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Stochastic dynamics of adhesion clusters under shared constant force
and with rebinding
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Single receptor-ligand bonds have finite lifetimes, so that biological systems can dynamically react
to changes in their environment. In cell adhesion, adhesion bonds usually act cooperatively in
adhesion clusters. Outside the cellular context, adhesion clusters can be probed quantitatively by
attaching receptors and ligands to opposing surfaces. Here we present a detailed theoretical analysis
of the stochastic dynamics of a cluster of parallel bonds under shared constant loading and with
rebinding. Analytical solutions for the appropriate one-step master equation are presented for special
cases, while the general case is treated with exact stochastic simulations. If the completely
dissociated state is modeled as an absorbing boundary, mean cluster lifetime is finite and can be
calculated exactly. We also present a detailed analysis of fluctuation effects and discuss various
approximations to the full stochastic description. 2004 American Institute of Physics.
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I. INTRODUCTION strength is a dynamic quantity which depends on loading
rate. Experimentally, this prediction has been impressively
Cells in a multicellular organism adhere to each otherconfirmed for different molecular systerfid® Dynamic
and to the extracellular matrix through a large variety offorce spectroscopy has been implemented with different ex-
different receptor-ligand bondsAlthough not probed th's, perimental techniques, including atomic force microscopy;,

way .in trgditiopal qffinity experiments, adhe;ion bonds N qer optical tweezefsand the biomembrane force prob¥.
physiological situations usually have to function under Me-rhe behavior of molecular bonds under force can also be
chanical load. For example, cell-matrix adhesion in connec-

five ti ) il ided by focal adhesi hich 4)robed in parallel plate flow chambers. Here usually the
IVE issue IS mainly provided Dy foca’ adhesions, which ar oading process is much faster than bond dissociation, which
based on transmembrane receptors from the integrin famil

. ) Mherefore effectively occurs under constant 185 By now,
connecting the actin cytoskeleton to the extracellular matrix. : .
. . . . dynamic force spectroscopy has shown that adhesion bonds
Focal adhesions of fibroblasts, the main cell type in connec; . .
T . ... feature a much more complicated behavior under force than
tive tissue, are usually loaded by actomyosin contractility, in U ted by the traditional affinit <periments. in
particular, during tissue maintenance and wound healing. AR Iggzgs 183 U y the at (f) a tﬁ thy N pef te hs i
important class of adhesion contacts in endothelial sheets apgution.” Lsing concepts irom the theory of stochastic

. B,14-17 T _
adherens junctions, which are based on transmembrane r nam:;:ff ha bmdw_ug enelr%y Iandsgape can be recor;].
ceptors from the cadherin family connecting the actin cy-StrUCte rom the experimental data. During recent years, this

toskeletons of different cells. Endothelial tissue often is supNas been a}ccompllsheds Ig)r many dn‘(f)erent adhes_mrl Jecep-
jected to considerable external stress and strain, for examplE2rs: including mtegrm%,' cadherins?’ and selecting™
in lung and blood capillaries. Leukocytes circulating with the HOWever, while dynamic force spectroscopy up to now has
blood flow tether to and roll on vessel walls through trans-Mainly been applied to single bonds, in physiological set-
membrane receptors from the selectin family connecting th&ngs adhesion receptors usually operate cooperatively within
actin cytoskeleton to carbohydrate ligands on the Opposinﬁlustersz."’ Therefore the physical description of single adhe-
surface. Here contact dissociation is accelerated due to tHéon bonds under force now has to be extended to clusters of
shear flow pulling on the cells. In general, there are manydhesion bonds under force. Clusters also open up the pos-
more physiological conditions in which adhesion clusters ar&ibility of rebinding of broken bonds, which is known to be
subject to forces arising from intracellular or extracellularessential to achieve physiological lifetimes of adhesion clus-
processes, including cell motility, development, and angioiers. For single bonds, rebinding usually cannot be studied
genesis. due to elastic recoil of the force transducer after bond
During recent years, the behavior of different adhesiorfupture? In contrast, for adhesion clusters open bonds can
bonds under force has been investigated extensively on tHebind as long as other bonds are closed, thus keeping the
level of single molecules by dynamic force spectroscofly. spatial proximity required for rebinding. Only if the com-
This field has been pioneered by AFM experiments by Gaulpletely dissociated state is reached, rebinding becomes im-
and co-workersand later put onto a firm theoretical basis by possible and the cluster disintegrates as a whole.
Evans and Ritchié Because bond rupture can be modeled in  Although it is clear that force leads to accelerated cluster
the framework of Kramers theory as thermally assisted esdissociation, it is usually not known how it is distributed
cape over one or several transition state barriers, bondver the different closed bonds in different situations of
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interest. In many cases, most prominently in rolling adhe-and force, which are very helpful in evaluating adhesion ex-
sion, only few of the different bonds are loaded to an appreperiments, including rolling adhesidf.

ciable degree, thus dissociation occurs in a peeling In the following, we consider the situation in which a
fashion?*~2® However, due to geometrical reasons, even incertain number of bound adhesion receptors has been clus-
this case there will be a subset of bonds which are loaded ti¢red and connected to some force-bearing structure. We then
a similar extend. In the same vein, the loading situation agsk how strongly the force accelerates dissociation, and in
focal adhesions can also be expected to be rather comphNvhich sense dissociation can be balanced by rebinding. Since
cated. For the case of homogeneous loading, one further h#¢ are concerned with generic features of contact stability,
to distinguish between loading through soft and stiff our model does not consider spatial or concentration degrees

springs®’ In the latter case, all bonds are equivalent and &f freedp_m._ In Sec. II, we define the stochagtic variant of the
mean field description can be appli@din the first case, deterministic Bell model, which has three dimensionless pa-
force is shared equally between all closed bonds and thiimeters. Next we introduce the appropriate one-step master
coupling between the different bonds in the adhesion clustefquation describing the stochastic dynamics of an adhesion

is nontrivial. Recently, dynamic force spectroscopy has beefiluster under shared constant force and with rebinding. We
applied to this case for the first tiff&Here, a vesicle func- also explain how this master equation can be solved numeri-

tionalized with appropriate ligands is sucked into a micropi_caIIy with the Gillespie algorithm for exact stochastic simu-

pette and pressed onto a cell. On retraction, the vesicle iIé\tlons. In the two following sections, we discuss two special

peeled off from the outside to the inside of the contact re.cases of the model in which considerable analytical progress

gion. However, due to rotational symmetry around the mi-can be made. In each case, we first discuss deterministic

: . ) . . esults, and then turn to the full stochastic model. In Sec. IlI,
cropipette axis, all bonds in a ring around the periphery o . . S .
. we discuss the case of vanishing rebinding. In this case, bro-
the contact area share the homogeneous loading.

The equilibrium properties of adhesion clusters has beeken bonds cannot be reformed and the number of closed

; . L Bonds in the adhesion clusters decreases in a unique se-
theoretically studied beforE;**~*’mainly in reference to ex- d

) ; il dhesi th h i dquence of rupture events. This can be used to construct a
periments on 3_\/325'C € adnesion tnrough Spectiic 19andyq tion for the master equation and to derive an expression
receptor pairs>~3® For the nonequilibrium dissociation of

: L for the average lifetime of an adhesion clusters. In Sec. 1V,
adhesion clusters under force, a deterministic model has be% discuss the case of vanishing force. In this case, we deal
introduced in a seminal paper by B&lThis model has been ’

) > with a linear problem and analytical solutions of the master
mainly used to study more specific problems, for examplegyation can be derived for a reflecting boundary. They can
leukocyte rolling in shear flow? Recently, the deterministic e ysed in turn to derive an approximation for the case with
Bell model has also been extended to treat linear loading ofn apsorbing boundary. Cluster lifetime can be calculated
a cluster of adhesion bonds, which usually is applied in dyexactly as mean first passage time using Laplace techniques.
namic force spectroscopy”® A stochastic version of the | Sec. v we consider the general case with finite rebinding
Bell model has been introduced, but studied only in the larg@nd finite force. Although full analytical solutions are only
system limit and for specific parameter valdéd.ater the  feasible in the case of small clusters, cluster lifetime can be
stochastic model has been treated with reliability theory incalculated exactly for arbitrary cluster size. For larger clus-
the special case of vanishing rebindifigOther special cases ters, full solutions of the master equation are obtained by
of the stochastic model have been treated in order to evaluatact stochastic simulations. Simulations are also essential to
specific experiments, for example the binding probability becharacterize single unbinding trajecories and to understand
tween ligands and receptors on opposing surfaces as a funie role of fluctuations. We close in Sec. VI with a discussion
tion of contact time*>° of experimental issues.

In this paper, we use the stochastic version of the Bell
model tq study t'he case of constant §hared loading in coM; 1 AsTER EQUATION
prehensive detail. In contrast to applications to specific ex-
periments, we focus on generic features of the stochastié. Derivation
dynamics of a cluster of parallel bonds under shared constant ¢ rupture of molecular bonds can be modeled in the
loading and with rebinding. A short report on our main re-framework of Kramers theory as thermally activated escape
sults has been given befdteAs shown elsewhere, the same oyer a transition state barriet*1° Assuming an infinitely
stochastic framework as used here for the case of constagharp transition state barrier leads to the so-caieli equa-
loading can also be used to study the case of linear lo&ding.tjon for the single molecule dissociation rate as a function of
Compared with the deterministic model, the stochastic modelrce, k= koe™Fv.2 Here the force scalE,=kgT/x, is set
has several advantages: first, only the stochastic model ahy thermal energkgT and the distance, between the po-
lows to treat the experimental situation that rebinding betential minimum and the transition state barrier along the
comes impossible once the completely dissociated state hasaction coordinate of rupture. For a typical vakge=1 nm
been reached. Second, it includes fluctuations and nonlineand physiological temperatufie=300 K, we find the typical
effects, which are important for small adhesion clustersforce scale=,=4 pN. Physiological loading has indeed been
Third, using the well-developed theory on master equationsiound to be in the pN-range, both for cell-matrix
the stochastic model allows to derive analytical results foradhesiof®~**and rolling adhesiof!“ Values fork, andF,,
cluster lifetime as a function of cluster size, rebinding ratehave been measured during recent years with dynamic force
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f the master equation a&=0. As explained above, in biologi-
cal and biomimetic situations rebinding of the completely
dissociated state is usually prevented by elastic recoil of the
transducer. Therefore in the following we ggt=0 in order

/]\ fl\ /J\ /J\ /l\ to model an absorbing boundaryiat 0. Because the values
for ry andgg do not follow the general form given in E(R),

kl Tkon the boundary at=0 is anartificial boundary. Concerning
the upper end of the set of statesiatN,, the form N,
=0 represents a reflecting boundary and guaranteds; .

Thus, the upper boundary isnatural boundary of the master

FIG. 1. Schematic representation of an adhesion cluster under constaatquation
shared force: there aid,=5 receptor-ligand pairs=3 of which are closed o . .
and equally share the lodd A closed bond ruptures with the dissociation A quantity of Iarge 'nteNreSt is the average number of
ratek=koe'"". TheN;—i=2 open bonds rebind with the force-independent closed bondsN(7)=(i)=ZX",ip;j(7). From the master
assogiation ratdx(?n. .Our model has three_parameters: cluster dize di- equation Eq(l) one can deri\%
mensionless rebinding rate=Kk,,/ky and dimensionless force
N

dN o . dp; . . 3

- = | ——=—(r())+ 1)).

gr =2 gy = (r)+g()

spectroscopy for different receptor-ligand systems, includin
integrins?®% cadhering® and selectind!?2While the disso-
ciation ratek depends mainly on the internal structure of a
bond, the association ratg,, includes the formation of an
encouter complex and therefore depends on the details of the dN _ _ ¢IN

situation under consideration. It is very difficult to determine g r((i)+9((i))=—Ne""+ y(N;—N) (4)

kon experimentally, especially in the case of cell adhesion,

when the interacting molecules are anchored to opposingS Nas been done by Bé?IBelow we will see that the analy--

surface$*3%47|n order to focus on the generic features of >IS of this equation gives valuable insight into the generic

cluster stability, here we assume thht, is a force- features of our model. However, it is important to note that
) n

independent constant, in accordance with earlier theoreticdP" f= 0, the reverse rate(i) in Eq. (2) is nonlinear ini and
work 23273637 yture modeling might refine this assumption the average in Eq3) cannot be taken. Instead lower mo-

considering for example the effect of ligand-receptor separaMents are related to higher moments and one arrives at a
tion controlled by polymeric tethef& 5° complicated hierarchy of coupled differential equations. The
For the following, it is convenient to use dimensionlesssolution of the deterministic equation E@) will therefore
quantities. We define dimensionless timek,t, dimension- deviate from the average number of closed bonds obtained

less force f=F/F, and dimensionless rebinding ratg  ["oM the solution of the master equation E#). The same
=kyy/Ko. The dimensionless single molecule dissociationProPlem aglse%for thezhlgher moments. For example, for the
rate isk/ko=e'. We consider a cluster with a constant num- Varianceoy=(i)—(i)* one can derivé

ber of N; bonds, which initially are all closed and then un- o

dergo rupture and rebinding according to the appropriate W=(g(i)+r(i)>+2((i—(i))[g(i)—r(i)]), (5)
rates(Fig. 1). Since bond rupture is a discrete process, the

stochastic dynamics of the bond cluster can be described byhere again the average cannot be taken. As an approximate

Yt r(i) and g(i) were both linear functions in, Eq. (3)
would become an ordinary differential equation for This
suggests to study the deterministic equation

the one-step master equation treatment, one can expani) in a Taylor series around the
average foii, (i)=N.> Restricting the expansion to second
dpi _ order, thus assuming a Gaussian distribution, leads to the
E_ri+1pi+1+gi—1pi—1_[ri+gi]pi: (1) 3 , 9 '
following equations:
wherep;(7) is the probability that bonds are closed at time dN 2
7. Here ther; andg; are the reverse and forward rates be- e —NefN+ y(Nt—N)—aﬁ,e”NW, (6)
tween the possible statés(0O<i=<N,). They follow from T
dissociation and association rates of single bonds as do2
o —NoNe™+ y(N,—N)
ri=r(i)=ie' (2a dr [
and 2f  f2 )
2| Af/IN
. . —oyl e 2= —— 3|t ¥l (7)
9i=9(i)=y(N¢—1). (2b) N ( N 2NE) Y

Our model has three parameters, namely, cluster Nize In principle, these equations can be solved by numerical in-
rebinding ratey, and forcef. Sincei=0 should be guaran- tegration. However, it is much more instructive to consider
teed at any timer,,=0 has to be set fof>0, in addition to  the original master equation. Moreover, the deterministic
the definitions in Eq(2). Moreover, Eq.(2) impliesgy>0, equation Eq.(4) and its improved version Eq6) cannot
that is, after rupture of the last closed bond new bonds ardescribe the effect of an absorbing boundariy=a®. In order
allowed to form. This corresponds to a reflecting boundary oto consider this experimentally relevant case, one has to
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study the master equation Ed,) with the rates given in Eq. be inverted. In order to generate a random variahlevhich
(2). Finally, only the full stochastic analysis reveals the de-is distributed according to E¢10), one generates a random
tailed effect of fluctuations. numberé which is uniformly distributed over the intervgd,

1] and inserts it into the formula

B. Numerical solution In(&)
] _ _ Ty=— . (12

Below we will present analytical solutions for several ay
special cases of the master equation. In the general case, Weis is done for each type of reaction, leading to a set of
numerically solve the master equation by Monte Carlo methtimesr, . The time for the next reaction is then chosen as the
ods. In detail, for each set of parameter valdgs f, andy,  smallestr,,, that is,7=min,(r,). As shown in Refs. 53 and
we generate between 1@nd 10 trajectories with the help 54, this rule generates trajectories with the correct distribu-
of the Gillespie algorithm for exact stochastic simu-tion of times and types of subsequent reactions. With the
lations>*** By averaging for given time- over the different  forward and reverse rates E@) for rebinding and unbind-
simulation trajectories, we obtain the desired probablllty dlS'|ng of molecular bonds in the cluster, the random times are
tributions{pi(r)}i'\':to. In general it is also rather instructive determined by the functions
to study single simulation trajectories, because their specific In(£)
features are expected to be characteristic also for experimen- - = - >~ (133
tal trajectories. ¥(Ne—i)

The Gillespie algorithm was originally developed for ex- gnd
act simulation of the stochastic dynamics of coupled chemi-
cal reactions. Applied to our case, open and closed bonds _ _ _ ﬂgl (13b)
correspond to two different species of molecules and the '

e’

transition between these two species, that is, rupture and res algorithm is exact in the sense that the only sources of
binding, correspond to chemical reactions. The Gillespie aljnaccuracy lie in the choice of the random number generator

gorithm is very efficient because rather than discretizing time;q the finite number of trajectories used to calculate prob-
in small steps, it generates jumps between subsequent réagsility distribution.

tions. The basic quantity of the Gillespie algorithm is the

probability P(u, 7| 79,X)d 7 that the next reaction occurs in

the time interval 7o+ 7,79+ 7+ d7] and is of typex under  Ill. VANISHING REBINDING
the condition that at time the system is in staté. Inour A poterministic analysis
case,u has only two values corresponding to rupture and

rebinding, and the stat¥ of the system is completely de- ~ We start our analysis with the case of vanishing rebind-
scribed by the number of closed bonidsSince the rupture ing, y=0. Then the deterministic equation Ed) reads
and rebinding rates from E@2) are constant between sub- dN

sequent eventsd? does not depend on absolute timg In NefN, (14
fact it reads
_ L . In principle, the total number of bond is irrelevant in this
P(p.7170,X) = P(u,7li)=Po(7li)a,, ®) case. However, it is reintroduced through the initial condition
where Py is the probability that no reaction occurs in the N(0)=N,. Then Eq.(14) is solved implicitly by
time interval[0,7] anda, is the reaction rate for reactign.

dr

P, satisfies the differential equation 7(N)= E(Ni) —E(%), (15)
dP, ‘ ,
dar > a, |Po, €) whereE(z)=[;dz'e % /z' is the exponential integral. Un-
. fortunately, the inversion foN(7) is not possible in general.
and the initial condition Po(0)=1, therefore Py(7|i) In the deterministic description, cluster lifetinfge can

=e Gu®W7 P(u,7i) is properly normalized to unity as be identified with the timer at which only one last bond
can be shown by integrating over time and summing oveexists. SettingN(T4)=1 in Eq.(15) gives
reactions. The Gillespie algorithm generates trajectories in

which subsequent reactions are separated by the following Tdet:E(i) —E(f). (16)
rule. In the absence of other reactions, the probability for a Ny
reactionu in the time interval 7,7+d7] is given by From this result, we can extract three different scaling re-
pu(m)=a,e 2dr. (100 ~ gimes. For small forcef<1, we use the small argument
) expansion of the exponential integrd(z)~—T—In(2
The integral (whereI'=0.577 is the Euler constantand find
;
Fu(r)= J p.(7)dr' =1-e % (1) Taer=INN:. an
0

This corresponds to the familiar case of radioactive decay,
is the probability for a reaction occuring until time It in-  when the differential equatiodN/d7=—N leads to expo-
creases strictly monotonically from O to unity and thus cannential decayN=N;e™".
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For intermediate force, £f<N,, we can rewrite EQ. T , ,
(16) for the cluster lifetime as the sum of two integrals, pi—1(7)= fo dr'pi(7)pii—1(7—7")
1 e ? [t et ;
Toet™ ff,NtdZT%dZ? a8 —rie [ arpren (22

Thef second integral can be estimated to Mez(e ¥z)  which uses the fact that the stdte 1 can be reached only
<[idze *=e '—e <e L For the first integral, we can through the staté. This scheme is solved by
expand the integrand for small arguments, leading to

_ . Ni Ni Ni
[ dz(e %2)~ [Ey d2(1-2)/z=In(N/T). Since N>, ( . ) ) 1
i(r)= r e "W | ——! (23
the second integral can be neglected and we have Pi(7) 1:111 0 Z‘l gi r(k)—=r(j) @3
i
as can be shown by induction. The properties of this expres-
sion follow from the properties of the reverse raté)

_ , ~=ie"" which for finite force,f>0, is a nonmonotonous
For the time evolution of the cluster, both exponential inte-,ction of i. It diverges fori—0, has a minimum at

grals ir_1 Eq.(15) can be replaced by the small argum_ent:[f] (the integer closest t6) and grows as for i —. In
approximation as long all>f and hence the exponential the ynjikely case that the value bfis such that (j)=r (k)
decay proce_eds until the force per bond_l/|N=1. Thereafter for j#k, the limit of the expression in Eq23) for r(k)
the decay will be faster than exponential due to the destabl—_>r(j) has to be taken carefully. In order to treat this case

Taer In( %) : (19

lizing effect of force. roperly, one has to replace E@3) b

For large forcef>N;y, the second term in Eq16) can property N N P i :l/
be neglected and we can use the large argument approxima- ﬁ ) 2‘ i) ﬁ 1
tiozr; for the exponential integraE(z)~e %(1+2), leading  Pi(7)= A r(h) R e T0—r())
to r(ky#r(j)

e N NG
Taet™ 77 1/N, (20 X L[i 5| b (29)
i

Therefore cluster lifetime decays faster than exponential with ' I)<¢;(J)

f/N; in this regime. Now the small argument approximation,ynere we have used lim.o(1—e 27)/A=17 for A=r(i)

is not applicable to either of the two terms in H45) and  _y () |n Fig. 2 we plot the full solution to the master
the decrease |rN_ will be faster than exponential over the equation, that is, the state probabilitiegr) from Eq. (23),
whole range of time. for N;=10 and four different values of force For small

In summary, the analysis of the deterministic equationggrce  all states are appreciably occupied during the decay,
Eq. (14) allows to identify three scaling regimes of small, {hat js, each of the curves is a maximum of the set of curves
intermediate and large force. This analysis also shows th"ﬂuring a certain period of time. In the long rup, ap-

f/N; is an important scaling variable,_ which we will there- proaches unity and all othey, disappear, because without

fore use to analyze also the stochastic case. rebinding, the cluster has to dissociate eventually. For in-
creasing force, the shape of the curves changes considerably.
Now the lower stateéwith small number of closed bond}

B. Stochastic analysis hardly become occupied during the decay process. For very

. L , large force, the maximum occupancy changes directly from
For finite force,f>0, the reverse rate(i) in EQ.(2) iS¢ injtial stateN, over to the detached state O.

nonlinear ini and the boundary at=0 is artificial. Therefore With the help of the exact solution E3), any quan-

the master equation in general cannot be solved with stang, of interest can now be calculated. One quantity of large
dard techniques. However, in the case of vanishing rebind-

. — i\ — Nt -

ing, y=0, one can use the fact that the decay of the cIusteIrntereSt 's the av.erage numb.m(r) (i) E.'le.p'(T) of
. : closed bonds at time. For a single bondN is simply the

corresponds to a unigque sequence of events, with the numbeFobabili that the bond is attached

of closed bonds decreasing monotonously fidpto 0. The P ty P '

transition from staté (with i closed bonds presento the N(r)=p1(r)=e‘ef7. (25)

statei — 1 (with one more broken bonds a Poisson process

with the time-independent rate. If i bonds are present at For @ two-bond cluster we have

time 7, the probability that the next bond ruptures at time N(7)=p1(7)+2p,(7)

+ 7' is given by
—efr _2efl2,.
Piia(r)=rie”"i". 21) = 5gmie “TH(1-eMerze (26)

The state probabilityp;_, is related to the state probability For increasingN;, the corresponding expressions become
p; and the transition probabilitg;_,; _; by the recursive ex- increasingly cumbersome. In generhl(t) is a sum ofN,
pression exponentials with the different relaxation ratg$) with 1
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FIG. 2. The state probabilitp;(7) is
the probability thai bonds are closed
at time 7 (O<i<N,). Here thep; are
plotted as a function of time- for a
cluster of initial sizeN,=10 for y=0
and(a f=0, (b) f=1, (c) =10, and
(d) f=50.

<i=<N,. For small forcef<1, r(i)=~i and the smallest rate thanf, the cluster with the smallest size will decay the slow-
corresponds to=1, that is,N~e™ " on large time scales. In est, since it is subject to the smallest absolute force. In Fig. 3
this case, clusters of any size decay with the same slope ag plot InN as a function of timer for different values of
single bonds and the difference between single and multipleluster sizeN; and force per initial bond/N;. All curves
bond rupture lies in the prefactor, not in the time scale ofinitially show an exponential decay with the rate of a single

average decay. For intermediate forces fI<N,, and large
time scales, decay is dominated by=[f], that is, N

bond. For small forces decay stays exponential for almost all
times. The larger force, the earlier decay crosses over to the

~e~ 7 Thus the absolute value of force governs the longate stage regime of superexponential decay.

time behavior, with different sizes showing up only in the

As noted in Sec. Il, due to the nonlinear form iqfi)

prefactor. For large forceé,>N,, decay at large time scales =jef! for f>0, the first momenN(7) of the stochastic so-

is dominated byi=N;, that is,N~e*Ntef/N‘T. This implies

lution Eq. (23) is not identical with the functiolN(7) ob-

that for a given forcd, the largest clusters show the slowesttainted from the deterministic equation Ed4). In Fig. 4,

decays in the long run. However, if one contrdI§, rather

(o) |

results forN(7) derived from the deterministic and the sto-

FIG. 3. Average number of closed
bondsN as a function of timer for
different cluster sizedN;=1, 2, 4, 8,
and 16. (8 f/N;=0.01, (b) f/N,
=0.1, (¢) f/N;=1.0, and (d) f/N,
=5.0.
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@| N | | (0)

FIG. 4. Average number of closed
bondsN as a function of timer for
N,=8 and 16 anda) f/N;=0.1 and
(b) f/N;=1. Solid and dashed lines are
stochastic and deterministic results, re-
spectively.

10°

chastic description are compared to each other. For a smalajectories at large force is somehow predicted by the deter-
but nonzero force, the nonlinearity is small and the agreeministic description, compare Fig. 4. This had to be expected
ment between the two results is good in the initial phase obecause the deterministic equation describes a representative
the decay. Towards the end of the decay strong deviations aget single trajectory.
observed. Here, the force on each bond grows strongly and The probability for dissociation of the overall cluster
the nonlinearity of the transition rates is large. For increasindthat is for rupture of the last bohds defined byD(7)
force, fluctuations become less relevant and the deviatior py(7)=r,p1(7) and follows from Eq.(23) with the re-
between deterministic and stochastic results is increasinglyerse rater; from Eq. (2). The resulting formula has been
restricted to the very end of the decay process. given before in Ref. 38. For a single bond it is simply
In Figs. 5a) and §b) the result for the mean number of D(T):efe*effl For N,=2 we have
closed bonddN(7) is compared to single simulation trajec-

. . . f
tories for small and large forces, respectively. The single D(r)= 2e (e_efT_ e_zef/ZT) (27)
simulation trajectories are expected to resemble experimental 2—ef? ‘

realizations for the time evolution of the number of closed ]

bonds. The figure shows that for small force, the trajectoried! the special casé=21In2, the two rates(1) andr(2) are
decay in a similar way as does the average. For large forc&dual and we have

the traject(_)ries decay in a more abrupt way than the aver- D(7)=16re ", (28)
ages, that is, they appear to run along the average for most of

the time, but then decay rather abruptly towards the comin general, as folN(7), D(7) is a sum of exponentials
pletely dissociated state. In this case, fluctuations do not se ") and the decrease on long time scales is governed by
much affect the typical shape of the rupture trajectory, buthe exponential which decreases the slowest. In Fig. 6 we
rather the timepoint of rupture. The reason for this typicalplot D(7) for different values ofN; andf/N; (by controlling
behavior is that a large fluctuation towards the absorbing/N; rather thanf, the curves have comparable averages
boundary inevitably leads to a runaway process, since forcéhe caseN;=1 is a Poisson process with simple exponential
is increasingly focused on less and less bonds due to sharegcay. FolN,>1, D(0)=0, because instantaneous rupture of
loading. This type of rupture process is similar to avalanchesll bonds atr=0 is a higher order process. For large times,
or cascading failures in highly connected systems. Althouglall curves decay exponentially. For vanishing forte,0, the
rupture is rather abrupt, its timepoint is widely distributed, curves are very similar, with the same slope at large times.
leading to the smooth decreaseMfr) observed in the av- The maxima of the cluster dissociation rates ferO are
erage. In the large force case in Figbp we also show the described byT,,,,=InN;, in agreement with the result, Eq.
deterministic results foN(7) (for the small force case in (17), from the deterministic description. For sméiN;, the

Fig. 5a), they hardly differ from the stochastic resilts distributions are Gauss-like with small asymmetry and vari-
These curves show that the abrupt decay of single simulatioance. For largd/N;, they became Poisson-like, that is, they

FIG. 5. Single simulation trajectorigsolid lineg compared with the average number of closed badxs) (dashed linegsfor N;=10 and 25 anda) /N,
=0.1 and(b) f/N;=1. In (b), in addition the deterministic results are plotted as dotted lines.
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FIG. 6. Probability for dissociation of
T T the whole clusteD as a function of
time 7for N;=1, 2, 4, 8, and 16 fofa)
f/N,=0.0, (b) 0.1,(c) 1.0, and(d) 5.0.

0 0.002 0.004 0.006 -

develop a strong asymmetry with a maximum close to zerscale. This result differs from the deterministic one for small
and a pronounced long-time tail. The reason is that in thisorce, Eq.(17), by the constant’ and the additional contri-
case, decay is dominated by rupture of the first bond, that idqution 1/2\,, which vanishes for large clusters. For small
we are effectively back to a single bond systemcept that force, f<1, Eq. (32) is a good approximation for cluster
D(0)=0 as always for multiple bondls lifetime T. For intermediate force, f<N,;, the reverse
The average cluster lifetime can in principle be calcu-rate grows rapidly for states with<f, whereas for states
lated as the first moment of the overall dissociation rate  with i>f, r(i) remains close to. Therefore we can approxi-
mate the average lifetime of a clustertég —H; . Using Eq.

T= f:dTTD(T). (290 (32, we get

In practice, it has a simple form which can be derived with- T=In(N,/f). (33

out using the probability distribution Eq23). The waiting  Thus cluster sizeN, is now replaced by an effective size

time spent in stateé before the transition into state-1 is a N,/f, as we have already found in the deterministic frame-
stochastic variable characterized by the distribution function compare Eq(19). For large force,f>N,, the only

Eq. (21). Its average is given by the inverse transition rategym which contributes to Eq30) is the one for the rupture
1/r(i). Since the decay process is a sequence of such indgs ihe first bond. Then

pendent Poisson processes, we simply have
—fIN;

o1 T~ 2 (34
T= ~ m (30) Nt
— 8,55 and we deal essentially with a single bond effect: if the first
For =0 we get bond breaks, all remaining bonds follow within no time
Neoq (“domino effect”). This effect is also evident from the dis-

T—E T Hi, (31 sociation rateD (), which for very large force approaches a
Poisson distribution, compare Figid. In Eq. (34), the nu-
which are the harmonic numbers. The lifetime of a two-bondmerator represents the probability for single bond rupture
cluster is increased by a factor 3/2.5 with respect to the under force, while the denominator represents the probability
single bond, that of the three-bond cluster by ¥168, and  that any one out oN, identical bonds breaks first. Sinde

so on. For largéN; one can write® >Nqy in this regime, the first effect dominates ahdhcreases
1 with N;. For a givenf/N;, on the other hand, the lifetime
T~InN,+ N +I, (32 decreases with increasimg;, due to the increase in absolute
t

force. In contrast to the deterministic result, Eg0), the
whereI’=0.577 is the Euler constant. In fact this approxi- stochastic result Eq34) does not scale withi/N;. In Fig. 7
mation is very good already for small values Mf. The we plot the average cluster lifetime from Eq. (30) as a
weak (logarithmig dependence for largll; means that for function of f/N; for different values oilN,. For small force,
large adhesion clusters, size matters little since the bonds<1, T plateaus at the value given by the harmonic number
decay independently of each other and on the same timey, according to Eq.(31). In the regime of intermediate
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w0k N, = 10000 ]

1
2

7=L(2) =y D(NF D), (36

Ni
ol= 2,1

mannian{ function. For increasind\,, the variance con-

6¢ \ 100 ] where (Y)(N,+ 1) is the trigamma function andthe Rie-

10 } verges to a finite value. For zero force this limit is given by
2t k
1
0 . . . e S 5 o1 m?
10 10° 10* 16° 102 16" 10® 10 O'TZE -—z:§(2): = (37
f/N, =11 6

FIG. 7. Average adhesion cluster lifetirifeas a function of /N, for cluster ~ because the trigamma function vanishes in this limit. This
oo Rt vk e gt Srbmtors e vl s pESulL s an upper it for the vatiance in general, because
gimef<1. The dott’ed curve is tgrl]e app?c?ximatiﬁmln(o.e:u\lt/f ) for the the r_everse rate mcregsgs with increasing fa_r(:e’z_l ’ _The_
intermediate force regime,<Lf <N, . relative standard deviation+/T of cluster dissociation is
always smaller than unity, sincesk)2>3=x2. For single
bond rupture, we have a single Poisson process and it be-
comes exactly unity. For vanishing force and large clusters, it
force, 1<f<N, all curves fall on the master curv& scales as~1/InN,. Although it decreases with increasing
=In[0.61(N,/f)], as predicted by E(33). For large force, Ny, it does so in a different way than the Gauss process,
f>N,, the scaling withf /N, is lost, as predicted by E¢34).  which decreases as 1/NY?. The reason is that the contri-
Although deterministic and stochastic predictions for clusteibutions from the different subprocesses are not constant, but
lifetime T have similar overall features, the deterministic re-decrease as rupture proceeds. For large fofces|;, cluster
sult underestimates the plateau at small force and predicts alissociation becomes a Poisson process governed by the rup-
incorrect scaling withf/N; at large force. ture of the first bond. Then the first term dominates in Egs.
Higher cumulants of the various distributions provide (30) and (35). Therefore the relative standard deviation
information about the effect of fluctuations. For the numbero+/T~1 again. Moreover, now /T~ 1/Ntl’2, because now
of closed bonds at time, the width of the distribution is only the firstN,—f subprocesses contribute, with roughly
described by the variance, defined b§(7)=(i?)—(i)2. In  similar values, like in a Gauss-distribution. In Fighg we
Fig. 8a), we plot the relative standard deviation, plot o+/T as a function off/N; as it crosses over between
on(7)IN(7), for cluster sizedN,=8 andN,=16. It is zero the cases of vanishing and very large force, with a minimum
initially due to the initial condition and diverges for large aroundf/N;~0.3, that is, in the intermediate force range.
times. In regard to the distribution of cluster lifetime, the The narrow distribution at intermediate force is also evident
varianceo; can be calculated in the same way as the averagi Fig. 6. Figure 8b) also shows how the relative standard
lifetime, because for a sequence of independent stochastieviation decreases with increasing cluster $ize In gen-
processes, all cumulants simply add up. The variance of theral, the agreement between deterministic and stochastic de-
Poisson process E@21) is 1k2(i). Therefore the variance scriptions is best for large cluster sidg and intermediate

for cluster lifetime is force 1<f<N,. However, it should also be noted that the
\ definition of deterministic lifetime is somehow arbitrary, be-
- 25 1 cause a discrete cutoff has to be introduced in a continuum
ITT & 20y (39 description. Especially for small clusters the choice of the
=1 re(i) plC pecially for sma _
cluster size at which dissociation occurs will have a large
For vanishing force this expression reads influence onT.
5 7 o r r
N | @ / " (b)

b=
w »
.,
\\
e
—-|$

0 2r=TTse . R . 162 . - .
0 01 02 03 0.4 10 104 102

"

10° f/Nt‘l(]2

FIG. 8. (a) Varianceoy for the number of closed bonds in relation to the average number of closed Noasifunction of timer for f/N,=1.0 andN
=8 (solid) and 16(dashedl (b) Varianceo for cluster lifetime in relation to average cluster lifetifieas a function off/N, for N;=1, 10, 100, 1000, and
10 000.
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FIG. 9. (a) State probabilitieg;(7) from Eg. (41) for N;=10 with f=0 andy=1 for a reflecting boundary at=0. (b) N/Nq and oy /N for N;=100, f
=0 andy=0.1, 1, 5, and 10.

IV. VANISHING FORCE rebinding, the faster the system equilibrates. In the stationary
A. Deterministic analysis state, the state probabilities follow a binomial distribution
We now turn to the case of vanishing fordes 0. Then pi(%0) = '\_‘t 4 (42)
the deterministic equation E¢4) reads ' F(1+p)™
dN because the bonds are independent and each bond is closed
a9, = N+TY(N=N). (38 and open with probabilities/(1+ y) and 1/(1+ y), respec-
o N . o tively.
For the initial conditionN(0)=N,, its solution is The generating function also allows to calculate all mo-
y+e N7 1 ments of the distribution:
N(7)= ————N;=| 1+ —e "M7INg,. (39 .
1+vy y Q" J"G(s, 1) 3
I = —_—
Thus there is an exponentially fast relaxation frdinto the d(Ins)" |__,

equilibrium state withNgq= yN;/(1+ ) closed bondsN,

increases linearly with the rebinding constanrom Neq identical to the solution Eq39) of the deterministic equa-

=0 for y=0 and saturates &, for y>1. In the determin- . .
- o i o tion. In order to assess the role of fluctuations, we calculate
istic description, the lifetime of the cluster is infinite, because

the completely dissociated stdte=0 is never reached. the variance:

Since nowr (i) is linear ini, the first momenN(7)=(i) is

(l_ef(lJr 'y)T)

G Ui rea A

B ) . The relative standard deviatiowny /N essentially scales as

In the casd =0, the reverse rates defined in Ef) are 1 : : ;

. _ ! o o N for all times, thus fluctuation effects decrease with

linear ini andr(0)=0 ati=0. Natural boundary conditions . . . .

imply g(0)= yN, , that is, a reflecting boundary condition at increasing bond number in the usual way. The stationary
Py g Y ’ g y state  value is  lim_.on(7)/N(7)=[(1+y)Ngg 2

i=0. A linear system with natural boundary conditions can —12 oo ;
. . o . =(yN;) "% Therefore larger rebinding does not only in-

be solved with standard techniques. For the initial condition L
crease the equilibrium number of bonds, but also decreases

Pi(0)= SNy @ generating function has been derived bythe size of the fluctuations aroumdi,. This leads to a nar-

B. Stochastic analysis

: 56
McQuarrie: row distribution for large cluster under strong rebinding,
Nt i (s—1)e" N4 14 5\ M with a small probability of coming close to the lower bound-
G(s,1)=2, spi(7)= Y ary.

(40) In Fig. 9a), we plot the state probabilitigs; from Eq.
(41) for cluster sizeN,=10 and rebinding constang= 1.

The state probabilities follow from the generating function asThe system quickly relaxes to the equilibrium state. The only

difference for different initial conditions is in the initial tran-

14'G(s,7) : ,
pi(7)= T sient. In particular, forNy=N,,, the average does not
' s=0 change in time, although the distribution initially spreads to
N, (y+e (1 N7)i(1— g~ (NN the binomial one. Fory=1, the statio.nary diStI’ibl:ItiO.I’l i§
=1 ) 1+ " (42) symmetric around the average. The width of the distribution

for different vy is illustrated in Fig. %), which shows the
One can easily check that by setting=0 in Eq. (41), one  average number of closed bonds normalized by the equilib-
obtains the same result as by setting0 in Eq.(23). Equa-  rium number of bonds, that i8l/N¢, together with the rela-
tion (41) shows that the systems relaxes to the stationaryive standard deviatioory /N for different values of the re-
state on a dimensionless time scale (i), thus the larger binding constanty. The curves folN are independent dfl,
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10° : , , , leads to loss of this realization. The time scale for the de-
crease inN is thus determined by the probability for fluctua-
tions from the steady state to the absorbing boundary.
Because a full analytical solution is not available for the
case of an absorbing boundary, we now introduce an ap-

10' 3
% i A P WAt A My proximation for this case. It is similar to the local thermal
el ] equilibrium description introduced by Zwanzig for modeling
protein folding dynamics’ Our starting point is that for
107 . . . R large clusters and strong rebinding, the absorbing boundary
0 10 20 30 9 ¢ 50 is a small perturbation to the solution for the reflecting

FIG. 10. Single simulation trajectories fé~=0, y=0.5, N;=10, 100, and boundary' Eq(42), which in the following we will denote by
1000 and an absorbing boundanyi at0. Solid lines are the average number {p|}, o- Since g(0)=0 for the absorbing boundaryp,

of closed bondsN and dashed lines are the equilibrium number of closed =r,p; with r;=1 and probability will only accumulate in
bondsNeg. the completely dissociated state. Singgis slaved to the
other state probabilities and since we expect only a small
perturbation for the states witk= 1, we assume that here the
different boundary only leads to a simple renormalization
caused by the “leakage” into the absorbing boundary:

due to the normalization. Figure(l® shows that with in-
creasingy, relaxation becomes faster and the width of the
distribution decreases.

For the biologically important case of an absorbing
boundary ati=0, it seems to be rather difficult to find a
closed-form analytical solution for arbitrary cluster sizes. For
Fhe caséN;=2, we Wi" present such a solution in the _follow- po(7)= prl(T’)dT,.
ing section. For arbitraryN;, we use Monte Carlo simula- 0
tions as described in Sec. Il. In Fig. 10, we show individual
simulation trajectories for different parameter values of in-Since relaxation to the steady state is faster than decay to the
terest, in comparison to the average number of closed bonddsorbing boundary;(7) can be taken to be the stationary
for reflecting and absorbing boundariesiat0. The plots  Vvalue, thatis, the constapf(«) according to Eq(42). Then
show that the number of closed bonds in a cluster first rePo(7)=P1(*)Jo[1—po(7')]d7", which is solved bypy(7)
laxes towards the steady state value, for which rupture angf 1—e~P1*)7. Therefore Eq(45) simplifies to
rebinding balance each other. Although for the absorbing _
boundary the number of closed bonds decreases with time in ~ Pi(7)=pi(*)e P17 for =1,
average, for individual realizations it stays roughly constant, B (46)
until a large fluctuation towards the absorbing boundary po(7)=1—e P,

pPi(71)=pi(7)[1=po(7)] for i=1,
(45)

05

s (b)
0.4 ]

03

pr
0.3
Pg
02
| Ps
0.1
0
0 10 20 30 0 . 50 0 20 40 60 80 . 100

FIG. 11. State probabilitieg; as a function of timer for different cluster sizedl;=5 (a) and(b) andN,=10 (c) and(d) and for rebinding rateg=1.0 (a)
and(c) and 5.0(b) and(d). The numerical solutionésolid curveg are compared to the leakage approximation @) (dashed curves
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10'

(a) GN
—
10° () 1 FIG. 12. (a) Average number of closed
bonds N obtained from stochastic
o simulations of the master equation for
y=1andN,=1, 2, 5, 10, and 10Qb)
Varianceoy of the cluster size distri-
102 | bution for the same parameters as in
(@.
. . - 10°
30 40 50 80 0 10 20 30 40 50
T T

time scale 1;(). In Fig. 11, we plot Monte Carlo solu- D(7")pool7—7")d7’, (47)
tions for the state probabilities in comparison to the approxi-

mation. Fory=1, the approximation does not work well for wherep, o 7) is the state probability for staie=0 with ini-
N;=5, but it does so already fdd;=10. Fory=>5, the ap- tial conditionp;(0)=4;5. Poo(7) can also be interpreted
proximation works well for both cluster sizes. Note that in as the probability for having returned to the boundary after
this approximation, a ternpy()e P1*)7 is missing for time 7. A Laplace transform of the equation leads to an al-

proper normalizationzi'topsl. This is a small error for gebraic relation between the Laplace transforms of the three

large clusters and strong rebinding. In order to assess tH&nctions:
validity of Eq. (46), we note that it presupposes that the time

We conclude that the solution decays exponentially on the | T
Po(7 :J

0

scale for relaxation to the steady state, (), is smaller D(s)= Po(S) ) (48
than the time scale for decay to the absorbing boundary, Pods)
1/py(e)=(1+ )"/ yN;. Thereforey should be larger than Here D(s)=fZe S"D(7) denotes the Laplace transform of
(Neg "M~ 1. the functionD (7). The explicit form of the probabilitp(7)

It follows from Eq. (46) that the mean number of closed s given in Eq.(41):
bonds decay in an exponential wal(7)=Ngge P1)7. N
This is confirmed by Fig. 12), which shows the corre- Do(7) = 1-e v (49)
sponding simulation results. Fof,=2, 5, and 10, we have 0 1+vy

P1(*)=0.5, 0.16, and 9210 3. Numerically we find 0.6, . .
0.13, and 0.01, thus the approximation is rather good. In Fi -Liir%oubeztg“typo'o“) can also be calculated with standard

12(b), we plot numerical results for the standard deviation
oy - The initial increase ofry is well described by Eq44)

for the reflecting boundary, thus the boundary has little in-  Poo(7)=
fluence here. Large clusters stay close to the steady state

during the time shown and the approximation is applicableThe Laplace transforms of the these two functions are given
For small clusters, the variance grows larger than the steadyy

1+ ,ye—(1+ )7\ N¢
1+vy

(50

state value before is decreases exponentially while the cluster 1 N, 1)

size N approaches zero. The variance contains two time Do(S) = . E (Nt> (.— ) (51)
scales. The second moment of the distribution decreases on (I+y)"ti=o | 1) s+i(1+y)

the same time scale as the average, while the square of the

first moment decreases twice as fast. The long time exponeﬁl—nd

tial decrease ofry is thus described by twice the relaxation 1 N N, y

time as is was found for the average number of bonds. Poo(S)= (]-‘I‘—’)’)Ntizo ( i )m (52

Although an exact solution for the state probabilities
seems to be impossible for the case of an absorbing boundp that the Laplace transformed first passage probability time
ary, more analytical progress can be made if one is onlyistribution is
interested in the probability that the cluster dissociates as a

whole. For the absorbing boundary, the cluster dissociation N, (Nt) (1)

rate has been denoted y(7) before. For the reflecting =0\ i /s+i(1+7y)

boundary,D(7) can be identified as the probability that the D(s)= v [N ¥ : (53)
statei =0 is reached for the first time at timeif the system Ei_‘o( i | sTi(1t )

has started in the staie=N, at time r=0. This is a first
passage problem which can be treated with Laplace techdnfortunately, the analytical backtransform i(s) seems
niques. Since the transition rates do not depend on absolute be impossible. However, the mean first passage time can
time, one can decompose the state probabilityife0 into  be extracted from this result, because it does not require the
two parts: backtransfron??

Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 121, No. 18, 8 November 2004 Stochastic dynamics of adhesion clusters 9009

" 107
@] T
b 14 |
10 FIG. 13. (a) Average lifetimeT of ad-
hesion clusters as function of cluster
100t sizeN; for rebinding rategy=0.0, 0.1,
0.5, 1, 5, and 10.0(b) Average life-
ol time T as function of rebinding con-
stanty for cluster sizeN,=1, 2, 5, 10,
20, and 50.
- = : - - - - 1¢°
10 20 30 40 50 60 70 102
Nt
dD(s) [ ([N foing| 1 fe
t —
T= = )— +Hp |- 54 eele| 1——=|=—7y. (56)
ds | _, 1+v E[(n n Nt (54) N

This equation is a polynomial of ordét— 1 in y. The zero These two equations allow to determine the critical values

order term is the harmonic numbety, so for y=0 we for cluster size and force:

recover the result from E¢31). In Fig. 13, we plot Eq(54) v
as a function of cluster siz¥,; and rebinding rate. As long fo= th'”(g
asy<1, cluster lifetime grows only weaklfogarithmically)

with cluster size(at least for not too large clustersFor y ~ @nd

>1, the higher order terms imtake over and the increase in

T becomes effectively exponential, as shown in Figal3n pln(
Fig. 13b), it is shown explicitly that increasing to values Ne=N;
larger than unity leads to a strong increase in lifetime. This 1+pln
effect is larger for larger clusters since the number of rebind-

ing events in the dissociation path is larger.

(57a

Y
e
Y
e

, (57b)

where the product logarithm pin(a) is defined as the solution
x of xe*=a. For small forces, the unstable fixed point is
V. EINITE FORCE AND FINITE REBINDING very close to zero. This implies that the stable fixed point is
an attractor for most initial conditions. Close to the critical
force, the unstable fixed point is close to the stable one and
Force destabilizes the cluster, while rebinding stabilize®nly the initial conditions abovéN. will reach the stable
it again. It has been shown by Bell that in the framework, offixed point. Equatior{57) scales in a trivial way witiN,, but
the deterministic equation, E¢4), the cluster remains stable in a complicated way withy. For y<1, we have f,
up to a critical forcef.? For the following it is helpful to  ~¥N;/e. Thus the critical force vanishes with, because
revisit his stability analysis. In equilibrium we have the cluster decays by itself with no rebinding. Fer 1 and
up to y~100, we havef.~0.5N;In+y. This weak depen-
Nec@"™ee=y(Ni—Neg). 59 dence ony shows that the single bond force scale sefFlgy
At small forcef, this equation has two roots, with the larger also determines the force scale on which the cluster as a
one corresponding to a stable equilibrium. As force in-whole disintegrates. Figure (& shows howf. crosses over
creases, a saddle-node bifurcation occurs. Above the criticditom linear to logarithmic scaling with.
force, no roots exist and the cluster becomes unstable. Ex- Equation(55) is an implicit equation which cannot be
actly at critical loading, the two roots collapse and the slopegnverted to giveNg, as a function of the model parameters
of the two terms become equal. This gives an additionaN,, f, andy. In generalN¢qdecreases fronyN,/(1+ y) for
equation f=0 to N, for f.. For small forces we can find an approxi-

A. Deterministic analysis

. FIG. 14. (a) Critical force Eq.(57) in
(b) relation to total cluster sizd./N,, as
1 function of the rebinding constant It
scales linearly(dotted curve at small
and logarithmically(dashed curvefor
] larger y. (b) Stable steady value for
\ number of closed bonds normalized by
R the critical value,Ngq/Neqe, for y
=0.1,1, and 10 as function of force
f/f. for N;=100. Numerical results

; . . o . i (solid lineg are compared to the ap-
107 10° 10' 10? 10° 102 107 f/f 10° proximation Eqg.(58) (dashed lines
Y c The horizontal line marks the smallest

possible value at the critical fordeg .

Downloaded 03 Nov 2004 to 141.14.235.71. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



9010 J. Chem. Phys., Vol. 121, No. 18, 8 November 2004 T. Erdmann and U. S. Schwarz

numerical results are compared to the approximation, Eq.
(59), for large forces and Ed61) for the divergence close to
the critical point. Obviously both approximations work well
for their respective limits. For different cluster sizds, the
plot remains basically unchangédot shown, because the
forces abovd . are already in the range where Efj6) pre-
dicts scaling withf/N; alone. For different rebinding con-
stantsvy the results are qualitatively the same, only that the

10° 100 critical force is shifted to different values.
f/N,

B. Stochastic analysis
FIG. 15. Deterministic mean lifetim& of a cluster ofN,=2100 bonds for y

y=1 as a function of the force-size ratioN, . Numerical integration of the In general, it seems to be difficult to find a closed-form
deterministic equatior{solid line) is compared to the exact solution for : : e _
vanishing rebindingdashed lingand the inverse linear scaliridotted ling analytical solution for the state pmbat_)lhtl%( 7) for ge_n
predicted close to the critical force. eral values ofy, f, andN;. In the following, we will derive
such an analytical solution for the cabg=2 with an ab-

sorbing boundary. In principle, solutions can be constructed
mate solution by first expanding the exponential function ini" the same way for a reflecting boundary or larger clusters,

Eq. (55) to second order irf/Ng, and then expanding the but for increasing cluster size, the analytical procedure
resulting quadratic function fO?Neq to second order in Auickly becomes intractable. For this reason, we will later

f1yN, - use simulations to deal with the general case.
‘ ) We start by rewriting the master equation, Efy), in
N f y+1[ f matrix form:
Nerw 0|1 = |~ 5| = | | (59
1+y YN 2 YN p="W-p. (62)

Figure 14b) shows numerical results fd¥.,/N. in compari-
son with the low force approximation E8), for different
rebinding constanty=0.1, 1.0, and 10 as function of force

For the caseN;=2 with an absorbing boundaryp
=(Po,P1.,P2)" and

f/f. and for cluster sizé&l;=100. 0 r 0

~n the deterministic framework, cluster I|.fet|me is infi- W=| 0 —(r;+g;) 1, |. 63)
nite for f<f., because a stationary state existdNg§. For 0
f>f., cluster lifetime is finite, but strongly varies as a func- 91 I

tion of N¢, f, andy. For f>f_, we can neglect rebinding Equation(62) is solved by?
and use the results from Sec. Ill, where we found for cluster
lifetime p(r)=e""p(0)=2 c,e*p,, (64)
A

f e~ (FNY
TeerEl T |~ /7 (59 where\ andp, are the eigenvalues and eigenvectorsiof
N,/ 1+(f/Ny) i - .

respectively. The coefficients, have to be determined from

compare Eq(20). As force f is decreased from above to- the initial condition
wards the critical valuef;, rebinding becomes important
again and cluster lifetime diverges. To understand this limit,  0)=>' ¢,p, . (65)
we note that here the system will evolve very slowly, be- A

cause it is still close to a steady state. Therefore we cagiyce the absorbing stapg=(1,0,0) is a stationary state
expand the time derivative o, compare Eq(4), for small  the corresponding eigenvalig= 0. The other two eigenval-
deviations from the critical state: ues are negative and correspond to transient states:

dN ¢

dN_ 7 [dN _ Mo~ (Q*w) (66)
dr of\dr (f=fo) '
fe Ne with Q) and w being defined as
=—efc/Ne(f—f )= —el TPN/e)(f—f ), (60) Q=(ry+r,+g;)/2 (67a

In this limit, the lifetime will be dominated by the time spent and
close to the critical state. The time for a significant change
Note that 6<w <) and hencex, ,<0. The transient eigen-

T~Ar~e [PNO/E+1] (61) states are

f—f.’
ThereforeT diverges like theC inverse of—f.. Figure 15 Aothy
g Cc- g — )\1+ r2 (68@

shows the lifetime of an adhesion cluster derived from nu- pl_g1
merical integration of the deterministic equation fpr1 91
andN;=100 as a function of the force-size rafitN;. The and
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FIG. 16. State probabilitieg; as a function of timer for N,= 10 with y=1 for forcef=0.1, 1, 3, and 1@a)—(d). In (a), the numerical solution is compared
with the leakage approximatioflotted line$. The intermediate force values are chosen below and above the criticalf {er€@e278N, .

Ni+rq
po=—| Aotra]. (68b)
91 9
1
The three eigenstatgg are linearly independent and form a P2(7)=| coswT)+

basis of the state space of the cluster. With the initial condi-
tion p;= Si Ny that is, p(0)=(0,0,1)", the coefficientsc, There is a competition between the hyperbolic terms, which

p1(7)= rfsinh(wr)e*‘”, (70)

)

sinw7) |[e” 7.

follow from Eq. (65) as grow on the time scale &/ and the exponential terms, which
decrease on the time scalé€)l/Sincew<(}, the exponential
Cxozl* (693 terms will win and only the stationary state survives.
N With the exact solution Eq.70), one now can calculate
-2 2 69p  any quantity of interest. For example, the mean number of
Cy, Y (69b |
27 M bonds,N(7)=2,ip;, follows as
and ri+9: . Q
VER N(7)=|2 cosliwT)+ sinhwT) e ™" (72
2 M The dissocation rate for the cluster as a whole as given by
The final result then can be written as D(7)=ryp1=pg, resulting in
Q -Q Mafa . -Q
pPo(7)=1—|cosHwr)+ ;smt{wr) e 7, D(7)= Tsmf’(wr)e T, (72

N FIG. 17. Single simulation trajectories

{ for N,=10, 100, and 100 foy=1 and
L at two different forceg@) f=0.28\,

) tq ffc an_d (b) _f=Nt>fc. Representa-
tive trajectories are compared to the
average numbeX of closed bonds re-
'~y sulting from averaging over a large
number of such trajectories.

I/
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FIG. 18. Average number of closed
bondsN for N;=1, 10, 100, and 1000,
y=1 and(a) f/N;=0.25 and(b) f/N,
=1. In (a), the numerical results are
compared to exponentially decaying
curves ~e~ 2" (dashed lineswith a
=1.28, 0.52, 0.072, and 0.0009 for in-
creasing bond number.

30 40 50 60 70
T

One easily checks that normalization is corregfD(7)dr  cluster, the system equilibrates towards the steady state and

=1. Mean cluster lifetimé now follows as then fluctuate around this value with very rare encounters of
- 1 the absorbing boundary. For the smaller clusters, however,
T:f D(r)d7= E(2e—f+e—f/2+ ye 372y, (73)  fluctuations towards the absorbing boundary frequently lead

0

to loss of individiual realizations. As a result, the average

As shown in the preceding sections for special cases, forceumber of closed bonds decays exponentially on a much
leads to exponentially decreased lifetimes, while rebindindaster time scale. Figure i) with =N, is above the criti-
leads to polynomial terms ity up to orderN,— 1. cal force and the behavior is changed qualitatively. A steady
Although the eigenvalue analysis can be used also fostate does not exist anymore and the clusters do not decay by
the general case of arbitrary cluster size, in this case it ifluctuations, but the size of each adhesion cluster is continu-
more efficient to use exact stochastic simulations as desusly reduced. Clusters of different size now decay on the
scribed in Sec. IIB. In Fig. 16 numerical solutions of the same time scale and rebinding events are very rare in com-
state occupancy probabilitie{qai}iN:‘0 are plotted forlN;=10  parison to rupture events.
with y=1 for four different force§=0.1, 1, 3, and 50. This Figure 18 plots numerical results for the average number
figure corresponds to Fig. 2 for vanishing rebinding and Figof closed bondsN as function of timer for two different
11 for vanishing force. For small force, the numerical solu-values off/N, and for cluster sizedl,=1, 10, 16, and 16.
tions compare well with the approximation E@6) intro-  For f=0.23N<f, after initial relaxation all curves decay
duced for vanishing force. For larger force, but still below exponentially. Forf=N>f., the larger clusters show a
the critical force, the state probabilities still decrease exposteep decrease in average cluster size at the end of the decay
nentially for large times, but the approximation E@6)  due to the effects of shared loading. For the small clusters,
breaks down, because the reference distribu{@nw)}i’“:to the average cluster size decreases slowly since cooperative
now had to be replaced by the unknown steady state for theffects are small.
case of finite force. If force is increased beyond the critical ~ Figure 19 plots the varianaey(7) of the distributionp;
force (f,=2.78 for y=1), a simple description is not avail- for the two force values used in the two previous figures.
able, because equilibration and decay occur on the same tinfelow the critical force the behavior is similar to that for
scale. For very large force, the behavior of the adhesion clugtanishing force depicted in Fig. 12. The variance decreases
ter approaches that for vanishing rebinding, with the analyti€xponentially after having traversed a maximum. For forces
cal solution, Eq(23). above the critical force, a different behavior arises. After
Figure 17 demonstrates that the decay process changggowing as expected in the initial phase, the variance dis-
dramatically as force is increased above the critical value. Iplays a sharp peak. This effect becomes more pronounced
displays trajectories of individual clusters with initially,  with larger cluster size.
=Ny=10, 100, and 1000 closed bonds in comparison with  In Fig. 20 a comparison of the average number of closed
the average number of bonds derived from a large number dfonds in the stochastic and the determinsitic description is
these trajectories. SincE.=0.278\, for y=1, Fig. 14a)  shown.N(7) is plotted for cluster size®;=10, 100, and
with f=0.28\; is below the critical value. For the largest 1000 for the force$/N,=0.1 and 1.0 and the rebinding rate

e ]l ®)
SN
10° | FIG. 19. Variancer, for forces(a) f
=0.25\, and (b) f=N, for y=1 and
] N¢=1, 10, 100, and 1000.
10°
102 . . . .
0 20 40 60 80
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N N . FIG. 20. Comparison of stochsatic and
(a) \ (b) deterministic results for the average
number of closed bond& derived

10 1 1@ :
\ | from numerical solutions of the master

equation(solid lineg and from inte-
b gration of the deterministic equation
10’ 1 (dashed curvesfor cluster sizesN;
~~~~~~~~~~~~ i =10, 100, and 1000 and forces)

\ f/N;=0.1 and(b) 1.0. The rebinding
rate isy=1.

0.1 0.2 0.3

o
N
~
(2]
©
St
3
N
o

vy=1.0. For small forcesf<f., the average number of i=0 with its appropriate statistical weight. One can show
closed bonds equilibrates towards the steady state and rthat the IifetimeTNt,N0 of a cluster with a total ofN; mo-
mains constant thereafter. The fluctuations occuring in théacular bonds of whiciN, are closed initially satisfies the
stochastic description lead to a slow decreas&lofAbove  equatior*
the critical force, the deterministic clusters decay as well,
and in a more abrupt way than the stochastic average. ~ 9(No) (T, ,Ng+17 Ty ng) F TN (T, Ng-27 Ty ng) = — 1.

We now turn to the dissociation rate of the overall clus- (74)

ter as a function of the model parameters. horl andf  1hg |eft hand side can be considered to be the adjoint opera-
=0.2N; andN, thatis, below and above the critical force, 1o of the master equation acting on the average lifetime
numerical results are plotted in Fig. 21. For a single bond;l—N \.. For the initial conditionN,=N;, the equation is
dissociation is a Poisson process with the maximunr at solt\}e(éi exactly by

=0 and an exponentially decreasing dissociation fate

=r(1)p1=efe‘ef7. For larger clusters and below the critical Nt Nt M HL;}_ig(k)
force, fluctuations to the absorbing boundary determine the T:TNt*Nt:izl m*’ =~ '=i2+1 T k)’
rate of dissociation, which vanishes &t 0, goes through a : K=
maximum and then decreases exponentially with time. Agvhere the first term is the result, E(B0), for vanishing
explained above, the exponential decay follows because déebinding and the second term results in a polynomial of
cay proceeds by rare fluctuations from the steady state t®rderN;—1 iny. Forf=0, Eq.(75) is identical to the earlier
wards the absorbing boundary. Above the critical force, thgesult Eq.(54) obtained by Laplace transforms. Both expres-
dissociation rate foN,>1 becomes more sharply peaked Sions are polynomials of ordét;— 1 in v, but in the general
and cannot be described with single exponential curves. &ase from Eq.(75), the coefficients depend on force. For
steady state does not exist anymore and dissociation does rét=2, we obtain the result from E¢73). ForN;= 3, we find
proceed by fluctuations. The trajectories in Fig. 17 have

(75

e—f/2 e—f/3 e—5f/6
shown that adhesion clusters decay fairly abrupt towards the T=e '+ + + 7,( +e” 3f/2)
end of the decay as a consequence of shared loading. This 2 3 6
cooperative instability is the reason for the sharp dissociation g 11f/6
distribution for large clusters under supercritical loading. The +9° 3 (76)

single bond that lacks this cooperativity still shows the ex-
ponential dissociation rate, which is now the slowest decayFor N;=2 and 3,T can also be derived by explicitly sum-
ing for the given force-size ratio. ming over all possible dissociation paths. For laryer di-
Whereas results for the dissociation rate have to be ohrect summation becomes intractable and the results following
tained numerically, the average lifetime can be calculatedrom the general formula Eq75) become rather lengthy. In
analytically®® The basic idea here is to sum the averagegeneral, force always affects most strongly those terms of
times for any possible pathway leading from the initial clus-highest order iny, thus for y>1, application of force is
ter sizeNy towards dissociation at the absorbing boundarytherefore an efficient way to reduce average lifetime~or

10?
D
10° |
FIG. 21. Dissociation ratd of the
overall cluster fory=1 andN,=1, 5,
>, 10, 25, 100, and 100Qa) f=0.29\,
10 and(b) f=N,.
10
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10! m— s : 10 F : : - -
T ! @7 1 (o) N |
& ¢l | FIG. 22. Average lifetimd according
x ! to Eq. (75 (solid lines of adhesion

\ clusters withN,=1, 2, 5, 10, 15, and

10° \ 102 \ 25 as a function off/N; for (a) y
N =0.1 and(b) y=1. The critical forces

10° = for these rebinding rates ar&. /N,

=0.0355 and 0.278, respectively,
102t ] where the deterministic results for the
lifetimes (dashed linesdiverge.

10° 102 107 1

o 3 . :
f/ N, F/Ny

y<1, T is dominated by those terms of lowest orderyin  the absolute value of lifetime is smaller. For example, ffor
thus here the reduction of lifetime with increasing force is=0.6N;, the cluster grows strongly fg=5 where the criti-
not modulated by rebinding. cal force isf.=0.82;; for f=N; the strong increase is
Figure 22 shows the average lifetime of adhesion clusebserved forg=10, for which the critical force isf,
ters of sizeNy=1, 2, 5, 10, 15, and 25 as a function of =1.19\;. A similar effect is observed for the dependence of
force-size ratiof /N, for the rebinding constantg=0.1 and  average lifetime on cluster size, see Fig(t83At small N,
vy=1.0. For small forcesf <1, the average lifetime plateaus cluster lifetime grows strongly at large forces according to
at the value given by Eq54). For large forcesf>N,, that  Eq.(30) due to shared loading. For largsy, lifetime grows
is, when the force on each single bond is larger than theslowly until N, is large enough that.=f is reached. Above
intrinsic force scale, the limit of vanishing rebinding appliesthis size,T grows on a rate comparable to that for vanishing
(for N;=1 lifetime is independent of, compare also Fig. or small force. Fory=0.1, the increase of with N, is slow
15). The critical forces for the given rebinding rates dge  throughout the shown range bf; .
=0.0353\; and f.=0.278\;. In the intermediate force
range, roughly around,, the lifetime is reduced from the
zero force to the zero rebinding limit. This reduction is dra-
matic for large clustersN;=10) with appreciable rebinding In this paper, we have presented a detailed analysis of
(v=1), where the lifetime is reduced by orders of magni-the stochastic dynamics of an adhesion cluster of 8lze
tude. We also show the lifetime following from the determin- under shared loadinfyand with rebinding rate. The corre-
istic framework, which provides a lower limit for the lifetime sponding master equation has been solved exactly for several
at large forces, because here the largest clusters have thpecial cases. For vanishing rebinding=0), the exact so-
shortest lifetimes for a given force-size ratiéN;. Below lution Eq.(23) could be constructed because cluster decay is
the critical force the deterministic lifetime is infinite and the a sequence of Poisson processes. For vanishing fdrce (
stochastic curves approach the plateaus(&4), determined =0), we deal with a linear problem, which can be treated
by fluctuations towards the absorbing boundary. with standard techniques. In the case of natural boundaries
Figure 23a) demonstrates the influence of rebinding on(that is for a reflecting boundary at0), the exact solution
the average lifetime at different levels of force. Here weEq. (41) follows with the help of a generating function. In
show average lifetim& as function ofy for N;=10 and for  the general case of finite fordeand finite rebinding ratey,
increasing values of force. Fdr=0 the curves are as de- for the caseN;=2 and an absorbing boundary we used an
picted in Fig. 13. Increasing force reduces the lifetimeeigenvalue analysis to derived the exact solution(#6).. In
strongly and leads to an almost constant lifetime for differenfprinciple, the same method can also be applied for a reflect-
v (compared to the strong increase fior0). Only when  ing boundary or for larger clusters, but this does not lead to
rebinding is sufficiently strong that force is smaller than thesimple analytical results.
critical force, f<f, lifetime begins to grow. The increase For vanishing force {=0) and an absorbing boundary
observed then is similar to that for vanishing force, only thatat i =0, we introduced the ‘leakage approximatidi@lso

VI. DISCUSSION

FIG. 23. Average cluster lifetim& (a)
as function of rebinding rate for N,
=10 andf/N,=0, 0.1, 0.3, 0.6, and 1
and (b) as function of cluster siz&\,
for y=1.0 andf=0, 1, 2, and 10.

167 10° 10' Y 5 10 15 20 25 Nt 30
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known as “local thermal equilibrium description” in the adhesion clusters under force can be quantitatively studied
theory of protein folding which treats the absorbing bound- with many different techniques, including atomic force mi-
ary as a small perturbation to the exactly solved case of theroscopy, optical tweezers, magnetic tweezers, the biomem-
reflecting boundary. The resulting formulas given in Ef) brane force probe, flow chambers, and the surface force ap-
work well if average cluster lifetim&@ is much larger than paratus. In all of these cases, by measuring cluster lifelime
the internal time scale 1/(#Ly) (that is for large clusters or and two out of the three parameté\s, f, and v, the third
strong rebindiny All other cases have been treated with ex-parameter can be estimated with the help of our exact results.
act stochastic simulations using the Gillespie algorithm/|n general, our exact results nicely show how mean cluster
which for large clusters is more efficient than the eigenvaludifetime T varies with cluster siz&\,, force f and rebinding
analysis. Moreover, the study of single simulation trajecto+ate v. For example, if the single bond lifetime was one
ries offers valuable insight into the typical nature of unbind-second k,=1/s), for f=0 andy=0 a cluster lifetimeTl of
ing trajectories expected for experiments. one minute could only be achieved with?®onds, because
Once the master equation is solved, either exactly o this case, cluster lifetime scales only logarithmically with
numerically, all quantities of interest can be calculated. Incluster size. However, for a rebinding rafe=1 (k,,=Ko),
this paper, we focused on the mean number of closed bondsly N;=10 bonds are necessary, because lifetime scales
as a function of timeéN(7), and the dissociation rate for the strongly with rebinding, T~yNt"1. Increasing force tof
overall clusterD(7). The first moment oD(7) then gives =10 would decrease lifetime t6=0.05 s, because is ex-
the mean cluster lifetim&. In this paper, we derived an ponentially decreased y To reach one minute again, clus-
exact solutionT=T(N,,f,y) from the adjoint master equa- ter size or rebinding rate had to be increased such fthat
tion, see Eq(75). For the special cases of vanishing rebind-<f.. This impliesN;>50 or y>10. It is important to note
ing and vanishing force, we also showed how the exact forthat these predictions are based on the assumption of rigid
mulas forT can be derived via completely different routes. force transducers. In many experimental situations of inter-
The result forT=T(N,,f) from Eg. (30) follows from the est, the force transducer will be subject to elastic deforma-
unique dissociation path without rebinding, while the resulttions or even to viscous relaxation processes, like for ex-
for T=T(N,,7) from Eq.(54) can be derived with Laplace ample when pulling on celf® In order to focus on generic
techniques as a mean first passage time for the case ofampects of adhesion clusters, here we only studied the mini-
reflecting boundary. In order to assess the role of fluctuamal model for stochastic dynamics under force.

tions, we also calculated the standard deviatiegsand o¢ Our results can also be applied to experiments in cell
for the distributions of the number of closed bonds and clusadhesion. For example, the biomembrane force probe with
ter lifetimes, respectively. linear loading has recently been used to study the decay of

A special focus of this paper was a detailed comparisiony, B3-integrin clusters induced on the surface of endothelial
between the stochastic and deterministic treatment. Regardells?>*! If one makes sure that the clusters do not actively
ing mean cluster lifetime, the deterministic treatment isgrow during the time of dissociation, similar experiments
rather good in the case of vanishing rebinding, although itould now be done also for constant loading. Because in
underestimates the plateau value for cluster lifetime at smathese kinds of experiments the exact cluster size is usually
force. In the presence of rebinding, the deterministic treatunknown, one had to convolute our results with a Poisson
ment fails, because it includes neither the effect of fluctuadistribution for an estimated average number of bottds.
tions nor the effect of an absorbing boundary. In particularRecently, our result for the average cluster lifetime of two
the deterministic treatment does not predict finite lifetimebonds under shared force and with rebinding, &®), has
below the critical forcef., when clusters decay due to fluc- been applied to the analysis of flow chamber data on leuko-
tuations towards the absorbing boundary. Only at very largeyte tethering through L-selectfi.Since in this case force
force, when rebinding becomes irrelevant, does the determirgan be calculated as a function of shear flow, our formula can
istic treatment work well again. Regarding the average numbe used to estimate rebinding rate, which in this case turns
ber of closed bonds, the deterministic model fails because ut to be surprisingly large. This in turn explains why disso-
does not correctly treat the nonlinearity in the rupture rateciation dynamics in L-selectin mediated leukocyte tethering
This effect is most evident for small clusters and at late stagappears to be first order: for large rebinding, the leakage
of rupture. In general, the mean number of closed bonds iapproximation is rather good, and decay is exponential.
the stochastic model decay in a smoother way than in the Our results cannot be directly applied to adhesion clus-
deterministic model, which typically shows an abrupt decayters which compensate for force-induced decay by active
in late stage. This abrupt decay in fact is typical for sharedgrowth, as it has been found experimentally for focal
loading and shows up in the stochastic model when one studdhesion§? Yet there are also interesting lessons for focal
ies single simulation trajectories. In this sense, the determinadhesions which can be learned from our model. For ex-
istic model makes an interesting prediction which should beample, our stochastic analysis confirms the prediction from
confirmed in experiment, albeit not on the level of the firstthe deterministic stability analysis that cluster stability
moment, as suggested by the deterministic model, but rath@hanges strongly around the critial valfie(although small
on the level of single trajectories, as suggested by the stalusters tend to decay also at smaller force due to fluctua-
chastic model. tions towards the absorbing boundarit is interesting to

Our results can now be used to evaluate a large range ofote that recent experiments measuring internally generated
different experimental situations. The stochastic dynamics oforce at single focal adhesions suggest tha;, the most
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