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Replication and spread of human viruses is based on the simultaneous

exploitation of many different host functions, bridging multiple scales in

space and time. Mathematical modeling is essential to obtain a systems-level

understanding of how human viruses manage to proceed through their life

cycles. Here, we review corresponding advances for viral systems of large

medical relevance, such as human immunodeficiency virus-1 (HIV-1) and hep-

atitis C virus (HCV). We will outline how the combination of mathematical

models and experimental data has advanced our quantitative knowledge about

various processes of these pathogens, and how novel quantitative approaches

promise to fill remaining gaps.

Keywords: HCV; HIV; mathematical modeling; quantitative viral

dynamics; systems biology

Viruses are systems biologists in the sense that they

continuously explore which combinations of cellular

processes might be exploited for successful replication

and spread in a population of host cells. The resulting

versatility and variability in their strategies mirror the

complexity of the processes in the host and show the

evolutionary capacity of pathogens to adapt. For

example, human viruses such as the human immunod-

eficiency virus-1 (HIV-1) and hepatitis C virus (HCV)

have found sophisticated ways involving the interac-

tion of different cell surface receptors to realize cell

entry to specific target cells [1]. Once inside the cell,

molecular processes of viral transport, disassembly,

integration, transcription, translation, assembly and,

finally, export influence the efficiency of new virus pro-

duction and, hence, viral spread. However, viral

spread is also influenced by the availability of target

cells, cell motility, the surrounding tissue environment,

and the proximity of counteracting immune responses.

Thus, viral infection dynamics represents a complex

process covering multiple scales in space and time

whose understanding is a challenge to the modern bio-

sciences (Fig. 1). Identification of the key factors

involved, as well as a quantitative understanding of

the various processes determining infection dynamics

and disease outcome is needed to design appropriate

treatment regimes.

Mathematical modeling is an essential tool to

achieve a systems-level understanding of pathogen

replication and spread. Analyzing patient data by

mathematical models helped to identify the high repli-

cation rate of HIV-1 during the chronic infection
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phase [2–4] and the mode of action of specific anti-

HCV drugs [5,6]. In addition, computer simulations

can help to understand the biophysical aspects of viral

assembly and packaging and reveal rate limiting steps

and physiological constraints [7]. Furthermore, mathe-

matical models allow us to integrate information from

different scales and experimental sources, and to exam-

ine processes that are not directly observable by exper-

imental measurements, within a systematic and

quantitative framework.

Advances in technologies for molecular and cell

biology as well as imaging techniques improve our

quantitative knowledge and can provide real life data

of infection processes. For example in case of HCV

infection, microscopy techniques have been developed

to allow single-cell analysis of intracellular viral repli-

cation in vitro [8], to visualize infection dynamics

within the liver of humanized mice [9], and to deter-

mine the infection status of single cells in liver biopsy

samples of HCV-infected patients [10]. These new

types of data provide valuable input for a systems-level

understanding of pathogen replication and spread.

In the following, we will review various types of

modeling techniques that, in combination with experi-

mental data, have been used to determine and quanti-

tate processes of virus replication and spread across

multiple scales. We will especially focus on viral

infections caused by HIV-1 and HCV, and highlight

how mathematical modeling has substantially

advanced our knowledge about the life cycle of these

pathogens.

We will start by addressing the molecular processes

of viral entry, transport and packaging individually

(Viral entry, transport and packaging). Here, biophysi-

cal arguments play a major role regarding the dynam-

ics of these processes. In a second step, we will look at

the integrated process of viral replication within a cell

(The replication within – intracellular processes) using

population dynamic models. Going up in scale, we will

introduce current and previous approaches on analyz-

ing viral spread within tissues, and review results from

within-host viral dynamics analyses, and their implica-

tions for intracellular dynamics (Viral spread at tissue

levels – an integrated view). Our review will be con-

cluded by a discussion of the future promises and chal-

lenges for an integrative analysis of pathogen

replication and spread by novel experimental methods

and observations (Conclusions and outlook).

Viral entry, transport and packaging

Crossing barriers and getting ahead

As viruses infect a host cell, they have to cross differ-

ent barriers and exploit several host processes to get

themselves transported from one compartment to

another. Therefore, all viruses interact with cellular

membranes and with the cytoskeleton, the dynamic
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Fig. 1. Schematic of the different scales that are covered by processes of virus replication and spread. At the molecular and intracellular

scales the main processes are viral entry (1), viral replication (2) and viral export (3). At the scale of a cell population looking at the spread of

the pathogen, we distinguish between uninfected (green), infected (orange) and virus-producing infectious (red) cells. On the organismal

scale, we deal e.g., with the infection of an organ, such as the liver, and the spread among organs. Dependent on the scale, different

experimental techniques can provide quantitative information. Mathematical models help to integrate information from various scales and

experimental models within a systematic and quantitative framework.
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system of filamentous polymers that provides the large

scale organization of the cell [11,12]. Different viruses

have solved the challenge to move through the cell in

different ways. In this sense, they form a group of sys-

tems biologists who know how to exploit the cellular

transport system [13,14]. Through the recent advances

in super resolution microscopy and single molecule

imaging, it has now become possible to track the tra-

jectories of viruses as they enter a cell, move through

it and exit again [15,16]. A recent important step for-

ward is the introduction of the CRISPR/Cas-system,

which now makes it easier to mark the viral particles

with appropriate fluorescent or chemical tags. At the

same time, large advances have been made in marking

membranes and cytoskeletal structures during live cell

imaging, e.g., with silicon-rhodamine (SiR) derivatives

for actin and tubulin [17], and in dynamically control-

ling the state of membranes and cytoskeleton, e.g.,

with optogenetics [18].

A viral infection starts with a viral particle binding

to specific surface receptors of a host cell. The number

of bound receptors necessary for cell entry, i.e., the

stoichiometry of viral entry, varies strongly and is an

important determinant of viral infectivity [19–21].
Moreover, sometimes these receptors are not easily

accessible for the incoming virus and therefore it

employs specific search strategies to find them, like

e.g., murine leukemia virus (MLV) surfing along

filopodia to entry sites at their base [22]. Most viruses

cross the cell membrane by triggering endocytosis

(including assembly of clathrin cages or caveolae)

(Fig. 2), but some enveloped viruses simply fuse with

the membrane. In this case, however, they also have to

induce changes to the actin cortex underlying the

plasma membrane, which is the second major barrier

that has to be crossed at the cell periphery. Interest-

ingly, HIV-1 has been reported to be capable of entry

by both fusion and endocytosis [23]. Once inside the

cell, viruses (and more so the endosomes in which they

might be contained) are too large (size > 20 nm) as to

simply diffuse through the cytoplasm (mainly due to

obstruction by the actin cytoskeleton). Therefore, they

have to exploit active transport by the host cell to get

from the cell periphery where they enter to the region

in which they replicate, such as the perinuclear region

or the nucleus. For example, it has been shown by sin-

gle-particle tracking that HIV-1 recruits dynein motors

to be transported on the microtubule network toward

the microtubule organizing center (MTOC) [24]. Dur-

ing this journey or when arriving close to a nuclear

pore, the virus starts to uncoat and the genetic mate-

rial is released. After replication and expression, the

viral coat is assembled and the particle reverses its

course. For cell exit, viruses can bud from the mem-

brane, trigger exocytosis or simply lyse the host.

In general, the problem of virus arrival at the peri-

nuclear region is a first passage problem in the theory

of stochastic processes [25,26]. The most important

reason for stochasticity is the number and type of

motors that are recruited by the virus particle and the

irregular kind of motion, which ensues thereafter.

Other sources for stochasticity are the disordered orga-

nization of the cytoskeleton and the variability in the

entry process. Once the corresponding mathematical

equations have been formulated, they can be solved

with the methods from stochastic dynamics, e.g., for

the arrival at a small hole in the boundary [27]. Exper-

imentally, a well-established model system for intracel-

lular virus transport is a adeno-associated virus

(AAV), which is also the most common vector for

gene delivery and has been studied previously with sin-

gle-particle tracking [28,29]. Several theoretical studies

have addressed this system and established the typical

time scales for the different stages of virus transport

[26,30]. For example, it was reported that endocytosis

might take 10 min, while the transport to the nucleus

takes only 5 min and occurs with an efficiency of 90%

[26]. However, another study reported longer time

scales and a reduced efficiency [30].

Systems-level models for intracellular virus transport

are challenging because they have to integrate different

Fig. 2. Viral entry, exit, and transport strategies. To enter and exit,

viruses (blue particles) have to overcome two physical barriers at

the cell periphery: the plasma membrane (gray) and the actin

cortex (red) underneath the plasma membrane. Enveloped viruses

either enter via endocytosis (1) or membrane fusion (2). Once

inside the cell, viruses make use of the intracellular transport

system. By means of dynein motors (3) viruses are transported

along microtubules (green) toward the microtubule organizing

center (MTOC, crossed black cylinders). Newly assembled viruses

are transported along microtubules by kinesin motors (4) toward

the actin cortex, where they exit, e.g., via budding (5) or

exocytosis (6).
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specialized models each of which is already a challenge

by itself. The best example for this important point is

transport by multiple motors, which has been

described by a large range of different models [31,32].

It has been pointed out from theoretical considerations

that multiple motor transport is limited by stochastic

loss of the connection to the cytoskeletal track [33].

Moreover, it has been shown that recruitment of

motors that pull in different directions leads to a

tug-of-war situation with large jumps in the stochastic

trajectories [34]. Together, these effects lead to large vari-

ability in virus trajectories, as observed experimentally.

Virus entry through the plasma membrane has also

been investigated in large detail from the modeling

point of view [35,36]. As virus particles do not have

any metabolism, it is assumed that this process has to

proceed mainly by minimization of the total free

energy, similar to the cellular uptake of nanoparticles

[37]. The main driving force is assumed to result from

the binding energy of the virus particle to the cell sur-

face receptors, while the main resisting force is the

bending energy of the plasma membrane. It is shown

that for optimal particle sizes, indeed this physical pic-

ture can explain virus uptake. Similar considerations

apply for exit by budding from the membrane [38].

Viral capsid assembly

Historically, two key findings have demonstrated that

capsid assembly is strongly shaped by physical processes

[39]. First, experimental observations that some viruses,

such as the tobacco mosaic virus (TMV), can be assem-

bled in a test tube [40] indicated that capsid assembly

tends to be a physical process that does not consume

energy. Second, Crick and Watson observed that viruses

typically come as spheres or rods, because their shells

are made from many identical subunits [41]. This insight

was made more rigorous by Caspar and Klug through

their classification scheme for icosahedral viruses (which

constitute half of all known virus families) [42].

Physical considerations of viral capsid assembly do

not only help to understand the underlying principles

but they also demonstrate in which sense viruses are

capable of beating physical constraints. After assem-

bly, virus shells are much more stable than suggested

by thermodynamics, indicating a process of matura-

tion. A clear example is that of the HIV-1 capsid,

which changes its shape from spherical to cone-like

during maturation [43]. However, equilibrium consid-

erations based on dissociation constants do not predict

how capsid assembly proceeds dynamically, and how

the system avoids to get trapped in intermediate

assemblies. Moreover, it remains to be shown which

mechanisms have evolved to ensure capsid assembly in

the heterogeneous and crowded environment of the

host cell.

Experimentally, the dynamics of virus assembly was

monitored mainly with small angle light and X-ray scat-

tering [44]. However, these techniques can only give

averaged values for the typical size of the intermediates

as a function of time. In contrast, electron microscopy

(EM) gives very detailed insight into the sizes and

shapes of intermediates [45], but does not allow us to

follow the dynamics. Nuclear magnetic resonance pro-

vides a tool to perform structure analysis of capsid pro-

teins during capsid assembly, e.g., for HIV-1 [46]. Using

single molecule techniques [47] or mass spectrometry

one can investigate intermediate structures in the assem-

bly process, e.g., for HBV or norovirus [48]. However,

because each of these experimental approaches does

only provide a glimpse on the overall process, mathe-

matical models and computational simulations are

essential to gain a systems-wide understanding.

From a systems biology point of view, it is impor-

tant to develop methods that are able to simulate the

complete process of capsid assembly. A large range of

simulation approaches has been employed to study

capsid assembly, as recently reviewed by Hagan [7]. At

the current stage, no single approach is able to address

all questions of interest at once, and, thus, the situa-

tion is similar to the experimental one, in which each

new study provides a new piece for the overall puzzle.

The standard approach to model viral capsid assem-

bly is the use of molecular dynamics (MD) simulations

[47,49–51] including all relevant molecular interactions

(van der Waals interactions, hydrogen bridges, ionic

bridges, etc.) using software packages such as NAMD

[52] or GROMACS [53]. The molecular structures of

the assembling capsid proteins obtained by EM or X-

ray scattering are deposited in the VIPER database

[54]. MD-simulations allow the realistic implementa-

tion of protein–protein interactions [51,55], but come

with a high computational cost. Therefore so far, the

assembly process can only be studied over relative

short timescales (typically ~ 1 ls) not allowing much

statistical analysis.

There are several alternatives to all-atom MD-simu-

lations (Fig. 3A) that are more computer-time efficient

and therefore make it possible to simulate long time

courses, including reversible dynamics. Early MD-stu-

dies used coarse-grained interaction rules and thus

allowed one to simulate capsid assembly with a statis-

tical analysis of its intermediates (Fig. 3B) [47,49].

Alternatively, one can use such coarse-grained models

for Monte Carlo simulations (which sample only the

most important configurations according to a Boltz-
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mann distribution) [56] or Brownian dynamics (BD)

simulations (where the effect of the aqueous medium is

represented by stochastic noise) (Fig. 3C) [57].

BD-simulations become very efficient if only short-ran-

ged interactions between reaction patches are taken

into account [57,58]. On an even more coarse-grained

level, one can use stochastic simulations for the growth

of the lattice without continuous spatial degrees of

freedom [59–61]. If one focuses on equilibrium proper-

ties of assembly, thermodynamic models based on the

law of mass action can be used [62].

The most important insight that has emerged from

these studies is that for successful capsid assembly dis-

sociation events are as important as association events.

In other words, the strength of the binding interactions

between the capsomeres has to be intermediate [7].

Weak capsomere interactions do not allow for the for-

mation of large clusters, whereas strong capsomere

interactions foster the occurrence of stable intermedi-

ates that can neither assemble to full capsids nor decay

to smaller intermediates. As a result, the system is

kinetically trapped. A similar problem has to be solved

in the context of protein folding. An additional inter-

esting analogy to protein folding, which often is

assisted by chaperones, is that it has been observed for

many virus types that scaffold proteins assist kineti-

cally and thermodynamically in the capsid assembly

[63]. Recently, it has been argued that another impor-

tant mechanism to avoid kinetic trapping is the fact

that in practice new capsomeres are supplied with a

certain rate to the assembly process [58,61]. Another

interesting feature observed in the different modeling

approaches is the occurrence of a lag phase, which is

required for the system to prepare for the growth

phase by assembling the right mix of intermediates

[63]. These results in fact agree well with the classical

theory of nucleation and growth [64–66].

The replication within—intracellular
processes

Understanding the dynamics of viral infection and

spread on a cellular level requires the combined analy-

sis of the underlying processes, such as viral entry,

transport, replication, virus packaging and viral

export, assembled into one kinetic scheme. Population

dynamic models providing such a systematic analysis

need to cover the pathogen-specific intracellular life

cycle but face the challenge of balancing model com-

plexity and available data to provide reasonable con-

clusions on the pathogen dynamics.

Modeling the intracellular viral life cycle

One of the earliest models taking an integrative view

at the biochemical processes involved in intracellular

A

B

C

Fig. 3. Modeling virus capsid assembly with different simulation

techniques. (A) All-atom molecular dynamics (MD) simulation with

the NAMD simulation software of a HIV-1 capsid consisting of

64 million atoms. The capsid comprises 216 hexamers (blue,

orange) and 12 pentamers (green). The magnification shows a

trimer interface with atomistic details. Left and right subfigure

reprinted by permission from Macmillan Publishers Ltd: Nature

[51], © (2013). (B) Complete assembly of a T-1 capsid consisting of

60 capsomeres, which form 12 pentamers and 20 hexamers, in a

coarse-grained MD-simulation. Single capsomeres (yellow) are

reduced in size to visualize bonds (green) between capsomeres.

The magnification shows the model of a trapezoidal capsomere

with reduced level of detail. Large spheres represent shape

whereas small spheres represent interaction sites. Reprinted left

and right subfigure with permission from [49] © (2004) by the

American Physical Society. (C) Complete assembly of a T-1 capsid

in a Brownian Dynamics simulation with patchy particles. The

magnification shows the model of a single capsomere (red) with

three reactive patches (white). Courtesy of Heinrich Klein.
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viral integration and gene expression during infection

by HIV-1 was developed by Hammond [67] roughly

12 years after the discovery of the virus. They

described the central intracellular processes of viral

transcription, splicing and translation by a system of

coupled ordinary differential equations (ODEs)

involving 19 parameters determining the dynamics.

This study was followed by an even more detailed

model covering the whole intracellular HIV-1 life

cycle from reverse transcription over integration and

translation to viral assembly and export [68]. Both

studies were able to provide a qualitative prediction

of the impact of certain processes on the overall

dynamics and found sets of parameters that were able

to reproduce in vitro data of HIV-1 DNA and RNA

synthesis [69]. These models and other studies [70]

represent a first attempt to quantitate intracellular

replication processes in detail. However, due to the

limited amount of data and the complexity of their

models, the expressiveness of the estimated rate

constants quantitating the biochemical processes was

limited.

In comparison to HIV-1, more attempts to quanti-

tate intracellular processes using dynamical models

have been made for hepatitis C virus (HCV). The

development of the HCV replicon system that

allowed studying HCV replication in vitro [71]

improved our understanding of relevant steps within

the life cycle of this particular virus and also fostered

the development of mathematical models quantitating

these intracellular processes. Dahari et al. [72] devel-

oped a first detailed model on the subgenomic pro-

cesses involved in HCV replication. In contrast to

Reddy and Yin [68], who separated between the

nucleus and the cytoplasm to model HIV infection,

Dahari et al. [72] modeled processes in the vesicular

membrane structures (VSM) and the cytoplasm,

assuming that HCV synthesis occurs in VSM and

that replication involved a double-stranded RNA

intermediate. Based on a qualitative comparison of

their model to in vitro data [71,73], they found that

an observed ~ 10 : 1 ratio between plus- to minus-

strand RNA can be explained by a ~ 200-fold higher

affinity of HCV NS5B polymerase-containing replica-

tion complexes to minus-strand RNA, and that the

number of transfected HCV plus-strand RNAs chan-

ged the time to reach a steady state but did not

affect its level. The model by Dahari et al. [72] pro-

vided a first important step toward understanding

HCV replication mechanisms by putting known and

hypothesized intracellular processes into a quantita-

tive framework. Applying the same model to viral

RNA and protein translation measurements in Huh-7

cell cultures, Binder et al. [74] realized that the model

needed to be extended to capture the initial dynamics

of HCV RNA replication upon early transfection of

viral genomes into ‘na€ıve’ cells. Considering an addi-

tional processing step for transfected RNA and cis-

triggered formation of the replication compartment

[74], the model was able to reproduce the dynamics

observed in the experimental data. Furthermore, they

identified a protective replication compartment as

essential for sustained RNA replication. By conduct-

ing a sensitivity analysis of the model-parameters,

they were able to show that if the amount of viral

and/or host protein inside the replication compart-

ment is limited, the VSMs are protecting but also

attenuating RNA replication, verifying their model

predictions on expected behavior of viral mutants by

newly performed experiments.

The effect of treatment

As shown by Binder et al. [74], mathematical models

that systematically describe the key determinants of

intracellular viral replication can help to identify sen-

sitive steps of the viral life cycle and, hence, appropri-

ate drug targets for effective intervention. Similarly,

mathematical models can be used to reveal treatment

effects by identifying the actual mechanism of action

of specific drug therapies or by quantitating their

effect. For example, Guo et al. [75] estimated the

half-life of viral HCV RNA in vitro under treatment

with alpha interferon (IFN-a) to be approximately

12 h. In another study, Dahari et al. [76] found a

bi-phasic decline in intracellular RNA levels in HCV-

infected cells treated with IFN-a. Based on their ana-

lysis, they concluded that the viral dynamics observed

during in vitro experiments under IFN-treatment is

not solely due to an enhanced degradation of viral

RNA as otherwise the natural half-life of replicons

would have to be several days instead of hours. They

found that IFN-a primarily acts by reducing RNA

production with an additional effect on RNA degra-

dation for doses larger than 250 U�mL�1 IFN-a. In

comparison to Guo et al. [75], their estimated half-life

of intracellular genotype 1b subgenomic replicon

RNA was between 16–19 h. However, Ivanisenko

et al. [77] showed that the observed bi-phasic RNA

decline can also be explained by the accumulation of

drug resistant mutants considering stochastic viral

mutation and selection in the previous subgenomic

model [72]. Two extensive reviews about viral kinetic

modeling in the context of treatment with a specific

focus on HCV and influenza virus can be found in

[78] and [6].
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Going live—studying viral replication from

clinical data

While in vitro experiments provide the opportunity to

obtain intracellular measurements in predefined and

well-manipulated cell populations, inferring and quan-

titating intracellular processes from clinical data is

much more challenging. Measurements are usually lim-

ited to the dynamics of the viral load in plasma or

serum of a patient over time. Convolution of con-

nected intracellular processes into single parameters is

needed to make quantitative inferences on viral repli-

cation.

The standard model of viral dynamics (SMV) [79] is

a kinetic model describing the coupled time course of

different populations (see Box 1 and Fig. 4). In this

model, the intracellular processes of transcription,

assembly and export are combined in the viral produc-

tion rate, q, i.e., the number of viral particles produced

by one productively infected cell over time. Applying

this model and various extensions thereof to viral load

data from infected patients under treatment provided

important insights into HIV-1 and HCV replication

dynamics. Perelson et al. [2] and Wei et al. [80] were

the first to show that HIV-1 replicated extensively dur-

ing the chronic infection phase. They estimated an

average total HIV-1 production per patient of

10.3 9 109 virions per day, which was substantially

higher than previous estimates, and a viral half-life in

plasma of t1/2 = 0.24 days [2]. Analogously, the viral

half-life of HCV was estimated to be t1/2 = 2.7 h

(range 1.5–4.6 h) with a total production of

1.28 9 1012 virions per day per patient (standard devi-

ation: 4.98 9 1011) [81] (Table 1). For HIV-1, the

model was able to explain the short-term dynamics of

the viral load after initiation of antiretroviral treat-

ment (ART) with reverse transcriptase inhibitors that

block the ability of HIV-1 to infect other cells, and

protease inhibitors that cause the production of nonin-

fectious viral particles [2]. The long-term dynamics,

which the model fell short to capture, could be

explained by additional long-lived infected cell popula-

tions, such as resting memory CD4+ T cells, with

slower rates of viral turnover [82].

Several extensions to the standard model have been

made to account for additional processes, such as

intracellular delay [83,84], multiple infection of target

cells [85], and viral mutations [86–88]. Some of the

model extensions including more sophisticated approx-

imations of the intracellular replication cycle [86,89]

allowed a theoretical analysis of expected infection

dynamics and disease progression while not being

appropriate to quantitate actual processes. These

models helped to identify conditions under which drug

resistant mutants arise [84,86,89], and identified appro-

priate targets for drug treatment [84]. Further exten-

sions to the standard model allowed the analysis and

Box 1. The standard model of viral dynamics considers

the change in the density of susceptible target cells (T),

infected cells (I) and the virus load (V) over time. Target

cells enter the system at a continuous rate k and have an

average lifetime of 1/day. Target cells become infected

at a rate b proportional to the concentration of free

virions, and infected cells die with rate d. Virions are

produced by infected cells at a constant rate q and are

cleared from the system with a viral clearance rate c.

The system of ordinary differential equations describing

the dynamics is shown in the following:

dT=dt ¼ k� dT� bVT

dI=dt ¼ bVT� dI

dV=dt ¼ qI� cV

The model assumes that viral growth is confined by tar-

get cell limitation, and that target cells and virions are

well-mixed. Intracellular processes, such as viral tran-

scription, assembly and export are convoluted in single,

time-constant rates, as e.g., the viral production rate q.
There have been various extensions to the standard

model of viral dynamics, such as the consideration of

an eclipse phase by distinguishing between nonproduc-

tively and productively infected cells (Fig. 4 and [83]),

or the consideration of treatment [6]. Parameters charac-

terizing viral replication and turn over can be estimated

by fitting the model, or adaptations thereof, to viral

load data [79]. The plot shows the typical time course

for the early phase of an HIV-1 infection predicted with

parameter values as given in Table 1.
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quantitation of intracellular processes in more detail.

For example, one accounted for the so-called eclipse

phase, i.e., the time for integration and translation of

the virus, before actual virus production can be

observed by distinguishing between nonproductively

and productively infected, i.e., infectious, cells (Fig. 4)

[90]. Other models considered time-dependent rates for

viral replication, production and clearance, e.g.,

assuming that viral production depends on the time a

cell has been infected [83,91,92]. Using such age-struc-

tured models, it was shown that observed viral pro-

gression dynamics of HIV-1 infected patients [2] are

consistent with the assumption of an exponential

increase in viral production with the age of infection

of a cell [83], which was also suggested for other

pathogens [93,94]. Accounting for time-dependency of

intracellular processes, the lifespan of HIV-1 infected

cells might be even shorter than previous estimates of

1–2 days (Table 1). However, the actual turnover of

HIV-1 within a patient was independent of the kinetic

profile of virus production [83,91]. By an even more

detailed age-structured multiscale model also consider-

ing the level of intracellular viral RNA [5,84] the

actual mechanism of daclatasvir, i.e., a direct-acting

antiviral agent against HCV, on HCV virus dynamics

could be determined. With their analysis, Guedj et al.

[5] suggested that daclatasvir mediates its antiviral

effect by blocking viral RNA synthesis and inhibiting

virion assembly/secretion with a mean effectiveness of

> 99%. In addition, they were able to provide a more

T
Uninfected

I2
infectious

I1
Infected

ρ

β

V
Virions

k

λ

δ

d

Viral entry

Viral replication
 + exit

Fig. 4. The extended standard model of viral dynamics

distinguishing between the concentrations of uninfected (T, green),

infected (I1, orange) and infectious (I2, red) cells, as well as of the

viral load (V). Individual subprocesses, such as viral entry or viral

replication and export are convoluted within the rates of viral

transmission, b, or the viral production rate, q, respectively (see

also Box 1 and Table 1). Estimates for these rates can be

compared to results from analyses of more detailed models, as

e.g., for subgenomic viral replication on in vitro data.

Table 1. Estimated parameters for the replication and spread of HIV and HCV obtained from the combination of mathematical modeling and

experimental and clinical data. Sometimes, obtained quantities can vary over orders of magnitude due to experimental systems and

mathematical models used.

Description Parameter Unit Value Data Ref.

HIV

Infection rate b (TCID_50/ml)�1 day�1 (SHIV) 4.95 [2.35�9.59] (910�5) In vitro [125]

Death rate of infected cells d day�1 0.48�1.36 � 0.16 In vivo [2,83]

1.18 [0.85�1.26] In vitro [125]

Duration of eclipse phase 1/k h ~ 2–18 In vivo [83]

Viral production rate q Virions cell�1 day�1 (SIV) ~ 0.7–3.4 (9103) In vivo [93,114]

Virions cell�1 day�1 (SIV) 5.0 [1.3–12.0] (9104) In vivo [124]

Total production rate q*I Virions day�1 (HIV) 10.3 � 11.7 (9109) In vivo [2,4]

Viral clearance rate c day�1 3.07 � 0.64 In vivo [2]

day�1 ~ 23.0 In vivo [4]

day�1 (SIV) 245�331 In vivo [115]

HCV

Death rate of infected cells d day�1 0.14 � 0.13 In vivo [81]

1.06 � 0.25 In vivo [5]

Viral production rate

Total production rate q*I Virions day�1 1.28 � 0.50 (91012) In vivo [81]

Intracellular model

Viral export rate q RNA+ day�1 8.18 � 1.8 In vivo [5]

Viral RNA degradation rate l day�1 1.46 � 0.36 In vivo [5]

day�1 ~ 1.4 In vitro [75]

Viral clearance rate c day�1 6.2 � 1.8 In vivo [81]

22.3 � 1.7 In vivo [5]
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detailed estimate for serum HCV half-life of 45 min,

compared to 2.7 h estimated previously [81].

In summary, the previous examples show how the

combination of experimental and clinical data with

appropriate mathematical models allows us to quantify

key processes of intracellular viral replication even

when only measuring at the cellular level.

Viral spread at tissue levels—an
integrated view

The standard model of viral dynamics (see Box 1) rep-

resents a basic framework to analyze the dynamics of

viral infections while spreading through a population

of cells. In combination with clinical and experimental

data, this model was able to provide quantitative

insights into the dynamics of viral infections as out-

lined before and reviewed in [79]. Besides the convolu-

tion of intracellular processes within single parameters,

one main characteristic of the SMV is the assumption

of well-mixed homogeneous populations of target cells

and viral particles. This allows us to quantitate aver-

age infection dynamics at the level of the organism.

However, such a model neither accounts for spatial

aspects of viral spread nor for heterogeneous cell pop-

ulations, such as cells in different organs, which might

differ in their infection dynamics. In case these aspects

are of particular interest for the questions addressed,

other approaches are needed to analyze the particular

dynamics.

Cell-to-cell transmission

As experimental methods improved, it became obvious

that many pathogens, such as HIV-1 and HCV, could

not only infect cells by cell-free virions, but that infec-

tion is also transmitted via direct cell-to-cell contacts

[1]. Different mechanisms of this direct cell-to-cell

transmission of viral material from infected to unin-

fected neighbors could be observed, including viral

synapses and transport via tight junctions [1]. While

the exact contribution of cell-free and cell-to-cell trans-

mission to infection in vivo is still undetermined for

several pathogens, such as HIV-1 and HCV, it

becomes more and more evident that cell-to-cell trans-

mission plays an important, if not a major role for

viral spread [95,96]. Therefore, accounting for these

two modes of viral transmission when analyzing and

quantitating viral replication dynamics becomes impor-

tant, especially when studying infection dynamics

within solid tissues. It was shown theoretically that

neglecting spatial aspects can lead to distinct dynamics

[97] and to the underestimation of the true infection

dynamics [98]. A recent study incorporated both

modes of transmission within a dynamic model allow-

ing for transmission by either infected cells or free viri-

ons [99]. With this model, they were able to

recapitulate general disease dynamics in HIV-1

infected patients and predicted the effect of short-pulse

ART. They found that cell-to-cell spread is an impor-

tant feature to establish infection, and a relevant drug

target to improve disease outcome [99]. Cell-to-cell

and cell-free spreading complement each other and

allow effective spread of the infection. Using a similar

model, Iwami et al. [100] estimated that cell-to-cell

transmission accounts for roughly 60% of the infection

within in vitro HIV-1 cell cultures. They also estimated

a ~ 4-fold higher fitness of this mode of transmission

compared to cell-free spread, and a 0.9-fold shorter

viral generation time, emphasizing the enhanced

efficacy. Other studies even estimated cell-to-cell trans-

mission to be 100–18 000 times more effective than

cell-free transmission [96,101].

While the previously introduced models [99,100]

seem to be appropriate for analyzing data describing

large scale dynamics and having motile, diffusive cell

populations, they are inappropriate when one is inter-

ested in local spreading behavior and/or in pathogens

spreading within solid tissues, such as HCV within the

liver. Within solid tissue environments, spread by cell-

to-cell transmission only allows infection of neighbor-

ing cells, thus can lead to foci of infected cells and the

infection moving like a traveling wave through the tis-

sue as shown by computational models [102,103].

Recent advances in combining visualization tech-

niques and viral quantitation methods provide the

necessary data to obtain quantitative information of

the processes involved in cell-to-cell transmission [10].

Analyzing spatial patterns of infected cells obtained

by laser capture microdissection within liver biopsy

samples of HCV-infected patients, it was found that

HCV tends to occur in small clusters containing 4–50
infected cells [10,104]. This suggests that HCV effec-

tively exploits both modes of transmission with clus-

ters being seeded by diffusing virions followed by

preferential local spread, such as cell-to-cell transmis-

sion [10,104]. Combining spatial information and

intracellular viral load using a model for intracellular

viral replication, it was estimated that HCV-infected

cells could have a fast turnover with cells in a cluster

being infected for less than a week [104]. However,

this estimate neglected possible immune modulatory

effects inhibiting viral replication and therefore serves

as a lower bound. Analyzing in vitro HCV spread

assays, Graw et al. [105] estimated that HCV infected

Huh 7.5 cells infect other cells by cell-to-cell transmis-
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sion with a rate of ~ 3–6 x 10�2 h�1. In addition,

they found a hierarchy of efficacies when blocking

specific HCV entry receptors. Comparable estimates

for HCV cell-free infection rates or combined infec-

tion rates are lacking as most quantitative informa-

tion has been obtained from patients under antiviral

treatment [81].

The mode of transmission might also influence intra-

cellular replication and evolutionary dynamics at the

tissue level. Cell-to-cell transmission offers the possibil-

ity to introduce many viral genomes into neighboring

cells [1]. Del Portillo et al. [106] showed that cell-to-

cell infection of target cells with HIV in vitro does not

follow a Poisson distribution in contrast to cell-free

infection and concluded that the cell-to-cell infection

process can transmit a variable number of genomes to

the target cells. As shown by integrative computational

simulations and experimental data for a plant virus

[107], stochastic variation in the number of genomes

starting viral replication per cell and heterogeneity in

the accumulation of viral progenies among strains

allows rapid adaptation of the virus to the environ-

ment, although viral replication is started by less than

20 founder genomes. Mathematical models also predict

that the transmission of variable numbers of viral par-

ticles by cell-to-cell transmission influences the efficacy

of viral replication and the susceptibility of infection

to antiviral drugs [108,109].

Based on previous methods applied to problems in

ecology and evolution, there have been other modeling

attempts to study the spatial spread of an infection

within a host organism. These different methods

include partial differential equations [110] and cell-cen-

tered or agent-based models [102,111,112]. Agent-

based models simulate ensembles of individual cells in

time and space. They are able to represent detailed

information on internal cell states and contributed to

our understanding of disease pathology and immunol-

ogy [111]. These models can also address the spatial

interaction of cells in various levels of detail, e.g.,

modeling cells as cubes or spheres on a lattice (e.g.,

cellular automata [102,111]), or modeling cells com-

prising several lattice sites and changing size as a func-

tion of mechanical and adhesive properties (e.g.,

cellular Potts model [113]). Because of their complexity

and their dependence on a large set of unknown

parameters, these models have been mostly used to

analyze the qualitative behavior of viral spread and

the dependence on specific parameters [102] and mech-

anisms [112]. As experimental methods improve and

more quantitative data become available, these sophis-

ticated methods can be used to obtain quantitative

estimates of the spatial aspects of viral dynamics.

Heterogeneous cell populations

Another important feature not represented by the stan-

dard model of viral dynamics is the existence of

heterogeneous cell populations that vary in their repli-

cation kinetics and behavior. Compartmentalization

has been used to obtain organ-specific replication and

clearance rates of Simian immunodeficiency virus

(SIV), the monkey equivalent of HIV [114,115], an

important aspect when evaluating the efficacy of drugs

with organ-specific pharmacokinetics. Assuming viral

burst sizes of 5 9 104 virions [96], they estimated that

the clearance rates of SIV in lymphoid organs should

be fast (around c = 50–500 day�1). In contrast, previ-

ous estimates of viral clearance rates in the blood,

which are substantially lower, most likely represent

virus efflux rates from the blood into other organs.

With a similar quantitative argument, Lay et al. [116]

addressed the question if the gut is the major source of

viral replication during early SIV infection. They

showed that although cells in the intestinal mucosa are

highly susceptible to infection, they are not the main

contributors to plasma viral load. These examples indi-

cate how additional information and mathematical

modeling helps to disentangle previous estimates aver-

aging different dynamics, and how it improves inter-

pretation of measured quantities on the level of an

organism.

Conclusions and outlook

The combination of quantitative experimental and

clinical data with mathematical models and computer

simulations has substantially advanced our under-

standing of the dynamics of viral replication and

spread. In addition to HIV-1 and HCV, similar analy-

ses as described above have been used to study the

infection dynamics of other human and animal viruses,

including influenza A [117–119], hepatitis B virus [120–
122] and SIV [123–125]. Furthermore, these techniques

can also be adapted to the study of multicellular

pathogens, such as the malaria causing parasite Plas-

modium falciparium [126].

Analyzing the relevant intra- and intercellular pro-

cesses with biophysical concepts and methods as well

as with population dynamic arguments allows us to

combine information across multiple scales in space

and time. The rapid pace of current experimental

advances promises to soon fill many more gaps in our

understanding of viral dynamics. Improved imaging

techniques from single molecule tracking to two-

photon microscopy in tissue, as well as 3D cell and tis-

sue cultures of increased complexity will advance the
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possibility to observe and quantitate dynamical pro-

cesses in the required detail, and to reveal potential

targets for therapeutic interventions (reviewed in [127]

and [128]). In addition, they allow studying the com-

bined interaction of pathogen replication and host

responses [127], an additional level of complexity that

has also been considered by mathematical models [79],

but was not addressed in this review. Besides providing

additional information on infection dynamics, the

novel types of data will also represent additional chal-

lenges for mathematical modeling, i.e., to incorporate

them within a systematic and quantitative framework.

On the long run, however, this effort will pay off with

a systems-level understanding that can then quickly be

adapted for new situations of biological and medical

interest.
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