs to

favor shorter (perpendicular to the spacing) SFs for cells bound

on the long edge of the top pattern (Figure 3A).

We next used the CPM to arrive at a quantitative characteriza-

tion of the effects of blebbistatin treatment. To this end, we used

a minimization procedure (see STAR Methods) to determine a

set of parameter values for each experimentally obtained trajec-

tory. By calculating the deviation between the spatiotemporal

evolution of the cellular envelope of experimentally recorded

cells and a series of simulated cells, we were able to determine

stresses and elastic moduli for each cell and compare control

versus blebbistatin-treated cells. Overall, we found that our

mild blebbistatin treatment resulted in a significantly lower line

tension, but it did not influence the surface tension or the rigidity

of the free arcs (Figures 3B and 3C; see Table S1 for statistical

analysis performed using the Mann-Whitney test). To visualize

the effects of lower line tension, we ran simulations with varying

line tension parameters (Figure 3B; Video S4). By shifting to low

values, we observed that the simulated free arc showed more

pronounced curvature, which was also observed in individual

blebbistatin-treated U2OS cells during spreading (Video S3).

Furthermore, the contour appeared more uneven, which is due

to stochastic effects in the model. Overall, our analysis confirms

that the low dose of blebbistatin used in these experiments leads

to cells that exhibit a lower line tension (NMMII contractility in pe-

ripheral SFs), with little to no significant effects on the surface

tension (NMMII contractility in the cortex).
SFs Are Generated with Typical Separations in Space
and Time that Are Independent of ECM Geometry and
Initial Adhesive Position
To characterize the SF network formation more quantitatively,

we took advantage of the fact that the observed spreading dy-

namics are composed of stretches of 1D processes, namely

spreading along 1 leg of the pattern. We first drew a line parallel

to the FN lines of each pattern and recorded the changes in pixel

intensity over time as the cell was spreading (Figure 4A, orange

and blue lines). The distances between horizontal SFs were

labeled as ‘‘H’’ distances, whereas distances between vertical

SFs were labeled as ‘‘V’’ distances. By computing the distance

between the observed intensity peaks (Figure 4A, right panel),

we determined the distance between subsequent SFs (which

also corresponds to the distance between mature FAs along

the FN line), as well as the distance at which the cell creates a

new SF. We also displayed the information as a time sequence

of intensity profiles (Figure 4B, left panel). On average, cells

generated 6 horizontal and 12 vertical SFs during the spreading

process, irrespective of the pattern geometry or starting position

(Figure S4). These numbers suggest that the average distance

between subsequent SFs does not depend on SF length. More-

over, blebbistatin treatment did not significantly influence these

numbers. Comparing the distribution of distances between sub-

sequent SFs for all of the binding positions on both top and side

patterns, we observed that the experimental data were well

described by a log-normal distribution with mean m = 2.5 ±

1.0 mm for control and m = 2.5 ± 1.1 mm for blebbistatin-treated

cells (Figure 4C). Finally, we observed that the average time
Cell Reports 27, 1897–1909, May 7, 2019 1903
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Figure 5. Simulation of SF Distribution dur-

ing Cell Spreading on Each Pattern

The first and second rows illustrate adhesion

onto a side pattern at the long edge (A) and short

edge (B). The third and fourth rows illustrate

adhesion onto a top pattern at the long edge (C)

and short edge (D). Left column: schematic

showing the time points used to normalize indi-

vidual cells adhered to the short or long edge of

each pattern to allow for comparisons to be made.

t1 (light blue) represents the initial time point, t2
(blue) is an intermediate time point, and t3 (dark

blue) is the final time point at which the cell has

spread fully on the pattern. Center column: simu-

lated SF architecture using a modified CPM with

color-coded SFs, using light blue for time point t1
and dark blue for time point t3. Right column:

simulated mean distribution of SF orientations.

See also Figure S5.
elapsed between the assembly of subsequent SFs is T = 15.8 ±

11.1 min and T = 14.2 ± 12.5 min for control and blebbistatin-

treated cells, respectively (Figure 4D). Based on these results,

we conclude that cells generate SFs perpendicular to the direc-

tion of spreading at an average spatial separation distance of

�2.5 mm and a temporal interval of �15 min, and that small con-

centrations of blebbistatin do not strongly alter these spatial and

temporal scales.

SF Architecture during Cell Spreading Is Predicted
by the CPM with a Simple Rule for the Formation of
Internal SFs
As described above, our CPM is sufficient to predict cell shape

dynamics during spreading (Figure 1), indicating that these tra-

jectories can be fully explained by the balance between adhesive

energy and the different types of cell tension. Moreover, we have

shown that new SFs are locally generated by a stereotypical pro-

cess that is independent of the details of the spreading trajectory

(Figure 4). We therefore hypothesized that the CPM augmented

by simple rules for periodic SF formation should be sufficient to

predict the SF orientation distribution measured experimentally

(Figure 2). Internal SFs were introduced into the CPM as straight

lines between 2 FAs that anchor an arc above the non-adhesive

areas and were defined to appear as soon as they laid

completely within the cell body. This encapsulates the idea

that internal SFs are formed as transverse arcs behind the

advancing front and later straighten due to NMMII contractility

and surface anchorage. We incorporated a minimum distance

between SFs at the faster-spreading side of the cell, as sug-
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gested by our quantitative image analysis

(Figure 4). Note that according to these

simple rules, internal SFs have no influ-

ence on the spreading process, although

the underlying feedback processes are

contained in the experimental observa-

tion of a typical distance between subse-

quent SFs (see STAR Methods for more

details). With this simple ansatz, we

are able to predict the experimentally
observed distributions (Figure 5). We found that cells that initially

adhered to the long edges of the side pattern had an initial SF

configuration that peaked at �20� (light blue SFs), and as the

spreading continued, the SF configuration (darker shades of

blue) switched to 90� (vertical to the long edges and parallel to

the spacing) (Figure 5A). However, cells adhering to the short

edge of the side pattern exhibited vertical SF configurations

throughout the spreading process (Figure 5B). For the top

pattern, cells adhering to the long edge exhibited an initial SF

configuration peaking at �15� (light blue), and as the spreading

process continued, the configuration of most SFs converged

to 0� (horizontal to the long edge) (Figure 5C, darker shades of

blue). It should be noted that in the simulation, a second peak ap-

pears at�30�, which is not observed experimentally. We hypoth-

esize that this is because most simulated cells undergo a sym-

metry break during spreading and reach one free corner of the

pattern before the other. Intermediate SFs with a diagonal orien-

tation are therefore incorporated between the newly occupied

corner and a point along the long edge. Finally, cells initially

adhered to the short edge of the top pattern showed a vertical

initial SF configuration, and with increasing time, the SF config-

uration first approached a diagonal and then a horizontal config-

uration (0�) (Figure 5D). The superposition of SF distributions

onto our earlier CPM simulations of spreading cells (Figure S5)

illustrates that SFs track the advancing front and store a memory

of the turning process affected by the combination of pattern ge-

ometry and initial position. Overall, we conclude that a simple

CPM for cell shape dynamics augmented with a simple rule for

geometrically defined formation of SFs based on experimental
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Figure 6. SFs Farther Away from the

Spreading Edge Decay More Rapidly

(A) Representative examples of SF half-life time

constant measurements. An SF is selected by

drawing a region of interest (ROI) around it; the

fluorescence pixel intensity over time is plotted

and fitted to an exponential decay to obtain an SF

half-life time constant. Scale bar, 10 mm.

(B) SF half-life time constant measurements from

control and blebbistatin-treated U2OS cells. The

box represents the 25th and 75th percentiles; the

whiskers represent the 10th and 90th percentiles.

No statistical difference was observed between

the 2 conditions (Mann-Whitney; p = 0.24).

(C) SF half-lives plotted against the distance of the

SF from the spreading edge at the time of the first

fluorescent pixel intensity measurement. SFs from

cells adhered to both the top and the side pattern

were used for the measurements. Control cells

depicted as black circles; top pattern: 39 SFs from

18 cells; side pattern: 44 SFs from 23 cells. Bleb-

bistatin-treated cells depicted as red circles; top

pattern: 46 SFs from 20 cells; side pattern: 33 SFs

from 12 cells. A negative correlation was observed

between SF half-life and the distance to the

spreading edge (control: Spearman correlation for

both patterns, both binding positions: r =�0.60, p < 0.0001; blebbistatin-treated cells: Spearman correlation for both patterns, both binding positions: r =�0.71,

p < 0.0001). The data were fit to a semi-log equation; for clarity, the fitted lines are depicted in the inset without the data points (control: y =�85.56log(x) + 116.7;

blebbistatin-treated: y = �153.7log(x) + 188.1). Five independent experiments were conducted for the spreading of the U2OS RFP-LifeAct control cells, and 3

independent experiments were conducted for blebbistatin-treated spreading.

See also Figure S6.
observations can robustly predict SF orientations observed dur-

ing cell spreading.

SF Half-Life Depends on the Distance from the
Spreading Edge and Is Regulated by NMMII Contractility
Because the cytoskeleton is continuously turning over, we

asked how long the memory of spreading history persists

within the SF network. By measuring the pixel intensity of

already formed SFs over time, we defined an SF half-life

measurement as the time constant over which 63.2% of the

fluorescence intensity disappears (Figure 6A). We performed

these measurements for control and blebbistatin-treated cells

spreading on top and side patterns (irrespective of initial posi-

tion) and found a typical timescale of 50 min. More specifically,

we observed a slight increase in the SF half-lifetime constants of

blebbistatin-treated cells (mean ± SE of control: 45.6 ± 4.33 min

and of blebbistatin-treated cells: 53.3 ± 5.61 min; Mann-Whit-

ney non-parametric test, p = 0.24) (Figure 6B). While this in-

crease was not significant, we hypothesized that differences

may be masked by the large variation in the data, which may

in turn be due to a systematic dependence of the SF half-life

on its spatial position in the cell. To explore this possibility, we

plotted the half-life of SFs in cells spreading on top and side

patterns relative to the distance of the observed SF from the

spreading edge at the time point of the first pixel intensity

measurement (Figure 6C). Overall, we observed a negative

non-linear correlation for control and blebbistatin-treated cells,

suggesting that SFs farther away from the spreading edge disin-

tegrate faster, irrespective of pattern geometry. The semi-log fit
of the blebbistatin-treated cells (inset in Figure 6C) was shifted

to the right for all pattern types and initial adhesive positions.

SFs closer to the edge exhibited higher SF half-life time con-

stants in blebbistatin-treated cells compared to SFs in control

cells (Figure S6). Overall, our data suggest that cells encode a

memory of their spreading history within their SF network that

lasts for �50 min. This memory is regulated by myosin contrac-

tility that breaks down SFs that are far away from the leading

edge, because the inhibition of myosin produces SFs that

persist more deeply into the cell interior.

Cell Spreading on a Network of Collagen Fibers Also
Shows Localized Lamellipodia and Invaginated Arc
Morphology
To determine whether the observations seen on our micropat-

terns are predictive of spreading behavior on matrices featuring

fibers, which are a common feature of 3D scaffolds, we exam-

ined cell spreading along 2D networks of collagen fibers. We

formed these fiber arrays by tethering collagen I to polyacryl-

amide gels using 2-pyridinecarboxaldehyde-based ligation

(2PCA-AA gels), which we previously showed supports fiber as-

sembly beyond the levels that are seen with standard side chain

amine-based conjugation (Lee et al., 2016). After seeding, cells

exhibited the same initial round shape as on the patterns (Figures

S7A and S7B). Over time, cells spread and formed invaginated

arcs by interactingwith the collagen fibers (Figures 7A [cells fixed

after spreading], 7B, and S7 [timelapse of cell spreading]).

Similar to spreading on micropatterns, we did not observe the

broad lamellipodia normally seen on homogeneously coated
Cell Reports 27, 1897–1909, May 7, 2019 1905
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Figure 7. U2OS Cell Spreading on Collagen-Coated 2PCA-AA Gels

Resembles Spreading on Micropatterned Legs

(A) Differential interference contrast (left column) and epifluorescence Lifeact

(right column) imaging of protrusions, collagen fibers, and SFs in cells fixed

after being allowed to spread. Top row: U2OS RFP-Lifeact cell interacting with

collagen fibers. Protrusions form along collagen fibers. Interior SFs are often

observed to align with collagen fibers. Bottom row: higher-magnification view

of the boxed region. One biological replicate was conducted at this 2PCA-AA

gel stiffness. Scale bar, 10 mm. See also Figure S7.

(B) Illustration depicting the commonalities of cell spreading on 2D patterns

and 3D fibers. In both cases, the cell encounters corners that require rotation

and bridging of gaps that are connected by peripheral SFs.
substrates and instead observed multiple lamellipodia along

collagen fibers, analogous to spreading across the legs of the

micropatterns (Figures 7A, 7B, and S7). There were also notable

differences between spreading on 2PCA-AA gels and the micro-

patterns. Whereas the micropatterns gave rise to families of par-

allel SF bundles behind the peripheral arc, these structures were

less regular and less frequent on the collagen fiber arrays (Fig-

ures 7A and 7B). This may be due to the collagen fibers being

flexible enough to be deformed by actomyosin contraction.

Another essential difference between the 2 paradigms is that

the micropatterns only permit the formation of 2 lamellipodia,

whereas collagen surfaces permit the formation of multiple

lamellipodia, creating additional cell-to-cell heterogeneity in

spreading. Nonetheless, the dynamics of spreading on collagen

fibers are more similar to results from micropatterns than from

homogeneous 2D matrices, supporting the biological relevance

of our observations on micropatterns.

DISCUSSION

We have explored how ECM geometrical cues influence the ki-

netics of cellular spreading and the spatiotemporal evolution of
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the SF network. Previouswork on cellular spreading has concen-

trated on homogeneously coated substrates such as nanopo-

rous hydrogels or tissue culture plastic (Engler et al., 2004; Gian-

none et al., 2004; Reinhart-King et al., 2005; Nisenholz et al.,

2014; Diz-Muñoz et al., 2016; Pontes et al., 2017). Cells in vivo,

however, tend to adhere, spread, and migrate along geometri-

cally defined ECM structures. Thus, understanding how cells

sense and respond to such matrix cues can provide important

insights into cellular processes associated with development,

wound healing, and cancer metastasis. However, such mecha-

nistic insights are prohibitively difficult to obtain from true 3D

matrices, given the challenges associated with high-resolution

quantitative imaging in such matrices. Our adhesive micropat-

terns combine the defining features of migration in 3D matrices,

such as corner turning and matrix bridging, with the high-resolu-

tion experimental accessibility of 2D matrices. By combining

these patterns and SF time-lapse imaging, we were able to con-

trol cell spreading onto structured matrices and to quantitatively

validate and mechanistically dissect our observations through

mathematical modeling.

We first found that cell spreading depends on ECM geometry

and the initial adhesive position. For example, the presence of

corners in the ECM slows cell spreading due to cell rotation.

Although this coordination between spreading trajectory and

matrix architecture would not be observed in cells spreading

on isotropic matrices, it is very common for cell spreading in

fibrous 3D environments such as collagen gels (Owen et al.,

2017). On the subcellular level, we showed that the evolving SF

network architecture is tightly controlled by ECM geometry

and initial cell position. Specifically, SFs are locally aligned pre-

dominantly in parallel to the orientation of the advancing edge,

revealing that cells can encode the memory of their spreading

history within their SF architecture.

Given that cell spreading on structured matrices seems to

follow clear rules, we set out to predict spreading with a simple

CPM for shape dynamics dominated by NMMII contractility. To

also predict the SF orientation distribution, we complemented

this CPM with a simple geometrical rule based on the experi-

mental observation that new SFs are formed with a constant

characteristic distance. The success of the CPM in predicting

spreading trajectory and SF network orientation distribution

demonstrates that the interplay between gain in adhesion energy

and cell tension is sufficient to explain the mechanistic aspects

of spreading such as SF assembly behind the leading edge. In

contrast to cell spreading on homogeneous substrates, we do

not need a model for lamellipodial protrusion, which on the pat-

terns is restricted to the two endpoints of the advancing arc.

Based on the CPM, we were also able to extract the line tension,

surface tension, and rigidity of the cellular arc during cell

spreading. In particular, we showed that low concentrations of

blebbistatin, which allow for cell spreading and SF formation,

decreased the line tension of cell spreading edges, but did not

alter the edge bundle rigidity and the surface tension in a detect-

able manner. This is in agreement with earlier results that

showed that peripheral SFs are more susceptible to blebbistatin

treatment than the cell cortex (Bischofs et al., 2008; Labouesse

et al., 2015; Tabdanov et al., 2018). In the future, our findings

may be further expanded by creating a model for predicting



spreading in 3D fiber environments, in which we take into full

consideration the typical spacing and angles between individual

fibers in the fibrous environment.

The formation of FAs andSFs on homogeneous substrates has

previously been found to proceed in a stereotypical and oscilla-

tory manner (Giannone et al., 2004; Burnette et al., 2011). We

observed similar periodic processes in our structured substrates.

During spreading on our patterns, SFs formed periodically at

spatial intervals of �2.5 mm and temporal intervals of �15 min.

Moreover, SFs farther away from the spreading edge disas-

sembled at a faster rate than those closer to the edge, and this

negative feedback loop is partially regulated by myosin contrac-

tility. It is important to note that the spatiotemporal kinetics of SF

generation are conserved across both patterns and all initial ad-

hesive positions. This is surprising because although it has been

argued that the actin cytoskeletonbehaves like a locally excitable

medium (Bement et al., 2015; Graessl et al., 2017), one also ex-

pects global features to play a regulatory role (e.g., throughmem-

brane tension) (Diz-Muñoz et al., 2016). One aspect of this unex-

pected result may be that in our case, the lamellipodium is

restricted to a small region during spreading along the legs.While

we recognize that membrane tension is an important regulator of

cell spreading, it remains verychallenging tomeasure this param-

eter in a spatially resolved fashion (Lieber et al., 2013, 2015),

which is necessary as it has recently been argued that local

changes in membrane tension do not propagate globally due to

coupling to the cortex (Shi et al., 2018). In the future, it may be

fruitful to incorporate newly developed optical tension sensors

(Colom et al., 2018).

We also found that cells can retain amemory of their spreading

history through the SF network on a timescale of 50 min. While

earlier work has hinted at the idea that cells exploit adhesive po-

sition to ‘‘remember’’ earlier shapes (Théry et al., 2007), the

concept that memory can be encoded in the actin cytoskeleton

is novel relative to current paradigms that focus on the impor-

tance of biochemical or genetic networks. The 50-min timescale

measured here is reminiscent of the 50-min timescale recently

identified in an optogenetic study of SF elasticity (Oakes et al.,

2017). An open yet very important question is which SF architec-

ture prevails once memory is lost. In our system, the answer to

this question is obscured to some degree by cell division, which

often starts once complete spreading has been achieved. Inter-

nal SFs retained their orientation (top pattern = parallel to long FN

edge, side pattern = perpendicular to long FN edge) until the

onset of division, at which point internal SFs disintegrated (Video

S5). Given that matrix and actin geometry have been shown to

regulate mitotic spindle positioning and the axis of division

(Théry et al., 2005), it would be interesting to investigate whether

a spreading history-dependent mechanism influences the orien-

tation of daughter cells.

Finally, we showed that cell spreading on networks of collagen

fibers showed many similarities with cell spreading on our micro-

pattern assay, including spatially localized lamellipodia and

spreadingwith an invaginated arc at the front. However, a distinct

differenceacross these2paradigms is the lackofperiodicity in the

formation of new SFs. We hypothesize that this discrepancy may

arise from the deformability of the collagen fibers and the allow-

ance of >2 lamellipodia due to the reduced geometrical control.
Future studies are needed to test these hypotheses. Recently

introduced printing techniques to engineer networks of FN

(Wang et al., 2018) or collagen lines (Tabdanov et al., 2018) may

be valuable in this regard, but these assays do not allow for in

situ self-assembly or remodeling of ECM proteins as our collagen

assaydoes.Fiberelectrospinning (Chenetal., 2019) ordirect laser

writing (Brand et al., 2017)mayprovide an ideal approach through

its combination of pattern control and fiber deformability.

In summary, our work quantitatively characterizes spreading ki-

neticsonheterogeneously structuredECMsubstrates through the

use of adhesive micropatterns and quantitative image analysis.

The distribution of SF orientations can be closely predicted by a

CPM augmented by a simple geometrical rule for forming new

SFs. Our findings suggest that similar stereotypical processes

are also at play in 3D environments, particularly in cases in which

cells must spread along discrete fibers or fiber bundles. They also

suggest that corners may be a limiting bottleneck in spreading in

3D fibrous environments, which in vivomay be overcome by elas-

ticity. However, our model also suggests that elastic line tensions

in the cell contour may help to bridge non-adhesive regions, and

this effect should be enhanced in stiffer environments. It remains

an open question as to how fiber deformability may modulate

the results presented here. A valuable starting point for exploring

these issues may be represented by 1D nanofibers or 3D elastic

scaffolds (Klein et al., 2010; Estabridis et al., 2018).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

PLL(20)-g[3.5]-PEG(2) Surface Solutions, Switzerland N/A

Blebbistatin Sigma Cat# B0560; CAS# 856925-71-8

Collagen type 1, bovine Advanced Biomatrix Cat#5005

40% Acrylamide Bio-Rad Cat# 161-0140

2% Bis solution Bio-Rad Cat# 161-0142

TEMED (N,N,N’,N’-tetramethylethylenediamine Bio-Rad Cat# 161-0800; CAS# 110-18-9

Ammounium Persulfate Bio-Rad Cat# 161-0700; CAS# 7727-54-0

2PCA-PAA Lee et al., 2016 N/A

Experimental Models: Cell Lines

U2OS ATCC Cat# HTB96; RRID:CVCL_0042

Recombinant DNA

Plasmid: pCMV-LifeAct-TagRFP Ibidi Cat# 60102

Software and Algorithms

ImageJ NIH, Bethesda N/A

R version 3.4.1 for fitting time constants

of spreading and plotting

Vienna, Austria https://www.R-project.org/

Python 2.7.13 custom scripts for analysis This paper N/A

Custom code for Cellular Potts Model Modified from

Albert and Schwarz, 2016a

N/A

GraphPad Prism 7 GraphPad software https://www.graphpad.com/

scientific-software/prism/

CleWin 4.0 for mask design N/A Wieweb.com
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents and analysis should be directed to Sanjay Kumar (skumar@berkeley.edu) and Ulrich S.

Schwarz (schwarz@thphys.uni-heidelberg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

293T cells were used to package viral particles of pFUG-RFP-LifeAct and following viral purification, U2OS cells (ATCCHBT-96) were

infected at amultiplicity of infection (MOI) of 1.5. U2OS cells expressing RFP-LifeAct were sorted on a DAKO-CytomationMoFlo High

Speed Sorter. Cells were cultured in DMEM with 10% fetal bovine serum (JR scientific), 1% penicillin/strep (Thermo Fischer Scien-

tific) and 1% Non-Essential Amino Acids (Life Technologies).

METHOD DETAILS

Deep-UV based micropattern fabrication
CleWin 4.0 was used to design the rectangular features used in this study, and aBeam technologies (Hayward, CA) printed the

chrome quartz photomask. The total fibronectin (FN) area and final pattern area (1200 mm2) were kept constant for both top and

side patterns. Photopatterns were made as previously described (Azioune et al., 2010; Kassianidou et al., 2017). Briefly, glass cov-

erslips were sonicated in 70% ethanol for 10 minutes and air-dried. Coverslips were then plasma treated for 5 minutes. They were

then coated with 100 ml of 0.01mg/ml PLL-PEG (Surface Solutions, Switzerland) resuspended in 10 mM HEPES pH = 7.4 for 1 hour.

Excess PLL-PEG solution was carefully removed from coverslips whichwere then air-dried. A drop of water was placed on the photo-

mask and the coverslip was inverted onto the mask (PLL-PEG side touching the mask). Care was taken to remove excess water and
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any air bubbles. Coverslips were then exposed to deep UV (UVO cleaner, Jelight, USA) through the photomask. After deep UV in-

cubation, coverslips were carefully removed from the mask by adding water between the coverslip and mask surface and incubated

in UltraPure water for at least 30 minutes. Finally, coverslips were incubated with 34.25 mg/ml of FN (EMD Millipore Corporation) in

10mMHEPES pH= 8.5 for at least 1 hour at 37�C. Patterns were washed 3 times for 5min in phosphate-buffered saline (PBS) prior to

use.

Fluorescence time lapse experiments of cell spreading
6-well plates were laser cut to create a square of 1.5 cm by 1.5 cm. Patterned coverslips were glued at the bottom of these 6-well

plates and washed extensively with PBS to ensure removal of any glue trace and no leakage over time. 120,000 U2OS RFP-LifeAct

cells were seeded per well. We carefully changed cell media 30 minutes after seeding to remove floating cells. The plate was then

placed on an invertedNikon TI-Eclipsemicroscopewith amotorized stage and an incubator chamber set to 37�Cwith 5%CO2. Time-

lapse positions were selected, and imaging began at 1 hour 20minutes after seeding. Images of RFP-LifeAct were taken every 10mi-

nutes for at least 7 hours using a 40x, N.A = 0.75 objective (no binning). We employed the Perfect Focus system to ensure that stress

fibers (SFs) remained in focus during spreading. For presentation purposes, the contrast and brightness of fluorescence imageswere

optimized using ImageJ (NIH) (Videos S1 and S5). We conducted five independent experiments and tracked at least 50 cells per

experiment. For blebbistatin-treated cell spreading experiments, we treated adherent cells with 3 mM blebbistatin for 1 hour 30 mi-

nutes before trypsinization. During trypsinization, cells were also incubated in medium containing blebbistatin. 120,000 cells were

seeded on the micropatterns at 2 hours of blebbistatin incubation. Media changes and imaging were performed as described above

(Video S3). Cells spread for at least 7 hours in the presence of 3 mM blebbistatin. 3 independent experiments were conducted and at

least 50 cells were tracked per experiment. Analysis was performed only on cells which had focused SFs throughout the imaging

window and had spread fully on the pattern.

DIC Time Lapse experiments of cell spreading (Figure S1)
Differential Interference Contrast (DIC) imaging of spreading cells on the micropatterns was performed using an inverted Nikon

TE2000-E2microscope equippedwith amotorized stage (Prior Scientific), an incubator chamber set at 37�Cwith 5%CO2. Cell seed-

ing was performed as described above. Cells were imaged every 45 s for at least 5 hours using a 40x objective. Four independent

experiments were conducted and 4 cells were tracked per experiment.

U2OS cells spreading on 2PCA-polyacrylamide gels conjugated with collagen (Figures 7 and S7)
36 kPa 2PCA-PAA gels were fabricated as described previously (Lee et al., 2016). Briefly, 40%acrylamide (BioRad) and 2%bis-acryl-

amide (BioRad) were combined to a final acrylamide and bis-acrylamide percentage of 15%and 1.2% respectively. The solution was

mixed with ammonium persulfate solution (10% in deionized water, final concentration 1.0% w/v), tetramethylethylenediamine

(1:1000 v/v) and 2PCA-AA (0.1% mol fraction of acrylamide monomer content). This solution was polymerized between a silanized

glass bottom dish (MatTek) and a coverslip treated with hydrophobic solution and allowed to polymerize at room temperature for

15-20 minutes. The coverslip treated with hydrophobic solution was then removed and the gel was briefly rinsed with PBS.

100 mg/ml collagen (bovine Type 1, Advanced Biomatrix) diluted in PBS was incubated on the gels overnight at 37�C and rinsed

extensively.

U2OS cells were then seeded onto the gels and allowed to adhere. After 30 minutes, the mediumwas replaced with CO2-indepen-

dent, phenol red-free medium supplemented as described above. Imaging was started 1 hour after seeding. Cells were tracked with

a 60x/1.40 oil-immersion objective using DIC every 10 minutes and simultaneously under fluorescence every 20 minutes for at least

6 hours. Cells used in fixation experiments were allowed to spread for 7-8 hours before being fixed in 4% paraformaldehyde for

10 minutes.

To correct for uneven illumination, DIC images were processed by applying a 25-pixel radius Gaussian blur and subtracting this

from the original image. A 1-pixel radius median filter was subsequently applied to remove salt and pepper noise. LifeAct fluores-

cence images were corrected for photobleaching using the Bleach Correction plugin.

Quantification of cell area analysis (Figures 1 and S2)
First, cells were classified based on initial pattern binding position. For the top pattern, we identified 3 positions: right short edge, left

short edge, and long edge. Negligible numbers of cells bound to the short regions of matrix surrounding the gap. For the side pattern,

cells bound on the short edge, on the top long edge, or the bottom long edge. Due to the observed symmetry between left and right

corner binding on top patterns and between top and bottom edge binding on side patterns, these two conditions were treated as

equivalent. For this analysis, we used ImageJ (NIH) to threshold images based on RFP-LifeAct signal. As seen in the images in Fig-

ure 1, RFP-LifeAct strongly labels the peripheral SFs which we consider to be the cell boundaries. However, the corners of cells

are devoid of peripheral SFs, so we used low thresholding to ensure retention of edges. Area measurements based on thresholding

were then normalized to 1200 mm2 (the designed pattern area). As a result of the low thresholding and the constant ruffling, some of

our measurements were above 100%. Cells whose area was greater than 0.5 (600 mm2) in the first image were excluded from the

analysis.
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SF angle analysis (Figures 2, S3, and S4)
Cell images taken at different time points were merged in a stack and aligned using Template Matching (Tseng et al., 2011). For each

time point, the pattern was pruned so that only SFs in the interior of the cell remained. The orientation of the internal SFs was deter-

mined using OrientationJ Distribution plugin (Rezakhaniha et al., 2012) in ImageJ (NIH). The structure tensor A for each pixel was

calculated using a Gaussian analysis window of size 1 pixel and a cubic spline gradient. From the components Aij of the structure

tensor and its eigenvalues lmax and lmin, the directional orientation 1=2arctanð2ðAxy=Ayy � AxxÞÞ, the energy Axx +Ayy and the coher-

ency ðlmax � lminÞ=ðlmax + lminÞ was calculated for each pixel (Rezakhaniha et al., 2012) and a histogram over all pixels was calcu-

lated and filtered with a Gaussian kernel of 2�. Only pixels with an energy larger than 1% of the maximum energy were considered in

the histogram aiming at eliminating indistinct image features. In addition, the histogram was weighted by the coherency value, giving

anisotropic structures, such as SFs, a larger contribution as compared to flat image regions with uncertain local orientation.

From the cell images, time points were registered in which the cell area adopted one of its characteristic states (see Figure 2 sche-

matics). Depending on the pattern, orientation histograms were calculated for those 2 or 3 characteristic states and 17 temporally

equidistant time points in between. Missing orientation histograms were interpolated by calculating the average of the histograms

of the surrounding time points. For each of the 19 equidistant time points, orientation histograms were averaged and normalized.

We also compared the resulting orientation histograms with the final fiber orientation distribution at each time point using the Kull-

back-Leibler (KL) divergence:

DðA j jBÞ=
XN
i = 1

AðxiÞlog
�
AðxiÞ
BðxiÞ

�

where N is the number of angular bins.

This quantity determines the difference between distribution A and B by calculating their information loss upon replacing distribu-

tion Awith B. For equal distributions, the KL divergence is zero. Wemostly obtain curves that decrease toward zero, when comparing

the distributions to the final configuration as a function of time, which indicates that the SF orientation gradually approaches its final

orientation distribution (Figure S3).

Segmentation of SFs
We used the plugin Filament Sensor v0.1.7 to segment out single SFs from the fluorescence images, as shown in Figure 2 (Eltzner

et al., 2015). Imageswere filteredwith aGaussian filter of width 0.5 pixels and a subsequent Laplace filter of width 1 pixel. Moreover, a

directed Gaussian filter of width 1 pixel was applied and only filaments starting from a minimal length of 20 pixel were considered.

SF distance analysis (Figures 4 and S4)
The fluorescence intensity of the cell image along a line both close and parallel to the boundary of the pattern where new FAs are

created was determined using ImageJ (NIH) and averaged over time. The resulting averaged intensity distribution was spatially

filtered by means of a Gaussian kernel of width 0.32 mm and the distances between adjacent intensity maxima were determined.

SF lifetime analysis (Figures 6 and S6)
Cell images were first aligned using Template Matching (Tseng et al., 2011). A region of interest (ROI) was drawn over the SF using

Polygon selection in ImageJ (NIH). SFs were chosen to ensure that they would not migrate outside of the ROI prior to their disinte-

gration. The fluorescent intensity of SFs within the ROI was then determined using Plot Z axis profile in ImageJ (NIH) and plotted as a

function of time. An exponential curve was fit to the data to determine the SF half-life (t) in seconds using a custom Python script.

Multiple ROIs were analyzed per cell. The distance of the SF of interest from the spreading edge was determined from the point

of FA (binding of SF to the FN line). If the SF was at a diagonal position due to the presence of 2 lamellipodial structures (one on

each 1D FN line), the distance to the lamellipodium was determined based on the leading lamellipodial structure. At least 15 cells

were analyzed per pattern (side and top pattern). Plots, fits and correlation statistics were determined using GraphPad Prism 7.

Model Description (Figures 1, 3, and 5)
We extend our previously developed 2D cellular Potts model (CPM) to show that the distribution of SFs is mainly dictated by the

pattern geometry and the associated spreading process. The CPM is implemented on a 2D square lattice so that each lattice site

can either belong to the cell or the surroundings. Additionally, lattice sites can be defined as adhesive, which makes it possible to

implement underlying patterns. The Metropolis algorithm is used to simulate cell spreading by randomly trying to flip a lattice site

at the cell periphery. The acceptance probability is calculated from the following energy functional:

H= sA+ lsl +
X
arci

EA

2L0;i

Li � L0;ið Þ2 � E0

Aref +Aad

Aad (1)

where the first term accounts for surface tension s and hence scales linearly with the cell area A. The second term is the contribution

due to simple line tension which is proportional to the cell perimeter l. In addition to this simple line tension, we account for an extra

elastic line tension present in free arcs, seen in the third term, and EA is the associated elastic modulus. The last term considers the
e3 Cell Reports 27, 1897–1909.e1–e4, May 7, 2019



adhesion energy due to the adhesive pattern where Aad is the adhered area. Further details of the model can be found in our previous

work (Albert and Schwarz, 2014). The implementation of SFs is new to our model and originates in the idea that SFs are formed par-

allel to the advancing front in a periodic process. Hence, we integrate a rule that SFs are formed between two points that previously

supported an arc spanning a non-adhesive area. However, a minimum distance is introduced that corresponds to the experimentally

observed average distance between two adjacent SFs (2.5 mm). Before defining a specific SF, the distance to the previously intro-

duced SF is checked and the SF is only accepted if at least thisminimumdistance is fulfilled at the faster spreading side. Furthermore,

SFs are always introduced as straight lines but are only shown if completely covered by the cell body. Although SFs might be remod-

eled in the living cell, the model does not allow for changes after the fibers have been put down. All simulations were averaged over

100 spreading events for each binding position on each pattern. The distributions from the simulations were constructed taking CPM

data from different regions of the pattern according to the benchmark times introduced earlier (Figure 2). Early SFs formed during the

initial spreading phase (t1) are highlighted in light blue and later SFs formed during t2 and t3 are highlighted in darker shades of blue.

Fit of model parameters to experiments
We use a minimization procedure based on the Nelder-Mead algorithm (as implemented in SciPy) to fit the simulation parameters to

the experimentally obtained data. As a quantitative comparison, we use the time evolution of the central point on the invaginated arc.

Therefore, a distance measure can be calculated by evaluating the mean squared deviation between the two corresponding trajec-

tories. The parameter fit is accomplished through the following steps: First, a suitable set of initial parameters is found by a coarse

scan of the relevant parameter ranges. Then, the optimization procedure is started, which runs the CPM with the given initial param-

eters and uses the Nelder-Mead simplex algorithm to determine the next set of parameters according to the minimization of the dis-

tancemeasure. Finally, once the algorithm converges to the optimal parameter set, it stops. In principle, an additional parameter also

scales the time of the simulation. However, this value must be fixed across all simulations to allow meaningful comparison of the

extracted parameter values.

In order to estimate the radius of curvature R and spanning distance d of the cells on the micropatterns, circles were placed manu-

ally along the brightest region of the corresponding stress fiber. Both parameters were determined based on these circles. See

Figure S2 for values.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical comparisons were carried out using GraphPad Prism 7, R version 3.4.1 and Python. Non parametric Mann-Whitney tests

were carried out when two cases were compared. Differences were considered to be significant when calculated p values were

below 0.05. Details on sample size are found in the figure legends. Statistical analysis p values are found in Table S1 and in the

appropriate figure legends. All box and whisker plots are further explained in the figure legends.
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