
JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 18 8 NOVEMBER 2004
Stochastic dynamics of adhesion clusters under shared constant force
and with rebinding

Thorsten Erdmann and Ulrich S. Schwarz
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Single receptor-ligand bonds have finite lifetimes, so that biological systems can dynamically react
to changes in their environment. In cell adhesion, adhesion bonds usually act cooperatively in
adhesion clusters. Outside the cellular context, adhesion clusters can be probed quantitatively by
attaching receptors and ligands to opposing surfaces. Here we present a detailed theoretical analysis
of the stochastic dynamics of a cluster of parallel bonds under shared constant loading and with
rebinding. Analytical solutions for the appropriate one-step master equation are presented for special
cases, while the general case is treated with exact stochastic simulations. If the completely
dissociated state is modeled as an absorbing boundary, mean cluster lifetime is finite and can be
calculated exactly. We also present a detailed analysis of fluctuation effects and discuss various
approximations to the full stochastic description. ©2004 American Institute of Physics.
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I. INTRODUCTION

Cells in a multicellular organism adhere to each oth
and to the extracellular matrix through a large variety
different receptor-ligand bonds.1 Although not probed this
way in traditional affinity experiments, adhesion bonds
physiological situations usually have to function under m
chanical load. For example, cell-matrix adhesion in conn
tive tissue is mainly provided by focal adhesions, which
based on transmembrane receptors from the integrin fa
connecting the actin cytoskeleton to the extracellular mat
Focal adhesions of fibroblasts, the main cell type in conn
tive tissue, are usually loaded by actomyosin contractility
particular, during tissue maintenance and wound healing
important class of adhesion contacts in endothelial sheets
adherens junctions, which are based on transmembran
ceptors from the cadherin family connecting the actin
toskeletons of different cells. Endothelial tissue often is s
jected to considerable external stress and strain, for exam
in lung and blood capillaries. Leukocytes circulating with t
blood flow tether to and roll on vessel walls through tran
membrane receptors from the selectin family connecting
actin cytoskeleton to carbohydrate ligands on the oppos
surface. Here contact dissociation is accelerated due to
shear flow pulling on the cells. In general, there are ma
more physiological conditions in which adhesion clusters
subject to forces arising from intracellular or extracellu
processes, including cell motility, development, and ang
genesis.

During recent years, the behavior of different adhes
bonds under force has been investigated extensively on
level of single molecules by dynamic force spectroscopy2–4

This field has been pioneered by AFM experiments by G
and co-workers5 and later put onto a firm theoretical basis
Evans and Ritchie.6 Because bond rupture can be modeled
the framework of Kramers theory as thermally assisted
cape over one or several transition state barriers, b
8990021-9606/2004/121(18)/8997/21/$22.00
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strength is a dynamic quantity which depends on load
rate. Experimentally, this prediction has been impressiv
confirmed for different molecular systems.7–10 Dynamic
force spectroscopy has been implemented with different
perimental techniques, including atomic force microscop7

laser optical tweezers,8 and the biomembrane force probe.9,10

The behavior of molecular bonds under force can also
probed in parallel plate flow chambers. Here usually
loading process is much faster than bond dissociation, wh
therefore effectively occurs under constant load.11,12By now,
dynamic force spectroscopy has shown that adhesion bo
feature a much more complicated behavior under force t
suggested by the traditional affinity experiments
solution.13 Using concepts from the theory of stochas
dynamics,6,14–17 a binding energy landscape can be reco
structed from the experimental data. During recent years,
has been accomplished for many different adhesion rec
tors, including integrins,18,19 cadherins,20 and selectins.21,22

However, while dynamic force spectroscopy up to now h
mainly been applied to single bonds, in physiological s
tings adhesion receptors usually operate cooperatively wi
clusters.23 Therefore the physical description of single adh
sion bonds under force now has to be extended to cluste
adhesion bonds under force. Clusters also open up the
sibility of rebinding of broken bonds, which is known to b
essential to achieve physiological lifetimes of adhesion cl
ters. For single bonds, rebinding usually cannot be stud
due to elastic recoil of the force transducer after bo
rupture.2 In contrast, for adhesion clusters open bonds c
rebind as long as other bonds are closed, thus keeping
spatial proximity required for rebinding. Only if the com
pletely dissociated state is reached, rebinding becomes
possible and the cluster disintegrates as a whole.

Although it is clear that force leads to accelerated clus
dissociation, it is usually not known how it is distribute
over the different closed bonds in different situations
7 © 2004 American Institute of Physics
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interest. In many cases, most prominently in rolling ad
sion, only few of the different bonds are loaded to an app
ciable degree, thus dissociation occurs in a pee
fashion.24–26 However, due to geometrical reasons, even
this case there will be a subset of bonds which are loade
a similar extend. In the same vein, the loading situation
focal adhesions can also be expected to be rather com
cated. For the case of homogeneous loading, one further
to distinguish between loading through soft and s
springs.27 In the latter case, all bonds are equivalent an
mean field description can be applied.28 In the first case,
force is shared equally between all closed bonds and
coupling between the different bonds in the adhesion clu
is nontrivial. Recently, dynamic force spectroscopy has b
applied to this case for the first time.29 Here, a vesicle func-
tionalized with appropriate ligands is sucked into a micro
pette and pressed onto a cell. On retraction, the vesicl
peeled off from the outside to the inside of the contact
gion. However, due to rotational symmetry around the m
cropipette axis, all bonds in a ring around the periphery
the contact area share the homogeneous loading.

The equilibrium properties of adhesion clusters has b
theoretically studied before,23,30–32mainly in reference to ex-
periments on vesicle adhesion through specific liga
receptor pairs.33–35 For the nonequilibrium dissociation o
adhesion clusters under force, a deterministic model has b
introduced in a seminal paper by Bell.23 This model has been
mainly used to study more specific problems, for examp
leukocyte rolling in shear flow.36 Recently, the deterministic
Bell model has also been extended to treat linear loadin
a cluster of adhesion bonds, which usually is applied in
namic force spectroscopy.27,28 A stochastic version of the
Bell model has been introduced, but studied only in the la
system limit and for specific parameter values.37 Later the
stochastic model has been treated with reliability theory
the special case of vanishing rebinding.38 Other special case
of the stochastic model have been treated in order to eval
specific experiments, for example the binding probability b
tween ligands and receptors on opposing surfaces as a
tion of contact time.34,39

In this paper, we use the stochastic version of the B
model to study the case of constant shared loading in c
prehensive detail. In contrast to applications to specific
periments, we focus on generic features of the stocha
dynamics of a cluster of parallel bonds under shared cons
loading and with rebinding. A short report on our main r
sults has been given before.40 As shown elsewhere, the sam
stochastic framework as used here for the case of cons
loading can also be used to study the case of linear loadin41

Compared with the deterministic model, the stochastic mo
has several advantages: first, only the stochastic mode
lows to treat the experimental situation that rebinding
comes impossible once the completely dissociated state
been reached. Second, it includes fluctuations and nonli
effects, which are important for small adhesion cluste
Third, using the well-developed theory on master equatio
the stochastic model allows to derive analytical results
cluster lifetime as a function of cluster size, rebinding ra
Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP
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and force, which are very helpful in evaluating adhesion
periments, including rolling adhesion.42

In the following, we consider the situation in which
certain number of bound adhesion receptors has been
tered and connected to some force-bearing structure. We
ask how strongly the force accelerates dissociation, an
which sense dissociation can be balanced by rebinding. S
we are concerned with generic features of contact stabi
our model does not consider spatial or concentration deg
of freedom. In Sec. II, we define the stochastic variant of
deterministic Bell model, which has three dimensionless
rameters. Next we introduce the appropriate one-step ma
equation describing the stochastic dynamics of an adhe
cluster under shared constant force and with rebinding.
also explain how this master equation can be solved num
cally with the Gillespie algorithm for exact stochastic sim
lations. In the two following sections, we discuss two spec
cases of the model in which considerable analytical progr
can be made. In each case, we first discuss determin
results, and then turn to the full stochastic model. In Sec.
we discuss the case of vanishing rebinding. In this case,
ken bonds cannot be reformed and the number of clo
bonds in the adhesion clusters decreases in a unique
quence of rupture events. This can be used to constru
solution for the master equation and to derive an expres
for the average lifetime of an adhesion clusters. In Sec.
we discuss the case of vanishing force. In this case, we
with a linear problem and analytical solutions of the mas
equation can be derived for a reflecting boundary. They
be used in turn to derive an approximation for the case w
an absorbing boundary. Cluster lifetime can be calcula
exactly as mean first passage time using Laplace techniq
In Sec. V we consider the general case with finite rebind
and finite force. Although full analytical solutions are on
feasible in the case of small clusters, cluster lifetime can
calculated exactly for arbitrary cluster size. For larger clu
ters, full solutions of the master equation are obtained
exact stochastic simulations. Simulations are also essenti
characterize single unbinding trajecories and to underst
the role of fluctuations. We close in Sec. VI with a discuss
of experimental issues.

II. MASTER EQUATION

A. Derivation

The rupture of molecular bonds can be modeled in
framework of Kramers theory as thermally activated esc
over a transition state barrier.6,14,15 Assuming an infinitely
sharp transition state barrier leads to the so-calledBell equa-
tion for the single molecule dissociation rate as a function
force, k5k0eF/Fb.23 Here the force scaleFb5kBT/xb is set
by thermal energykBT and the distancexb between the po-
tential minimum and the transition state barrier along
reaction coordinate of rupture. For a typical valuexb.1 nm
and physiological temperatureT.300 K, we find the typical
force scaleFb.4 pN. Physiological loading has indeed be
found to be in the pN-range, both for cell-matr
adhesion43–45and rolling adhesion.11,46Values fork0 andFb

have been measured during recent years with dynamic f
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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spectroscopy for different receptor-ligand systems, includ
integrins,18,19cadherins,20 and selectins.21,22While the disso-
ciation ratek depends mainly on the internal structure of
bond, the association ratekon includes the formation of an
encouter complex and therefore depends on the details o
situation under consideration. It is very difficult to determi
kon experimentally, especially in the case of cell adhesi
when the interacting molecules are anchored to oppo
surfaces.34,39,47 In order to focus on the generic features
cluster stability, here we assume thatkon is a force-
independent constant, in accordance with earlier theore
work.23,27,36,37Future modeling might refine this assumptio
considering for example the effect of ligand-receptor sepa
tion controlled by polymeric tethers.48–50

For the following, it is convenient to use dimensionle
quantities. We define dimensionless timet5k0t, dimension-
less force f 5F/Fb and dimensionless rebinding rateg
5kon/k0 . The dimensionless single molecule dissociat
rate isk/k05ef . We consider a cluster with a constant num
ber of Nt bonds, which initially are all closed and then u
dergo rupture and rebinding according to the appropr
rates~Fig. 1!. Since bond rupture is a discrete process,
stochastic dynamics of the bond cluster can be describe
the one-step master equation51

dpi

dt
5r i 11pi 111gi 21pi 212@r i1gi #pi , ~1!

wherepi(t) is the probability thati bonds are closed at tim
t. Here ther i and gi are the reverse and forward rates b
tween the possible statesi (0< i<Nt). They follow from
dissociation and association rates of single bonds as

r i5r ~ i !5 ief / i ~2a!

and

gi5g~ i !5g~Nt2 i !. ~2b!

Our model has three parameters, namely, cluster sizeNt ,
rebinding rateg, and forcef . Sincei>0 should be guaran
teed at any time,r 050 has to be set forf .0, in addition to
the definitions in Eq.~2!. Moreover, Eq.~2! implies g0.0,
that is, after rupture of the last closed bond new bonds
allowed to form. This corresponds to a reflecting boundary

FIG. 1. Schematic representation of an adhesion cluster under con
shared force: there areNt55 receptor-ligand pairs,i 53 of which are closed
and equally share the loadf . A closed bond ruptures with the dissociatio
ratek5k0ef / i . TheNt2 i 52 open bonds rebind with the force-independe
association ratekon . Our model has three parameters: cluster sizeNt , di-
mensionless rebinding rateg5kon /k0 and dimensionless forcef .
Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP
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the master equation ati 50. As explained above, in biologi
cal and biomimetic situations rebinding of the complete
dissociated state is usually prevented by elastic recoil of
transducer. Therefore in the following we setg050 in order
to model an absorbing boundary ati 50. Because the value
for r 0 andg0 do not follow the general form given in Eq.~2!,
the boundary ati 50 is anartificial boundary. Concerning
the upper end of the set of states ati 5Nt , the form gNt

50 represents a reflecting boundary and guaranteesi<Nt .
Thus, the upper boundary is anatural boundary of the maste
equation.

A quantity of large interest is the average number
closed bondsN(t)5^ i &5( i 51

Nt ipi(t). From the master
equation Eq.~1! one can derive52

dN

dt
5(

i 50

Nt

i
dpi

dt
52^r ~ i !&1^g~ i !&. ~3!

If r ( i ) and g( i ) were both linear functions ini , Eq. ~3!
would become an ordinary differential equation forN. This
suggests to study the deterministic equation

dN

dt
52r ~^ i &!1g~^ i &!52Nef /N1g~Nt2N! ~4!

as has been done by Bell.23 Below we will see that the analy
sis of this equation gives valuable insight into the gene
features of our model. However, it is important to note th
for f .0, the reverse rater ( i ) in Eq. ~2! is nonlinear ini and
the average in Eq.~3! cannot be taken. Instead lower mo
ments are related to higher moments and one arrives
complicated hierarchy of coupled differential equations. T
solution of the deterministic equation Eq.~4! will therefore
deviate from the average number of closed bonds obta
from the solution of the master equation Eq.~1!. The same
problem arises for the higher moments. For example, for
variancesN

2 5^ i 2&2^ i &2 one can derive52

dsN
2

dt
5^g~ i !1r ~ i !&12^~ i 2^ i &!@g~ i !2r ~ i !#&, ~5!

where again the average cannot be taken. As an approxim
treatment, one can expandr ( i ) in a Taylor series around th
average fori , ^ i &5N.51 Restricting the expansion to secon
order, thus assuming a Gaussian distribution, leads to
following equations:

dN

dt
52Nef /N1g~Nt2N!2sN

2 ef /N
f 2

2N3 , ~6!

dsN
2

dt
5Nef /N1g~Nt2N!

2sN
2 Fef /NS 22

2 f

N
2

f 2

2N3D1gG . ~7!

In principle, these equations can be solved by numerical
tegration. However, it is much more instructive to consid
the original master equation. Moreover, the determinis
equation Eq.~4! and its improved version Eq.~6! cannot
describe the effect of an absorbing boundary ati 50. In order
to consider this experimentally relevant case, one has

ant
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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study the master equation Eq.~1! with the rates given in Eq
~2!. Finally, only the full stochastic analysis reveals the d
tailed effect of fluctuations.

B. Numerical solution

Below we will present analytical solutions for sever
special cases of the master equation. In the general case
numerically solve the master equation by Monte Carlo me
ods. In detail, for each set of parameter valuesNt , f , andg,
we generate between 104 and 106 trajectories with the help
of the Gillespie algorithm for exact stochastic sim
lations.53,54 By averaging for given timet over the different
simulation trajectories, we obtain the desired probability d
tributions $pi(t)% i 50

Nt . In general it is also rather instructiv
to study single simulation trajectories, because their spe
features are expected to be characteristic also for experim
tal trajectories.

The Gillespie algorithm was originally developed for e
act simulation of the stochastic dynamics of coupled che
cal reactions. Applied to our case, open and closed bo
correspond to two different species of molecules and
transition between these two species, that is, rupture and
binding, correspond to chemical reactions. The Gillespie
gorithm is very efficient because rather than discretizing ti
in small steps, it generates jumps between subsequent
tions. The basic quantity of the Gillespie algorithm is t
probability P(m,tut0 ,X)dt that the next reaction occurs i
the time interval@t01t,t01t1dt# and is of typem under
the condition that at timet0 the system is in stateX. In our
case,m has only two values corresponding to rupture a
rebinding, and the stateX of the system is completely de
scribed by the number of closed bondsi . Since the rupture
and rebinding rates from Eq.~2! are constant between sub
sequent events,P does not depend on absolute timet0 . In
fact it reads

P~m,tut0 ,X!5P~m,tu i !5P0~tu i !am , ~8!

where P0 is the probability that no reaction occurs in th
time interval@0,t# andam is the reaction rate for reactionm.
P0 satisfies the differential equation

dP0

dt
52S (

m
amD P0 , ~9!

and the initial condition P0(0)51, therefore P0(tu i )
5e2((mam)t. P(m,tu i ) is properly normalized to unity a
can be shown by integrating over time and summing o
reactions. The Gillespie algorithm generates trajectories
which subsequent reactions are separated by the follow
rule. In the absence of other reactions, the probability fo
reactionm in the time interval@t,t1dt# is given by

pm~t!5ame2amtdt. ~10!

The integral

Fm~t!5E
0

t

pm~t8!dt8512e2amt ~11!

is the probability for a reaction occuring until timet. It in-
creases strictly monotonically from 0 to unity and thus c
Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP
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be inverted. In order to generate a random variabletm which
is distributed according to Eq.~10!, one generates a random
numberj which is uniformly distributed over the interval@0,
1# and inserts it into the formula

tm52
ln~j!

am
. ~12!

This is done for each type of reaction, leading to a set
timestm . The time for the next reaction is then chosen as
smallesttm , that is,t5minm(tm). As shown in Refs. 53 and
54, this rule generates trajectories with the correct distri
tion of times and types of subsequent reactions. With
forward and reverse rates Eq.~2! for rebinding and unbind-
ing of molecular bonds in the cluster, the random times
determined by the functions

t f52
ln~j!

g~Nt2 i !
~13a!

and

t r52
ln~j!

ief / i . ~13b!

This algorithm is exact in the sense that the only source
inaccuracy lie in the choice of the random number genera
and the finite number of trajectories used to calculate pr
ability distribution.

III. VANISHING REBINDING

A. Deterministic analysis

We start our analysis with the case of vanishing rebin
ing, g50. Then the deterministic equation Eq.~4! reads

dN

dt
52Nef /N. ~14!

In principle, the total number of bondsNt is irrelevant in this
case. However, it is reintroduced through the initial conditi
N(0)5Nt . Then Eq.~14! is solved implicitly by23

t~N!5ES f

Nt
D2ES f

ND , ~15!

whereE(z)5*z
`dz8e2z8/z8 is the exponential integral. Un

fortunately, the inversion forN(t) is not possible in general
In the deterministic description, cluster lifetimeTdet can

be identified with the timet at which only one last bond
exists. SettingN(Tdet)51 in Eq. ~15! gives

Tdet5ES f

Nt
D2E~ f !. ~16!

From this result, we can extract three different scaling
gimes. For small force,f ,1, we use the small argumen
expansion of the exponential integral,E(z)'2G2 ln(z)
~whereG50.577 is the Euler constant!, and find

Tdet' ln Nt . ~17!

This corresponds to the familiar case of radioactive dec
when the differential equationdN/dt52N leads to expo-
nential decayN5Nte

2t.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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For intermediate force, 1, f ,Nt , we can rewrite Eq.
~16! for the cluster lifetime as the sum of two integrals,

Tdet5E
f /Nt

1

dz
e2z

z
1E

1

f

dz
e2z

z
. ~18!

The second integral can be estimated to be*1
f dz(e2z/z)

,*1
f dze2z5e212e2 f,e21. For the first integral, we can

expand the integrand for small arguments, leading
* f /Nt

1 dz(e2z/z)'* f /Nt

1 dz(12z)/z' ln(Nt /f ). Since Nt. f ,

the second integral can be neglected and we have

Tdet' lnS Nt

f D . ~19!

For the time evolution of the cluster, both exponential in
grals in Eq. ~15! can be replaced by the small argume
approximation as long asN. f and hence the exponentia
decay proceeds until the force per bond isf /N51. Thereafter
the decay will be faster than exponential due to the dest
lizing effect of force.

For large force,f .Nt , the second term in Eq.~16! can
be neglected and we can use the large argument approx
tion for the exponential integral,E(z)'e2z/(11z), leading
to23

Tdet'
e2 f /Nt

11 f /Nt
. ~20!

Therefore cluster lifetime decays faster than exponential w
f /Nt in this regime. Now the small argument approximati
is not applicable to either of the two terms in Eq.~15! and
the decrease inN will be faster than exponential over th
whole range of time.

In summary, the analysis of the deterministic equat
Eq. ~14! allows to identify three scaling regimes of sma
intermediate and large force. This analysis also shows
f /Nt is an important scaling variable, which we will ther
fore use to analyze also the stochastic case.

B. Stochastic analysis

For finite force,f .0, the reverse rater ( i ) in Eq. ~2! is
nonlinear ini and the boundary ati 50 is artificial. Therefore
the master equation in general cannot be solved with s
dard techniques. However, in the case of vanishing reb
ing, g50, one can use the fact that the decay of the clu
corresponds to a unique sequence of events, with the num
of closed bonds decreasing monotonously fromNt to 0. The
transition from statei ~with i closed bonds present! to the
statei 21 ~with one more broken bond! is a Poisson proces
with the time-independent rater i . If i bonds are present a
time t, the probability that the next bond ruptures at timet
1t8 is given by

pi→ i 21~t8!5r ie
2r it8. ~21!

The state probabilitypi 21 is related to the state probabilit
pi and the transition probabilitypi→ i 21 by the recursive ex-
pression
Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP
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pi 21~t!5E
0

t

dt8pi~t8!pi→ i 21~t2t8!

5r ie
2r itE

0

t

dt8pi~t8!er it8, ~22!

which uses the fact that the statei 21 can be reached only
through the statei . This scheme is solved by

pi~t!5S )
j 5 i 11

Nt

r ~ j !D(
j 5 i

Nt H e2r ( j )t)
k5 i
kÞ j

Nt 1

r ~k!2r ~ j !J ~23!

as can be shown by induction. The properties of this exp
sion follow from the properties of the reverse rater ( i )
5 ief / i , which for finite force, f .0, is a nonmonotonous
function of i . It diverges for i→0, has a minimum ati
5@ f # ~the integer closest tof ! and grows asi for i→`. In
the unlikely case that the value off is such thatr ( j )5r (k)
for j Þk, the limit of the expression in Eq.~23! for r (k)
→r ( j ) has to be taken carefully. In order to treat this ca
properly, one has to replace Eq.~23! by

pi~t!5S )
j 5 i 11

Nt

r ~ j !D(
j 5 i

Nt H e2r ( j )tS )
k5 i

r (k)Þr ( j )

Nt 1

r ~k!2r ~ j !D
3S )

k5 i
r (k)5r ( j )

kÞ j

Nt t

2D J , ~24!

where we have used limD→0(12e2Dt)/D5t for D5r ( i )
2r (k). In Fig. 2 we plot the full solution to the maste
equation, that is, the state probabilitiespi(t) from Eq. ~23!,
for Nt510 and four different values of forcef . For small
force, all states are appreciably occupied during the de
that is, each of the curves is a maximum of the set of cur
during a certain period of time. In the long run,p0 ap-
proaches unity and all otherpi disappear, because withou
rebinding, the cluster has to dissociate eventually. For
creasing force, the shape of the curves changes consider
Now the lower states~with small number of closed bondsi )
hardly become occupied during the decay process. For v
large force, the maximum occupancy changes directly fr
the initial stateNt over to the detached state 0.

With the help of the exact solution Eq.~23!, any quan-
titiy of interest can now be calculated. One quantity of lar
interest is the average numberN(t)5^ i &5( i 51

Nt ipi(t) of
closed bonds at timet. For a single bond,N is simply the
probability p1 that the bond is attached,

N~t!5p1~t!5e2eft. ~25!

For a two-bond cluster we have

N~t!5p1~t!12p2~t!

5
2

22ef /2$e2eft1~12ef /2!e22ef /2t%. ~26!

For increasingNt , the corresponding expressions becom
increasingly cumbersome. In general,N(t) is a sum ofNt

exponentials with the different relaxation ratesr ( i ) with 1
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 2. The state probabilitypi(t) is
the probability thati bonds are closed
at time t (0< i<Nt). Here thepi are
plotted as a function of timet for a
cluster of initial sizeNt510 for g50
and ~a! f 50, ~b! f 51, ~c! f 510, and
~d! f 550.
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<i<Nt . For small force,f ,1, r ( i )' i and the smallest rate
corresponds toi 51, that is,N;e2t on large time scales. In
this case, clusters of any size decay with the same slop
single bonds and the difference between single and mult
bond rupture lies in the prefactor, not in the time scale
average decay. For intermediate force, 1, f ,Nt , and large
time scales, decay is dominated byi 5@ f #, that is, N
;e2 f et. Thus the absolute value of force governs the lo
time behavior, with different sizes showing up only in th
prefactor. For large force,f .Nt , decay at large time scale
is dominated byi 5Nt , that is,N;e2Nte

f /Ntt. This implies
that for a given forcef , the largest clusters show the slowe
decays in the long run. However, if one controlsf /Nt rather
Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP
as
le
f

g

t

than f , the cluster with the smallest size will decay the slo
est, since it is subject to the smallest absolute force. In Fi
we plot lnN as a function of timet for different values of
cluster sizeNt and force per initial bondf /Nt . All curves
initially show an exponential decay with the rate of a sing
bond. For small forces decay stays exponential for almos
times. The larger force, the earlier decay crosses over to
late stage regime of superexponential decay.

As noted in Sec. II, due to the nonlinear form ofr ( i )
5 ief / i for f .0, the first momentN(t) of the stochastic so-
lution Eq. ~23! is not identical with the functionN(t) ob-
tainted from the deterministic equation Eq.~14!. In Fig. 4,
results forN(t) derived from the deterministic and the st
FIG. 3. Average number of closed
bondsN as a function of timet for
different cluster sizesNt51, 2, 4, 8,
and 16. ~a! f /Nt50.01, ~b! f /Nt

50.1, ~c! f /Nt51.0, and ~d! f /Nt

55.0.
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FIG. 4. Average number of closed
bondsN as a function of timet for
Nt58 and 16 and~a! f /Nt50.1 and
~b! f /Nt51. Solid and dashed lines ar
stochastic and deterministic results, r
spectively.
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chastic description are compared to each other. For a s
but nonzero force, the nonlinearity is small and the agr
ment between the two results is good in the initial phase
the decay. Towards the end of the decay strong deviations
observed. Here, the force on each bond grows strongly
the nonlinearity of the transition rates is large. For increas
force, fluctuations become less relevant and the devia
between deterministic and stochastic results is increasi
restricted to the very end of the decay process.

In Figs. 5~a! and 5~b! the result for the mean number o
closed bondsN(t) is compared to single simulation traje
tories for small and large forces, respectively. The sin
simulation trajectories are expected to resemble experime
realizations for the time evolution of the number of clos
bonds. The figure shows that for small force, the trajecto
decay in a similar way as does the average. For large fo
the trajectories decay in a more abrupt way than the a
ages, that is, they appear to run along the average for mo
the time, but then decay rather abruptly towards the co
pletely dissociated state. In this case, fluctuations do no
much affect the typical shape of the rupture trajectory,
rather the timepoint of rupture. The reason for this typi
behavior is that a large fluctuation towards the absorb
boundary inevitably leads to a runaway process, since fo
is increasingly focused on less and less bonds due to sh
loading. This type of rupture process is similar to avalanc
or cascading failures in highly connected systems. Althou
rupture is rather abrupt, its timepoint is widely distribute
leading to the smooth decrease ofN(t) observed in the av-
erage. In the large force case in Fig. 5~b!, we also show the
deterministic results forN(t) ~for the small force case in
Fig. 5~a!, they hardly differ from the stochastic results!.
These curves show that the abrupt decay of single simula
Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP
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trajectories at large force is somehow predicted by the de
ministic description, compare Fig. 4. This had to be expec
because the deterministic equation describes a represen
yet single trajectory.

The probability for dissociation of the overall cluste
~that is for rupture of the last bond! is defined byD(t)
5 ṗ0(t)5r 1p1(t) and follows from Eq.~23! with the re-
verse rater 1 from Eq. ~2!. The resulting formula has bee
given before in Ref. 38. For a single bond it is simp
D(t)5efe2eft. For Nt52 we have

D~t!5
2ef

22ef /2 ~e2eft2e22ef /2t!. ~27!

In the special casef 52 ln 2, the two ratesr (1) andr (2) are
equal and we have

D~t!516te24t. ~28!

In general, as forN(t), D(t) is a sum of exponentials
e2r ( i )t and the decrease on long time scales is governed
the exponential which decreases the slowest. In Fig. 6
plot D(t) for different values ofNt and f /Nt ~by controlling
f /Nt rather thanf , the curves have comparable average!.
The caseNt51 is a Poisson process with simple exponen
decay. ForNt.1, D(0)50, because instantaneous rupture
all bonds att50 is a higher order process. For large time
all curves decay exponentially. For vanishing force,f 50, the
curves are very similar, with the same slope at large tim
The maxima of the cluster dissociation rates forf 50 are
described byTmax5ln Nt , in agreement with the result, Eq
~17!, from the deterministic description. For smallf /Nt , the
distributions are Gauss-like with small asymmetry and va
ance. For largef /Nt , they became Poisson-like, that is, the
FIG. 5. Single simulation trajectories~solid lines! compared with the average number of closed bondsN(t) ~dashed lines! for Nt510 and 25 and~a! f /Nt

50.1 and~b! f /Nt51. In ~b!, in addition the deterministic results are plotted as dotted lines.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 6. Probability for dissociation of
the whole clusterD as a function of
time t for Nt51, 2, 4, 8, and 16 for~a!
f /Nt50.0, ~b! 0.1, ~c! 1.0, and~d! 5.0.
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develop a strong asymmetry with a maximum close to z
and a pronounced long-time tail. The reason is that in
case, decay is dominated by rupture of the first bond, tha
we are effectively back to a single bond system@except that
D(0)50 as always for multiple bonds#.

The average cluster lifetime can in principle be calc
lated as the first moment of the overall dissociation rate

T5E
0

`

dt t D~t!. ~29!

In practice, it has a simple form which can be derived wi
out using the probability distribution Eq.~23!. The waiting
time spent in statei before the transition into statei 21 is a
stochastic variable characterized by the distribution funct
Eq. ~21!. Its average is given by the inverse transition ra
1/r ( i ). Since the decay process is a sequence of such i
pendent Poisson processes, we simply have

T5(
i 51

Nt 1

r ~ i !
. ~30!

For f 50 we get38,55

T5(
i 51

Nt 1

i
5HNt

, ~31!

which are the harmonic numbers. The lifetime of a two-bo
cluster is increased by a factor 3/251.5 with respect to the
single bond, that of the three-bond cluster by 11/651.8, and
so on. For largeNt one can write55

T' ln Nt1
1

2Nt
1G, ~32!

whereG50.577 is the Euler constant. In fact this appro
mation is very good already for small values ofNt . The
weak ~logarithmic! dependence for largeNt means that for
large adhesion clusters, size matters little since the bo
decay independently of each other and on the same
Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP
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scale. This result differs from the deterministic one for sm
force, Eq.~17!, by the constantG and the additional contri-
bution 1/2Nt , which vanishes for large clusters. For sm
force, f ,1, Eq. ~32! is a good approximation for cluste
lifetime T. For intermediate force, 1, f ,Nt , the reverse
rate grows rapidly for states withi , f , whereas for states
with i . f , r ( i ) remains close toi . Therefore we can approxi
mate the average lifetime of a cluster asHNt

2H f . Using Eq.
~32!, we get

T. ln~Nt / f !. ~33!

Thus cluster sizeNt is now replaced by an effective siz
Nt / f , as we have already found in the deterministic fram
work, compare Eq.~19!. For large force,f .Nt , the only
term which contributes to Eq.~30! is the one for the rupture
of the first bond. Then

T'
e2 f /Nt

Nt
~34!

and we deal essentially with a single bond effect: if the fi
bond breaks, all remaining bonds follow within no tim
~‘‘domino effect’’!. This effect is also evident from the dis
sociation rateD(t), which for very large force approaches
Poisson distribution, compare Fig. 6~d!. In Eq. ~34!, the nu-
merator represents the probability for single bond rupt
under force, while the denominator represents the probab
that any one out ofNt identical bonds breaks first. Sincef
.Nt in this regime, the first effect dominates andT increases
with Nt . For a givenf /Nt , on the other hand, the lifetime
decreases with increasingNt , due to the increase in absolu
force. In contrast to the deterministic result, Eq.~20!, the
stochastic result Eq.~34! does not scale withf /Nt . In Fig. 7
we plot the average cluster lifetimeT from Eq. ~30! as a
function of f /Nt for different values ofNt . For small force,
f ,1, T plateaus at the value given by the harmonic num
HNt

according to Eq.~31!. In the regime of intermediate
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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force, 1, f ,Nt , all curves fall on the master curveT
5 ln@0.61(Nt / f )#, as predicted by Eq.~33!. For large force,
f .Nt , the scaling withf /Nt is lost, as predicted by Eq.~34!.
Although deterministic and stochastic predictions for clus
lifetime T have similar overall features, the deterministic r
sult underestimates the plateau at small force and predic
incorrect scaling withf /Nt at large force.

Higher cumulants of the various distributions provi
information about the effect of fluctuations. For the numb
of closed bonds at timet, the width of the distribution is
described by the variance, defined bysN

2 (t)5^ i 2&2^ i &2. In
Fig. 8~a!, we plot the relative standard deviatio
sN(t)/N(t), for cluster sizesNt58 andNt516. It is zero
initially due to the initial condition and diverges for larg
times. In regard to the distribution of cluster lifetime, th
variancesT can be calculated in the same way as the aver
lifetime, because for a sequence of independent stoch
processes, all cumulants simply add up. The variance of
Poisson process Eq.~21! is 1/r 2( i ). Therefore the variance
for cluster lifetime is

sT
25(

i 51

Nt 1

r 2~ i !
. ~35!

For vanishing force this expression reads

FIG. 7. Average adhesion cluster lifetimeT as a function off /Nt for cluster
sizesNt51, 10, 100, 1000, and 10 000. The dashed horizontal curves ar
harmonic numbers, which are good approximations in the small force
gime f ,1. The dotted curve is the approximationT5 ln(0.61Nt / f ) for the
intermediate force regime, 1, f ,Nt .
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sT
25(

i 51

Nt 1

i 2 5z~2!2c (1)~Nt11!, ~36!

wherec (1)(Nt11) is the trigamma function andz the Rie-
mannianz function. For increasingNt , the variance con-
verges to a finite value. For zero force this limit is given

sT
25(

i 51

`
1

i 2 5z~2!5
p2

6
, ~37!

because the trigamma function vanishes in this limit. T
result is an upper limit for the variance in general, beca
the reverse rate increases with increasing force,r ( i )> i . The
relative standard deviationsT /T of cluster dissociation is
always smaller than unity, since ((x)2.(x2. For single
bond rupture, we have a single Poisson process and it
comes exactly unity. For vanishing force and large cluster
scales as;1/lnNt . Although it decreases with increasin
NT , it does so in a different way than the Gauss proce
which decreases as;1/Nt

1/2. The reason is that the contr
butions from the different subprocesses are not constant
decrease as rupture proceeds. For large forces,f .Nt , cluster
dissociation becomes a Poisson process governed by the
ture of the first bond. Then the first term dominates in E
~30! and ~35!. Therefore the relative standard deviatio
sT /T'1 again. Moreover, nowsT /T;1/Nt

1/2, because now
only the first Nt2 f subprocesses contribute, with rough
similar values, like in a Gauss-distribution. In Fig. 8~b!, we
plot sT /T as a function off /Nt as it crosses over betwee
the cases of vanishing and very large force, with a minim
around f /Nt'0.3, that is, in the intermediate force rang
The narrow distribution at intermediate force is also evid
in Fig. 6. Figure 8~b! also shows how the relative standa
deviation decreases with increasing cluster sizeNt . In gen-
eral, the agreement between deterministic and stochastic
scriptions is best for large cluster sizeNt and intermediate
force 1, f ,Nt . However, it should also be noted that th
definition of deterministic lifetime is somehow arbitrary, b
cause a discrete cutoff has to be introduced in a continu
description. Especially for small clusters the choice of t
cluster size at which dissociation occurs will have a lar

he
e-
FIG. 8. ~a! VariancesN for the number of closed bonds in relation to the average number of closed bondsN as function of timet for f /Nt51.0 andNt

58 ~solid! and 16~dashed!. ~b! VariancesT for cluster lifetime in relation to average cluster lifetimeT as a function off /Nt for Nt51, 10, 100, 1000, and
10 000.
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FIG. 9. ~a! State probabilitiespi(t) from Eq. ~41! for Nt510 with f 50 andg51 for a reflecting boundary ati 50. ~b! N/Neq andsN /N for Nt5100, f
50 andg50.1, 1, 5, and 10.
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IV. VANISHING FORCE

A. Deterministic analysis

We now turn to the case of vanishing force,f 50. Then
the deterministic equation Eq.~4! reads

dN

dt
52N1g~Nt2N!. ~38!

For the initial conditionN(0)5Nt , its solution is

N~t!5
g1e2(11g)t

11g
Nt5F11

1

g
e2(11g)tGNeq. ~39!

Thus there is an exponentially fast relaxation fromNt to the
equilibrium state withNeq5gNt /(11g) closed bonds.Neq

increases linearly with the rebinding constantg from Neq

50 for g50 and saturates atNt for g.1. In the determin-
istic description, the lifetime of the cluster is infinite, becau
the completely dissociated stateN50 is never reached.

B. Stochastic analysis

In the casef 50, the reverse rates defined in Eq.~2! are
linear in i andr (0)50 at i 50. Natural boundary condition
imply g(0)5gNt , that is, a reflecting boundary condition
i 50. A linear system with natural boundary conditions c
be solved with standard techniques. For the initial condit
pi(0)5d i ,Nt

, a generating function has been derived
McQuarrie:56

G~s,t!5(
i 50

Nt

sipi~t!5S ~s21!e2(11g)t111gs

~11g! D Nt

.

~40!

The state probabilities follow from the generating function

pi~t!5
1

i !

] iG~s,t!

]si U
s50

5S Nt

i D ~g1e2(11g)t! i~12e2(11g)t!Nt2 i

~11g!Nt
. ~41!

One can easily check that by settingg50 in Eq. ~41!, one
obtains the same result as by settingf 50 in Eq. ~23!. Equa-
tion ~41! shows that the systems relaxes to the station
state on a dimensionless time scale 1/(11g), thus the larger
Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP
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rebinding, the faster the system equilibrates. In the station
state, the state probabilities follow a binomial distribution

pi~`!5S Nt

i D g i

~11g!Nt
~42!

because the bonds are independent and each bond is c
and open with probabilitiesg/(11g) and 1/(11g), respec-
tively.

The generating function also allows to calculate all m
ments of the distribution:

^ i n&5
]nG~s,t!

]~ ln s!n U
s51

. ~43!

Since nowr ( i ) is linear in i , the first momentN(t)5^ i & is
identical to the solution Eq.~39! of the deterministic equa
tion. In order to assess the role of fluctuations, we calcu
the variance:

sN
2 ~t!5^ i 2&2^ i &25

~12e2(11g)t!

~11g!
N~t!. ~44!

The relative standard deviationsN /N essentially scales a
N21/2 for all times, thus fluctuation effects decrease w
increasing bond number in the usual way. The station
state value is limt→`sN(t)/N(t)5@(11g)Neq#

21/2

5(gNt)
21/2. Therefore larger rebinding does not only in

crease the equilibrium number of bonds, but also decrea
the size of the fluctuations aroundNeq. This leads to a nar-
row distribution for large cluster under strong rebindin
with a small probability of coming close to the lower boun
ary.

In Fig. 9~a!, we plot the state probabilitiespi from Eq.
~41! for cluster sizeNt510 and rebinding constantg51.
The system quickly relaxes to the equilibrium state. The o
difference for different initial conditions is in the initial tran
sient. In particular, forN05Neq, the average does no
change in time, although the distribution initially spreads
the binomial one. Forg51, the stationary distribution is
symmetric around the average. The width of the distribut
for different g is illustrated in Fig. 9~b!, which shows the
average number of closed bonds normalized by the equ
rium number of bonds, that is,N/Neq, together with the rela-
tive standard deviationsN /N for different values of the re-
binding constantg. The curves forN are independent ofNt
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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due to the normalization. Figure 9~b! shows that with in-
creasingg, relaxation becomes faster and the width of t
distribution decreases.

For the biologically important case of an absorbi
boundary ati 50, it seems to be rather difficult to find
closed-form analytical solution for arbitrary cluster sizes. F
the caseNt52, we will present such a solution in the follow
ing section. For arbitraryNt , we use Monte Carlo simula
tions as described in Sec. II. In Fig. 10, we show individu
simulation trajectories for different parameter values of
terest, in comparison to the average number of closed bo
for reflecting and absorbing boundaries ati 50. The plots
show that the number of closed bonds in a cluster first
laxes towards the steady state value, for which rupture
rebinding balance each other. Although for the absorb
boundary the number of closed bonds decreases with tim
average, for individual realizations it stays roughly consta
until a large fluctuation towards the absorbing bound

FIG. 10. Single simulation trajectories forf 50, g50.5, Nt510, 100, and
1000 and an absorbing boundary ati 50. Solid lines are the average numb
of closed bondsN and dashed lines are the equilibrium number of clos
bondsNeq.
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leads to loss of this realization. The time scale for the
crease inN is thus determined by the probability for fluctua
tions from the steady state to the absorbing boundary.

Because a full analytical solution is not available for t
case of an absorbing boundary, we now introduce an
proximation for this case. It is similar to the local therm
equilibrium description introduced by Zwanzig for modelin
protein folding dynamics.57 Our starting point is that for
large clusters and strong rebinding, the absorbing bound
is a small perturbation to the solution for the reflecti
boundary, Eq.~41!, which in the following we will denote by
$ p̄i% i 50

Nt . Since g(0)50 for the absorbing boundary,ṗ0

5r 1p1 with r 151 and probability will only accumulate in
the completely dissociated state. Sincep0 is slaved to the
other state probabilities and since we expect only a sm
perturbation for the states withi>1, we assume that here th
different boundary only leads to a simple renormalizati
caused by the ‘‘leakage’’ into the absorbing boundary:

pi~t!5 p̄i~t!@12p0~t!# for i>1,
~45!

p0~t!5E
0

t

p1~t8!dt8.

Since relaxation to the steady state is faster than decay to
absorbing boundary,p̄i(t) can be taken to be the stationa
value, that is, the constantp̄i(`) according to Eq.~42!. Then
p0(t)5 p̄1(`)*0

t@12p0(t8)#dt8, which is solved byp0(t)
512e2 p̄1(`)t. Therefore Eq.~45! simplifies to

pi~t!5 p̄i~`!e2 p̄1(`)t for i>1,
~46!

p0~t!512e2 p̄1(`)t.
FIG. 11. State probabilitiespi as a function of timet for different cluster sizesNt55 ~a! and~b! andNt510 ~c! and~d! and for rebinding ratesg51.0 ~a!
and ~c! and 5.0~b! and ~d!. The numerical solutions~solid curves! are compared to the leakage approximation Eq.~46! ~dashed curves!.
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FIG. 12. ~a! Average number of closed
bonds N obtained from stochastic
simulations of the master equation fo
g51 andNt51, 2, 5, 10, and 100.~b!
VariancesN of the cluster size distri-
bution for the same parameters as
~a!.
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We conclude that the solution decays exponentially on
time scale 1/p̄1(`). In Fig. 11, we plot Monte Carlo solu
tions for the state probabilities in comparison to the appro
mation. Forg51, the approximation does not work well fo
Nt55, but it does so already forNt510. Forg55, the ap-
proximation works well for both cluster sizes. Note that
this approximation, a termp̄0(`)e2 p̄1(`)t is missing for
proper normalization( i 50

Nt pi51. This is a small error for
large clusters and strong rebinding. In order to assess
validity of Eq. ~46!, we note that it presupposes that the tim
scale for relaxation to the steady state, 1/(11g), is smaller
than the time scale for decay to the absorbing bound
1/p̄1(`)5(11g)Nt/gNt . Thereforeg should be larger than
(Neq)

1/Nt21.
It follows from Eq. ~46! that the mean number of close

bonds decay in an exponential way,N(t)5Neqe
2 p̄1(`)t.

This is confirmed by Fig. 12~a!, which shows the corre
sponding simulation results. ForNt52, 5, and 10, we have
p̄1(`)50.5, 0.16, and 9.731023. Numerically we find 0.6,
0.13, and 0.01, thus the approximation is rather good. In
12~b!, we plot numerical results for the standard deviati
sN . The initial increase ofsN is well described by Eq.~44!
for the reflecting boundary, thus the boundary has little
fluence here. Large clusters stay close to the steady
during the time shown and the approximation is applicab
For small clusters, the variance grows larger than the ste
state value before is decreases exponentially while the clu
size N approaches zero. The variance contains two ti
scales. The second moment of the distribution decrease
the same time scale as the average, while the square o
first moment decreases twice as fast. The long time expo
tial decrease ofsN is thus described by twice the relaxatio
time as is was found for the average number of bonds.

Although an exact solution for the state probabiliti
seems to be impossible for the case of an absorbing bo
ary, more analytical progress can be made if one is o
interested in the probability that the cluster dissociates a
whole. For the absorbing boundary, the cluster dissocia
rate has been denoted byD(t) before. For the reflecting
boundary,D(t) can be identified as the probability that th
statei 50 is reached for the first time at timet if the system
has started in the statei 5Nt at time t50. This is a first
passage problem which can be treated with Laplace te
niques. Since the transition rates do not depend on abso
time, one can decompose the state probability fori 50 into
two parts:
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p0~t!5E
0

t

D~t8!p0,0~t2t8!dt8, ~47!

wherep0,0(t) is the state probability for statei 50 with ini-
tial condition pi(0)5d i ,0 . p0,0(t) can also be interpreted
as the probability for having returned to the boundary af
time t. A Laplace transform of the equation leads to an
gebraic relation between the Laplace transforms of the th
functions:

D~s!5
p0~s!

p0,0~s!
. ~48!

Here D(s)5*0
`e2stD(t) denotes the Laplace transform o

the functionD(t). The explicit form of the probabilityp0(t)
is given in Eq.~41!:

p0~t!5S 12e2(11g)t

11g D Nt

. ~49!

The probabilityp0,0(t) can also be calculated with standa
techniques:58

p0,0~t!5S 11ge2(11g)t

11g D Nt

. ~50!

The Laplace transforms of the these two functions are gi
by

p0~s!5
1

~11g!Nt (i 50

Nt S Nt

i D ~21! i

s1 i ~11g!
~51!

and

p0,0~s!5
1

~11g!Nt (i 50

Nt S Nt

i D g i

s1 i ~11g!
, ~52!

so that the Laplace transformed first passage probability t
distribution is

D~s!5

( i 50
Nt S Nt

i D ~21! i

s1 i ~11g!

( i 50
Nt S Nt

i D g i

s1 i ~11g!

. ~53!

Unfortunately, the analytical backtransform forD(s) seems
to be impossible. However, the mean first passage time
be extracted from this result, because it does not require
backtransfrom:52
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 13. ~a! Average lifetimeT of ad-
hesion clusters as function of cluste
sizeNt for rebinding ratesg50.0, 0.1,
0.5, 1, 5, and 10.0.~b! Average life-
time T as function of rebinding con-
stantg for cluster sizeNt51, 2, 5, 10,
20, and 50.
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T5
dD~s!

ds U
s50

5
1

11g F (
n51

H S Nt

n D g

n J 1HNtG . ~54!

This equation is a polynomial of orderNt21 in g. The zero
order term is the harmonic numberHNt

, so for g50 we
recover the result from Eq.~31!. In Fig. 13, we plot Eq.~54!
as a function of cluster sizeNt and rebinding rateg. As long
asg,1, cluster lifetime grows only weakly~logarithmically!
with cluster size~at least for not too large clusters!. For g
.1, the higher order terms ing take over and the increase
T becomes effectively exponential, as shown in Fig. 13~a!. In
Fig. 13~b!, it is shown explicitly that increasingg to values
larger than unity leads to a strong increase in lifetime. T
effect is larger for larger clusters since the number of rebi
ing events in the dissociation path is larger.

V. FINITE FORCE AND FINITE REBINDING

A. Deterministic analysis

Force destabilizes the cluster, while rebinding stabiliz
it again. It has been shown by Bell that in the framework,
the deterministic equation, Eq.~4!, the cluster remains stabl
up to a critical forcef c .23 For the following it is helpful to
revisit his stability analysis. In equilibrium we have

Neqe
f /Neq5g~Nt2Neq!. ~55!

At small forcef , this equation has two roots, with the larg
one corresponding to a stable equilibrium. As force
creases, a saddle-node bifurcation occurs. Above the cri
force, no roots exist and the cluster becomes unstable.
actly at critical loading, the two roots collapse and the slo
of the two terms become equal. This gives an additio
equation
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ef c /NcS 12
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Nc
D52g. ~56!

These two equations allow to determine the critical valu
for cluster size and force:

f c5NtplnS g

eD ~57a!

and

Nc5Nt

plnS g

eD
11plnS g

eD , ~57b!

where the product logarithm pln(a) is defined as the solut
x of xex5a. For small forces, the unstable fixed point
very close to zero. This implies that the stable fixed poin
an attractor for most initial conditions. Close to the critic
force, the unstable fixed point is close to the stable one
only the initial conditions aboveNc will reach the stable
fixed point. Equation~57! scales in a trivial way withNt , but
in a complicated way withg. For g,1, we have f c

'gNt /e. Thus the critical force vanishes withg, because
the cluster decays by itself with no rebinding. Forg.1 and
up to g'100, we havef c'0.5Nt ln g. This weak depen-
dence ong shows that the single bond force scale set byFb

also determines the force scale on which the cluster a
whole disintegrates. Figure 14~a! shows howf c crosses over
from linear to logarithmic scaling withg.

Equation~55! is an implicit equation which cannot b
inverted to giveNeq as a function of the model paramete
Nt , f , andg. In general,Neq decreases fromgNt /(11g) for
f 50 to Nc for f c . For small forces we can find an approx
y

-

t

FIG. 14. ~a! Critical force Eq.~57! in
relation to total cluster size,f c /Nt , as
function of the rebinding constantg. It
scales linearly~dotted curve! at small
and logarithmically~dashed curve! for
larger g. ~b! Stable steady value for
number of closed bonds normalized b
the critical value,Neq/Neq,c , for g
50.1,1, and 10 as function of force
f / f c for Nt5100. Numerical results
~solid lines! are compared to the ap
proximation Eq. ~58! ~dashed lines!.
The horizontal line marks the smalles
possible value at the critical forcef c .
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mate solution by first expanding the exponential function
Eq. ~55! to second order inf /Neq and then expanding th
resulting quadratic function forNeq to second order in
f /gNt :

Neq'
gNt

11g F12S f

gNt
D2

g11

2 S f

gNt
D 2G . ~58!

Figure 14~b! shows numerical results forNeq/Nc in compari-
son with the low force approximation Eq.~58!, for different
rebinding constantsg50.1, 1.0, and 10 as function of forc
f / f c and for cluster sizeNt5100.

In the deterministic framework, cluster lifetime is infi
nite for f , f c , because a stationary state exists atNeq. For
f . f c , cluster lifetime is finite, but strongly varies as a fun
tion of Nt , f , andg. For f @ f c , we can neglect rebinding
and use the results from Sec. III, where we found for clus
lifetime

Tdet5ES f

Nt
D'

e2( f /Nt)

11~ f /Nt!
, ~59!

compare Eq.~20!. As force f is decreased from above to
wards the critical valuef c , rebinding becomes importan
again and cluster lifetime diverges. To understand this lim
we note that here the system will evolve very slowly, b
cause it is still close to a steady state. Therefore we
expand the time derivative ofN, compare Eq.~4!, for small
deviations from the critical state:

dN

dt
'

]

] f S dN

dt D U
f c ,Nc

~ f 2 f c!

52ef c /Nc~ f 2 f c!52e11pln(g/e)~ f 2 f c!. ~60!

In this limit, the lifetime will be dominated by the time spe
close to the critical state. The time for a significant chan
DN.21 in N is

T'Dt'e2[pln(g/e)11]
1

f 2 f c
. ~61!

ThereforeT diverges like the inverse off 2 f c . Figure 15
shows the lifetime of an adhesion cluster derived from
merical integration of the deterministic equation forg51
andNt5100 as a function of the force-size ratiof /Nt . The

FIG. 15. Deterministic mean lifetimeT of a cluster ofNt5100 bonds for
g51 as a function of the force-size ratiof /Nt . Numerical integration of the
deterministic equation~solid line! is compared to the exact solution fo
vanishing rebinding~dashed line! and the inverse linear scaling~dotted line!
predicted close to the critical force.
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numerical results are compared to the approximation,
~59!, for large forces and Eq.~61! for the divergence close to
the critical point. Obviously both approximations work we
for their respective limits. For different cluster sizesNt , the
plot remains basically unchanged~not shown!, because the
forces abovef c are already in the range where Eq.~16! pre-
dicts scaling withf /Nt alone. For different rebinding con
stantsg the results are qualitatively the same, only that t
critical force is shifted to different values.

B. Stochastic analysis

In general, it seems to be difficult to find a closed-for
analytical solution for the state probabilitiespi(t) for gen-
eral values ofg, f , andNt . In the following, we will derive
such an analytical solution for the caseNt52 with an ab-
sorbing boundary. In principle, solutions can be construc
in the same way for a reflecting boundary or larger cluste
but for increasing cluster size, the analytical proced
quickly becomes intractable. For this reason, we will la
use simulations to deal with the general case.

We start by rewriting the master equation, Eq.~1!, in
matrix form:

ṗ5W•p. ~62!

For the case Nt52 with an absorbing boundary,p
5(p0 ,p1 ,p2)T and

W5S 0 r 1 0

0 2~r 11g1! r 2

0 g1 2r 2

D . ~63!

Equation~62! is solved by52

p~t!5eWt
•p~0!5(

l
cleltpl , ~64!

wherel andpl are the eigenvalues and eigenvectors ofW,
respectively. The coefficientscl have to be determined from
the initial condition

p~0!5(
l

clpl . ~65!

Since the absorbing statep05(1,0,0)T is a stationary state
the corresponding eigenvaluel050. The other two eigenval-
ues are negative and correspond to transient states:

l1,252~V6v! ~66!

with V andv being defined as

V5~r 11r 21g1!/2 ~67a!

and

v5AV22r 1r 2. ~67b!

Note that 0,v,V and hencel1,2,0. The transient eigen
states are

p15
1

g1
S l21r 1

l11r 2

g1

D ~68a!

and
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FIG. 16. State probabilitiespi as a function of timet for Nt510 with g51 for force f 50.1, 1, 3, and 10~a!–~d!. In ~a!, the numerical solution is compare
with the leakage approximation~dotted lines!. The intermediate force values are chosen below and above the critical forcef c50.278Nt .
a
d

ich
h

r of

by
p25
1

g1
S l11r 1

l21r 2

g1

D . ~68b!

The three eigenstatespl are linearly independent and form
basis of the state space of the cluster. With the initial con
tion pi5d i ,Nt

, that is, p(0)5(0,0,1)T, the coefficientscl

follow from Eq. ~65! as

cl0
51, ~69a!

cl1
5

l21r 2

l22l1
~69b!

and

cl2
52

l11r 2

l22l1
. ~69c!

The final result then can be written as

p0~t!512Fcosh~vt!1
V

v
sinh~vt!Ge2Vt,
Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP
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p1~t!5
r 2

v
sinh~vt!e2Vt, ~70!

p2~t!5Fcosh~vt!1
V2r 2

v
sinh~vt!Ge2Vt.

There is a competition between the hyperbolic terms, wh
grow on the time scale 1/v, and the exponential terms, whic
decrease on the time scale 1/V. Sincev,V, the exponential
terms will win and only the stationary state survives.

With the exact solution Eq.~70!, one now can calculate
any quantity of interest. For example, the mean numbe
bonds,N(t)5( i ip i , follows as

N~t!5F2 cosh~vt!1
r 11g1

v
sinh~vt!Ge2Vt. ~71!

The dissocation rate for the cluster as a whole as given
D(t)5r 1p15 ṗ0 , resulting in

D~t!5
r 1r 2

v
sinh~vt!e2Vt. ~72!
e

FIG. 17. Single simulation trajectories
for Nt510, 100, and 100 forg51 and
at two different forces~a! f 50.25Nt

, f c and ~b! f 5Nt. f c . Representa-
tive trajectories are compared to th
average numberN of closed bonds re-
sulting from averaging over a large
number of such trajectories.
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FIG. 18. Average number of closed
bondsN for Nt51, 10, 100, and 1000,
g51 and~a! f /Nt50.25 and~b! f /Nt

51. In ~a!, the numerical results are
compared to exponentially decayin
curves ;e2at ~dashed lines! with a
51.28, 0.52, 0.072, and 0.0009 for in
creasing bond number.
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One easily checks that normalization is correct,*0
`D(t)dt

51. Mean cluster lifetimeT now follows as

T5E
0

`

tD~t!dt5
1

2
~2e2 f1e2 f /21ge23 f /2!. ~73!

As shown in the preceding sections for special cases, fo
leads to exponentially decreased lifetimes, while rebind
leads to polynomial terms ing up to orderNt21.

Although the eigenvalue analysis can be used also
the general case of arbitrary cluster size, in this case
more efficient to use exact stochastic simulations as
scribed in Sec. II B. In Fig. 16 numerical solutions of th
state occupancy probabilities$pi% i 50

Nt are plotted forNt510
with g51 for four different forcesf 50.1, 1, 3, and 50. This
figure corresponds to Fig. 2 for vanishing rebinding and F
11 for vanishing force. For small force, the numerical so
tions compare well with the approximation Eq.~46! intro-
duced for vanishing force. For larger force, but still belo
the critical force, the state probabilities still decrease ex
nentially for large times, but the approximation Eq.~46!
breaks down, because the reference distribution$ p̄i(`)% i 50

Nt

now had to be replaced by the unknown steady state for
case of finite force. If force is increased beyond the criti
force (f c52.78 forg51), a simple description is not avai
able, because equilibration and decay occur on the same
scale. For very large force, the behavior of the adhesion c
ter approaches that for vanishing rebinding, with the anal
cal solution, Eq.~23!.

Figure 17 demonstrates that the decay process cha
dramatically as force is increased above the critical value
displays trajectories of individual clusters with initiallyNt

5N0510, 100, and 1000 closed bonds in comparison w
the average number of bonds derived from a large numbe
these trajectories. Sincef c50.278Nt for g51, Fig. 17~a!
with f 50.25Nt is below the critical value. For the large
Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP
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cluster, the system equilibrates towards the steady state
then fluctuate around this value with very rare encounters
the absorbing boundary. For the smaller clusters, howe
fluctuations towards the absorbing boundary frequently l
to loss of individiual realizations. As a result, the avera
number of closed bonds decays exponentially on a m
faster time scale. Figure 17~b! with f 5Nt is above the criti-
cal force and the behavior is changed qualitatively. A stea
state does not exist anymore and the clusters do not deca
fluctuations, but the size of each adhesion cluster is cont
ously reduced. Clusters of different size now decay on
same time scale and rebinding events are very rare in c
parison to rupture events.

Figure 18 plots numerical results for the average num
of closed bondsN as function of timet for two different
values off /Nt and for cluster sizesNt51, 10, 102, and 103.
For f 50.25Nt, f c , after initial relaxation all curves deca
exponentially. Forf 5Nt. f c , the larger clusters show
steep decrease in average cluster size at the end of the d
due to the effects of shared loading. For the small clust
the average cluster size decreases slowly since cooper
effects are small.

Figure 19 plots the variancesN(t) of the distributionpi

for the two force values used in the two previous figur
Below the critical force the behavior is similar to that fo
vanishing force depicted in Fig. 12. The variance decrea
exponentially after having traversed a maximum. For forc
above the critical force, a different behavior arises. Af
growing as expected in the initial phase, the variance d
plays a sharp peak. This effect becomes more pronoun
with larger cluster size.

In Fig. 20 a comparison of the average number of clos
bonds in the stochastic and the determinsitic description
shown. N(t) is plotted for cluster sizesNt510, 100, and
1000 for the forcesf /Nt50.1 and 1.0 and the rebinding ra
FIG. 19. VariancesN for forces~a! f
50.25Nt and ~b! f 5Nt for g51 and
Nt51, 10, 100, and 1000.
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FIG. 20. Comparison of stochsatic an
deterministic results for the averag
number of closed bondsN derived
from numerical solutions of the maste
equation~solid lines! and from inte-
gration of the deterministic equation
~dashed curves! for cluster sizesNt

510, 100, and 1000 and forces~a!
f /Nt50.1 and~b! 1.0. The rebinding
rate isg51.
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g51.0. For small forcesf , f c , the average number o
closed bonds equilibrates towards the steady state and
mains constant thereafter. The fluctuations occuring in
stochastic description lead to a slow decrease ofN. Above
the critical force, the deterministic clusters decay as w
and in a more abrupt way than the stochastic average.

We now turn to the dissociation rate of the overall clu
ter as a function of the model parameters. Forg51 and f
50.25Nt andNt , that is, below and above the critical forc
numerical results are plotted in Fig. 21. For a single bo
dissociation is a Poisson process with the maximum at
50 and an exponentially decreasing dissociation rateD

5r (1)p15efe2eft. For larger clusters and below the critic
force, fluctuations to the absorbing boundary determine
rate of dissociation, which vanishes att50, goes through a
maximum and then decreases exponentially with time.
explained above, the exponential decay follows because
cay proceeds by rare fluctuations from the steady state
wards the absorbing boundary. Above the critical force,
dissociation rate forNt.1 becomes more sharply peake
and cannot be described with single exponential curves
steady state does not exist anymore and dissociation doe
proceed by fluctuations. The trajectories in Fig. 17 ha
shown that adhesion clusters decay fairly abrupt towards
end of the decay as a consequence of shared loading.
cooperative instability is the reason for the sharp dissocia
distribution for large clusters under supercritical loading. T
single bond that lacks this cooperativity still shows the e
ponential dissociation rate, which is now the slowest dec
ing for the given force-size ratio.

Whereas results for the dissociation rate have to be
tained numerically, the average lifetime can be calcula
analytically.51 The basic idea here is to sum the avera
times for any possible pathway leading from the initial clu
ter sizeN0 towards dissociation at the absorbing bound
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i 50 with its appropriate statistical weight. One can sho
that the lifetimeTNt ,N0

of a cluster with a total ofNt mo-
lecular bonds of whichN0 are closed initially satisfies the
equation51

g~N0!~TNt ,N0112TNt ,N0
!1r ~N0!~TNt ,N0212TNt ,N0

!521.
~74!

The left hand side can be considered to be the adjoint op
tor of the master equation acting on the average lifeti
TNt ,N0

. For the initial conditionN05Nt , the equation is
solved exactly by

T5TNt ,Nt
5(

i 51

Nt 1

r ~ i !
1 (

i 51

Nt21

(
j 5 i 11

Nt )k5 j 2 i
j 21 g~k!

)k5 j 2 i
j r ~k!

, ~75!

where the first term is the result, Eq.~30!, for vanishing
rebinding and the second term results in a polynomial
orderNt21 in g. For f 50, Eq.~75! is identical to the earlier
result Eq.~54! obtained by Laplace transforms. Both expre
sions are polynomials of orderNt21 in g, but in the general
case from Eq.~75!, the coefficients depend on force. F
Nt52, we obtain the result from Eq.~73!. ForNt53, we find

T5e2 f1
e2 f /2

2
1

e2 f /3

3
1gS e25 f /6

6
1e23 f /2D

1g2
e211f /6

3
. ~76!

For Nt52 and 3,T can also be derived by explicitly sum
ming over all possible dissociation paths. For largerNt , di-
rect summation becomes intractable and the results follow
from the general formula Eq.~75! become rather lengthy. In
general, force always affects most strongly those terms
highest order ing, thus for g.1, application of force is
therefore an efficient way to reduce average lifetimeT. For
FIG. 21. Dissociation rateD of the
overall cluster forg51 andNt51, 5,
10, 25, 100, and 1000.~a! f 50.25Nt

and ~b! f 5Nt .
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FIG. 22. Average lifetimeT according
to Eq. ~75! ~solid lines! of adhesion
clusters withNt51, 2, 5, 10, 15, and
25 as a function off /Nt for ~a! g
50.1 and~b! g51. The critical forces
for these rebinding rates aref c /Nt

50.0355 and 0.278, respectively
where the deterministic results for th
lifetimes ~dashed lines! diverge.
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g,1, T is dominated by those terms of lowest order ing,
thus here the reduction of lifetime with increasing force
not modulated by rebinding.

Figure 22 shows the average lifetime of adhesion cl
ters of sizeN051, 2, 5, 10, 15, and 25 as a function
force-size ratiof /Nt for the rebinding constantsg50.1 and
g51.0. For small forces,f ,1, the average lifetime plateau
at the value given by Eq.~54!. For large forces,f .Nt , that
is, when the force on each single bond is larger than
intrinsic force scale, the limit of vanishing rebinding appli
~for Nt51 lifetime is independent ofg, compare also Fig
15!. The critical forces for the given rebinding rates aref c

50.0355Nt and f c50.278Nt . In the intermediate force
range, roughly aroundf c , the lifetime is reduced from the
zero force to the zero rebinding limit. This reduction is dr
matic for large clusters (Nt>10) with appreciable rebinding
(g>1), where the lifetime is reduced by orders of mag
tude. We also show the lifetime following from the determi
istic framework, which provides a lower limit for the lifetim
at large forces, because here the largest clusters have
shortest lifetimes for a given force-size ratiof /Nt . Below
the critical force the deterministic lifetime is infinite and th
stochastic curves approach the plateaus, Eq.~54!, determined
by fluctuations towards the absorbing boundary.

Figure 23~a! demonstrates the influence of rebinding
the average lifetime at different levels of force. Here w
show average lifetimeT as function ofg for Nt510 and for
increasing values of force. Forf 50 the curves are as de
picted in Fig. 13. Increasing force reduces the lifetim
strongly and leads to an almost constant lifetime for differ
g ~compared to the strong increase forf 50). Only when
rebinding is sufficiently strong that force is smaller than t
critical force, f , f c , lifetime begins to grow. The increas
observed then is similar to that for vanishing force, only th
Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP
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the absolute value of lifetime is smaller. For example, fof
50.6Nt , the cluster grows strongly forg>5 where the criti-
cal force is f c50.82Nt ; for f 5Nt the strong increase is
observed for g>10, for which the critical force isf c

51.15Nt . A similar effect is observed for the dependence
average lifetime on cluster size, see Fig. 23~b!. At small Nt ,
cluster lifetime grows strongly at large forces according
Eq. ~30! due to shared loading. For largerNt , lifetime grows
slowly until Nt is large enough thatf c> f is reached. Above
this size,T grows on a rate comparable to that for vanishi
or small force. Forg50.1, the increase ofT with Nt is slow
throughout the shown range ofNt .

VI. DISCUSSION

In this paper, we have presented a detailed analysi
the stochastic dynamics of an adhesion cluster of sizeNt

under shared loadingf and with rebinding rateg. The corre-
sponding master equation has been solved exactly for sev
special cases. For vanishing rebinding (g50), the exact so-
lution Eq.~23! could be constructed because cluster deca
a sequence of Poisson processes. For vanishing forcf
50), we deal with a linear problem, which can be treat
with standard techniques. In the case of natural bounda
~that is for a reflecting boundary ati 50), the exact solution
Eq. ~41! follows with the help of a generating function. I
the general case of finite forcef and finite rebinding rateg,
for the caseNt52 and an absorbing boundary we used
eigenvalue analysis to derived the exact solution Eq.~70!. In
principle, the same method can also be applied for a refl
ing boundary or for larger clusters, but this does not lead
simple analytical results.

For vanishing force (f 50) and an absorbing boundar
at i 50, we introduced the ‘leakage approximation’~also
FIG. 23. Average cluster lifetimeT ~a!
as function of rebinding rateg for Nt

510 andf /Nt50, 0.1, 0.3, 0.6, and 1
and ~b! as function of cluster sizeNt

for g51.0 andf 50, 1, 2, and 10.
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known as ‘‘local thermal equilibrium description’’ in th
theory of protein folding!, which treats the absorbing bound
ary as a small perturbation to the exactly solved case of
reflecting boundary. The resulting formulas given in Eq.~46!
work well if average cluster lifetimeT is much larger than
the internal time scale 1/(11g) ~that is for large clusters o
strong rebinding!. All other cases have been treated with e
act stochastic simulations using the Gillespie algorith
which for large clusters is more efficient than the eigenva
analysis. Moreover, the study of single simulation trajec
ries offers valuable insight into the typical nature of unbin
ing trajectories expected for experiments.

Once the master equation is solved, either exactly
numerically, all quantities of interest can be calculated.
this paper, we focused on the mean number of closed bo
as a function of timeN(t), and the dissociation rate for th
overall clusterD(t). The first moment ofD(t) then gives
the mean cluster lifetimeT. In this paper, we derived a
exact solutionT5T(Nt , f ,g) from the adjoint master equa
tion, see Eq.~75!. For the special cases of vanishing rebin
ing and vanishing force, we also showed how the exact
mulas forT can be derived via completely different route
The result forT5T(Nt , f ) from Eq. ~30! follows from the
unique dissociation path without rebinding, while the res
for T5T(Nt ,g) from Eq. ~54! can be derived with Laplace
techniques as a mean first passage time for the case
reflecting boundary. In order to assess the role of fluct
tions, we also calculated the standard deviationssN andsT

for the distributions of the number of closed bonds and cl
ter lifetimes, respectively.

A special focus of this paper was a detailed comparis
between the stochastic and deterministic treatment. Reg
ing mean cluster lifetime, the deterministic treatment
rather good in the case of vanishing rebinding, althoug
underestimates the plateau value for cluster lifetime at sm
force. In the presence of rebinding, the deterministic tre
ment fails, because it includes neither the effect of fluct
tions nor the effect of an absorbing boundary. In particu
the deterministic treatment does not predict finite lifetim
below the critical forcef c , when clusters decay due to fluc
tuations towards the absorbing boundary. Only at very la
force, when rebinding becomes irrelevant, does the determ
istic treatment work well again. Regarding the average nu
ber of closed bonds, the deterministic model fails becaus
does not correctly treat the nonlinearity in the rupture ra
This effect is most evident for small clusters and at late st
of rupture. In general, the mean number of closed bond
the stochastic model decay in a smoother way than in
deterministic model, which typically shows an abrupt dec
in late stage. This abrupt decay in fact is typical for sha
loading and shows up in the stochastic model when one s
ies single simulation trajectories. In this sense, the determ
istic model makes an interesting prediction which should
confirmed in experiment, albeit not on the level of the fi
moment, as suggested by the deterministic model, but ra
on the level of single trajectories, as suggested by the
chastic model.

Our results can now be used to evaluate a large rang
different experimental situations. The stochastic dynamic
Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP
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adhesion clusters under force can be quantitatively stud
with many different techniques, including atomic force m
croscopy, optical tweezers, magnetic tweezers, the biom
brane force probe, flow chambers, and the surface force
paratus. In all of these cases, by measuring cluster lifetimT
and two out of the three parametersNt , f , andg, the third
parameter can be estimated with the help of our exact res
In general, our exact results nicely show how mean clus
lifetime T varies with cluster sizeNt , force f and rebinding
rate g. For example, if the single bond lifetime was on
second (k051/s), for f 50 andg50 a cluster lifetimeT of
one minute could only be achieved with 1026 bonds, because
in this case, cluster lifetime scales only logarithmically wi
cluster size. However, for a rebinding rateg51 (kon5k0),
only Nt510 bonds are necessary, because lifetime sc
strongly with rebinding,T;gNt21. Increasing force tof
510 would decrease lifetime toT50.05 s, becauseT is ex-
ponentially decreased byf . To reach one minute again, clus
ter size or rebinding rate had to be increased such thf
, f c . This impliesNt.50 or g.10. It is important to note
that these predictions are based on the assumption of
force transducers. In many experimental situations of in
est, the force transducer will be subject to elastic deform
tions or even to viscous relaxation processes, like for
ample when pulling on cells.59 In order to focus on generic
aspects of adhesion clusters, here we only studied the m
mal model for stochastic dynamics under force.

Our results can also be applied to experiments in c
adhesion. For example, the biomembrane force probe w
linear loading has recently been used to study the deca
anb3-integrin clusters induced on the surface of endothe
cells.29,41 If one makes sure that the clusters do not activ
grow during the time of dissociation, similar experimen
could now be done also for constant loading. Because
these kinds of experiments the exact cluster size is usu
unknown, one had to convolute our results with a Poiss
distribution for an estimated average number of bonds.34,39

Recently, our result for the average cluster lifetime of tw
bonds under shared force and with rebinding, Eq.~73!, has
been applied to the analysis of flow chamber data on leu
cyte tethering through L-selectin.42 Since in this case force
can be calculated as a function of shear flow, our formula
be used to estimate rebinding rate, which in this case tu
out to be surprisingly large. This in turn explains why diss
ciation dynamics in L-selectin mediated leukocyte tether
appears to be first order: for large rebinding, the leaka
approximation is rather good, and decay is exponential.

Our results cannot be directly applied to adhesion cl
ters which compensate for force-induced decay by ac
growth, as it has been found experimentally for foc
adhesions.60 Yet there are also interesting lessons for foc
adhesions which can be learned from our model. For
ample, our stochastic analysis confirms the prediction fr
the deterministic stability analysis that cluster stabil
changes strongly around the critial valuef c ~although small
clusters tend to decay also at smaller force due to fluc
tions towards the absorbing boundary!. It is interesting to
note that recent experiments measuring internally gener
force at single focal adhesions suggest thatf /Nt , the most
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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important scaling variable of our analysis, is roughly co
stant for different cell types.43,45 It is therefore tempting to
speculate that focal adhesions~or subsets of focal adhesion!
are regulated to be loaded close to the critical valuef c /Nt

5pln(g/e) from Eq. ~57!. In this way, cells could quickly
increase force on single bonds by small changes in actom
sin contractility. Large force on single closed bonds in tu
might trigger certain signaling events in focal adhesio
possibly by mechanically opening up certain signali
domains.61 Our speculation provides a simple way to es
mate the rebinding rate, which is very hard to measure
perimentally. Using compliant substrates, it has been fo
that focal adhesions are characterized by a stress con
;5.5 nN/mm2.43,45We do not know which of the many dif
ferent proteins in focal adhesions defines the weak
which most likely ruptures under force, but we expect tha
will have a similar area density as the integrin recepto
which are expected to have a typical distance between 10
30 nm, corresponding to 104 and 103 molecules permm2,
respectively. To obtain a lower estimate forg, we therefore
use Fc55.5 nN andNt5104. For activateda5b1-integrin
binding to fibronectin, recent single molecule experime
obtained for the molecular parameter valuesk050.012 Hz
and Fb59 pN.19 Therefore the rebinding rate can be es
mated to be at leastg50.2, that is,kon50.002 Hz in dimen-
sional units. Based on future experimental input, it would
interesting to extend our model of passive decay to ac
processes resulting in cluster growth under force.

Finally we want to comment that our model might al
be applied to situations in materials science which are
directly related to biomolecular receptor-ligand pairs. O
example is sliding friction, which recently has been mode
as dynamic formation and rupture of bonds under force.62 In
general, we expect that many more cohesion phenomen
materials can be successfully modeled as dynamic inter
between rupture and rebinding.
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