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We study the formation of protein-protein encounter complexes with a Langevin equation approach
that considers direct, steric, and thermal forces. As three model systems with distinctly different
properties we consider the pairs barnase:barstar, cytochrome c-cytochrome c peroxidase, and
p53:MDM2. In each case, proteins are modeled either as spherical particles, as dipolar spheres, or
as collection of several small beads with one dipole. Spherical reaction patches are placed on the
model proteins according to the known experimental structures of the protein complexes. In the
computer simulations, concentration is varied by changing box size. Encounter is defined as overlap
of the reaction patches and the corresponding first passage times are recorded together with the
number of unsuccessful contacts before encounter. We find that encounter frequency scales linearly
with protein concentration, thus proving that our microscopic model results in a well-defined
macroscopic encounter rate. The number of unsuccessful contacts before encounter decreases with
increasing encounter rate and ranges from 20 to 9000. For all three models, encounter rates are
obtained within one order of magnitude of the experimentally measured association rates.
Electrostatic steering enhances association up to 50-fold. If diffusional encounter is dominant
�p53:MDM2� or similarly important as electrostatic steering �barnase:barstar�, then encounter rate
decreases with decreasing patch radius. More detailed modeling of protein shapes decreases
encounter rates by 5%–95%. Our study shows how generic principles of protein-protein association
are modulated by molecular features of the systems under consideration. Moreover it allows us to
assess different coarse-graining strategies for the future modeling of the dynamics of large protein
complexes. © 2008 American Institute of Physics. �DOI: 10.1063/1.2996082�

I. INTRODUCTION

Protein-protein interactions play key roles in many cel-
lular processes such as signal transduction, bioenergetics,
and the immune response.1 Moreover, many proteins func-
tion in the context of protein complexes of variable sizes and
lifetimes. Examples of such complexes are ribosomes, poly-
merases, spliceosomes, nuclear pore complexes, cytoskeletal
structures such as the mitotic spindle or actin stress fibers,
adhesion contacts, the anaphase-promoting complex, and the
endocytotic complex.2 For yeast, 800 different core com-
plexes have been identified, suggesting the existence of 3000
core complexes for humans.3 In addition it has been shown
for yeast that most protein complexes are assembled just in
time during the course of the cell cycle.4 In fact, many pro-
tein complexes in the cell are highly dynamic, with fast turn-
over of many components. One can argue that their dynam-
ics, although experimentally very hard to access, is
biologically more relevant than their equilibrium properties.
Therefore a systematic understanding of the dynamics of
protein complexes in cells is one of the grand challenges in
quantitative biology.

The elementary unit of all of these cellular processes is
the bimolecular protein-protein interaction. The strength and

specificity of protein-protein association are determined by
the integrated effect of different interactions, including shape
complementarity, van der Waals interactions, hydrogen
bonding, electrostatic interactions, and hydrophobic effects.
For example, the importance of electrostatic interactions has
been demonstrated by experimental measurement at different
ionic strengths.5 To a first approximation, bimolecular reac-
tions are characterized by on and off rates. The equilibrium
association constant �or affinity� then follows as the ratio of
the two. From a conceptual point of view, on and off rates
are very different. On rates are commonly believed to be
controlled by the diffusion properties as well as by long-
ranged electrostatic interactions, whereas off rates are rather
controlled by short-ranged interactions such as hydrogen
bonding and van der Waals forces.

The main features of the dynamics of protein association
can be conceptualized within the framework of the encounter
complex.6 To this end, the association is divided into two
parts. First, mutual entanglement—the encounter
complex—is achieved by the proteins due to a transport pro-
cess including mainly diffusion but also electrostatic steering
on small length scales.7 If diffusion controlled, classical con-
tinuum approaches can be used to describe this part of the
process.8 To form the final complex, the system then has to
overcome a free energy barrier due to local effects such asa�Electronic mail: ulrich.schwarz@bioquant.uni-heidelberg.de.
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dehydration of the binding interface.9 Due to the various mo-
lecular contributions involved in this step, here the two bind-
ing partners essentially have to be modeled at atomic detail.
Moreover the solvent may need to be treated explicitly and
one might has to account for conformational changes.10

Thus, it appears reasonable to use the encounter complex as
a crossover point from a detailed, atomistic treatment to a
coarse-grained model and vice versa.

Thermal fluctuations are an essential element of protein-
protein encounter because they allow the two partners to ex-
haustively search space for access to the binding interface.
From the viewpoint of stochastic dynamics, protein-protein
association is a first passage time �FPT� problem which can
be addressed mathematically in the framework of the Lange-
vin equations. The application of the Langevin equations to
association phenomena goes back to early work in the col-
loidal sciences.11,12 In these early approaches, the reactants
were considered to have small spatial extensions and to be
uniformly reactive. For large biomolecules such as proteins,
the situation is fundamentally different. Typically, proteins
and other biomolecules have specific sites on their surface,
where a particular binding reaction can take place. Therefore,
such binding events are subject to intrinsic geometric con-
straints for every particular protein-protein pair or larger as-
sembly. The standard model for ligand-receptor interaction
was introduced by Berg and Purcell13 in the context of
chemoreception based on the idea of using reactive patches
to model anisotropic reactivity. Due to anisotropic reactivity,
also rotational diffusion becomes important. Shoup et al.14

showed that the effect of rotational diffusion can strongly
increase the association rate between a receptor with a flat
reactive patch and uniformly reactive ligands. Later, analytic
expressions for the association rate between two spherical
particles with both carrying flat axially symmetric15 and
asymmetric16,17 reactive patches were derived. Similar con-
cepts were also applied by Szabo et al.18

For many important aspects, analytical approaches are
not possible and computer simulations are required. This ap-
proach has been used early for protein-protein association.19

The importance of electrostatic interactions for long-ranged
attraction was also emphasized by the Brownian dynamics
simulations of protein-protein encounter.19–22 If atomic struc-
ture is taken into account, then successful encounters are
defined by simultaneous fulfillment of two to three distance
conditions between opposing residues on the two surfaces.23

The Brownian dynamics have also been used for the simula-
tion of high density solutions, e.g., by Bicout and Field24

who studied a cellular “soup” containing ribosomes, pro-
teins, and tRNA molecules, or by McGuffee and Elcock25

who simulated a crowded cytosol for 10 �s.
In order to develop a quantitative framework for model-

ing the dynamics of protein complexes, it is essential to un-
derstand the relative importance of generic principles and
molecularly determined features of specific systems of inter-
est. Only a good understanding of these issues will allow us
in the future to develop reasonable coarse-graining strategies
to address also large complexes of biological relevance. In
this study, we therefore address how general principles guid-
ing the diffusional association of biomolecular pairs are

modulated by their particular physicochemical properties. To
this end we have selected three molecular systems of interest
with different steric and electrostatic properties. One of the
best studied bimolecular complexes is the extracellular ribo-
nuclease barnase and its intracellular inhibitor barstar. Both
proteins carry a net charge of 2e and −6e, respectively,
which leads to a considerable electrostatic steering.26–30 Con-
sidering the structure of the two proteins, barnase has a bean-
like form, matching well on a large reactive area with the
nearly spherical barstar. A classic example of electrostati-
cally driven protein association is the iso-1-cytochrome
c-cytochrome c peroxidase �Cytc:CCP� complex, charged
with 6e and −13e, respectively, and exhibiting dipoles
aligned well with the reactive areas.19,31 Finally, we selected
the medically important complex of a peptide fragment of
p53 and its inhibitor MDM2, which is used for anticancer
drug design. In this system, electrostatic attraction plays a
minor role. On the other hand, the steric match of the two
surfaces is of particular importance here. It is a perfect ex-
ample of a key-lock binding interface, where p53 is buried
deep into a cleft on the MDM2 surface.

In this paper we systematically explore the effect of vari-
ous coarse-graining procedures on the rate for protein-
protein encounter for the three selected model systems. We
revisit early approaches based on the Langevin equations and
combine them with current knowledge on molecular struc-
ture. This paper is organized as follows: In Sec. II, we
present our different stochastic models and describe the
methods we use to parametrize the three considered bimo-
lecular model systems. Section III contains the main findings
of our study, which are discussed and summarized in Sec. IV.

II. MODELS AND METHODS

A. Modeling proteins at different levels of detail

One aim of this work is to determine how important
specific details of the model proteins are with respect to the
association properties. Therefore, we considered three differ-
ent levels of detail as depicted in Fig. 1 for the three chosen
systems. In the most generic approach �M1�, we only con-
sidered the steric interaction between spherical particles cov-
ered with reaction patches. As a first refinement �M2�, an
effective Coulombic interaction was introduced using the di-
polar sphere model �DSM�. Finally, since our Langevin
equation approach is particularly suited to capture aniso-
tropic transport, we consider a more refined version for pro-
tein sterics �M3�. In this approach the excluded volume of
each protein was modeled by 8–25 smaller beads. M3 uses
the DSM as well. In Fig. 1, we also show the full structures
in the bottom row as surface representations, including the
locations of the binding interfaces. In the following, the gen-
eral properties of the simulation model and the different
techniques used in this work will be explained.

B. Diffusion properties

The diffusion of the protein model particles is described
by an anisotropic 6�6 diffusion matrix in all versions of our
model. In Ref. 32, de la Torre et al. present a method to
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calculate this diffusion matrix from the protein data bank
�PDB� structure of a protein. This method has been imple-
mented in a software called HYDROPRO which is provided
online by the same authors. The basic concept is to put
spheres of a certain size at the position of any non-H atom.
The volume of these spheres effectively models a fixed hy-
dration shell. This construct is then filled up with smaller,
densely packed, but nonoverlapping spheres. Since the hy-
drodynamic properties of a rigid body are determined by its
outer boundary only, a shell of these small spheres is gener-
ated by deleting all spheres which have a maximum number
of possible neighbors. To this shell a sophisticated technique
is applied, which has been developed by de la Torre et al.
over the years, to calculate the diffusion matrix of such a
cluster of nonoverlapping spheres �see references in Ref. 32�.
Several system properties are implicitly contained in the dif-
fusion matrix, such as ambient temperature Ta=293 K, as
well as the density and dynamic viscosity of the solvent,
where we chose the respective parameters of water, �
=1 g /cm3 and �=10−3 Pa s. For simplicity, hydrodynamic
interactions were not introduced in our models, because the
corresponding effect on the association rates is expected to
be well below 10%.33

C. Langevin equation and simulation method

For the integration of the Langevin equation, which de-
scribes the stochastic motion of the particles, we follow an
approach which has been recently developed to model cell
adhesion via reactive receptor patches.34,35 Let Xt be a six-
dimensional vector describing position and orientation of a
particle at time t. Since the noise due to the Brownian motion

is additive �which means that it does not depend on Xt due to
a constant diffusion matrix�, the Langevin equation is given
by

�tXt = MF + gt. �1�

Here, F is a six-dimensional vector containing the force and
torque acting on the particle, and gt denotes Gaussian white
noise

�gt� = 0, �gtgt�� = 2kBTaM��t − t�� . �2�

As explained in Appendix C of Ref. 35, the Euler algorithm
can be used to solve a discretized version of this equation

X�t + �t� = X�t� + MF�t��t + g��t� + O��t2� . �3�

For proteins, the typical orders of magnitude are D
=10−6 cm2 s−1 and R=1 nm. Therefore, a reasonable choice
for the time step is �t=1 ps, as this leads to a mean step
length of �D�t=0.01 nm.

The mobility matrix M=D /kBTa of a particle is defined
in a particle-fixed coordinate system. Thus, the whole step
has to be calculated in terms of particle-fixed coordinates and
then transformed to the laboratory coordinate space. In par-
ticular, this transformation implies a rotation R regarding the
orientation of the particle. Special attention has to be paid to
the force F, which is typically calculated in the global frame
of reference and hence has to be transformed to particle
space before Eq. �3� can be evaluated. This backtransforma-
tion is achieved by applying R−1 to F. Since rotation matri-
ces R simply consist of a list of orthonormal vectors, their
inverse is equal to the transposed matrix R−1=RT. Thus Eq.
�3� can be rewritten as

X�t + �t� = X�t� + R�M�RTF�t���t + g��t�� + O��t2� .

�4�

As F and g are six-dimensional and contain information
about torque and rotation, Eq. �4� is only formally correct, as
R acts on both the translational and rotational parts of the
respective vectors separately.

In each step of the simulation, a displacement vector
�X�t� is drawn for each particle as described above. If this
global displacement leads to any violation of the hard core
repulsion, all suggested displacements are rejected and new
�X�t� are calculated. This procedure continues, until an up-
date of all positions and orientations is found which does not
lead to any overlap. In this way, the constraint according to
the excluded volume effect is included in the stochastic mo-
tion. The spherical reactive patches are not taken into ac-
count for the steric interactions, i.e., they may not only over-
lap pairwise but also with the model particles. One would
expect that our procedure leads to errors of order �t if two
particles are in close proximity of order �D�t. However, it
has been shown for a different system36 that, in practice, the
deviation from the expected behavior is very small and thus
the approach is reasonable.

D. Anisotropic versus isotropic diffusion

As mentioned before, the 6�6 mobility matrix M rep-
resents anisotropic diffusion. For large times, anisotropic dif-

FIG. 1. �Color� Scheme to visualize the different variants of the model for
the three considered model systems. The color code is yellow for barnase,
cytochrome c, and p53; green for barstar, cytochrome c peroxidase, and
MDM2. The respective reaction patches are shown in white. M1 only in-
cludes a simple steric interaction. M2 has an additional effective electro-
static interaction, here denoted with red arrows showing the direction of the
dipole of the model particles. In M3, the excluded volume is modeled in
more detail as a collection of smaller beads. The transparent blue spherical
surface marks the volume used in M1 and M2 for the sake of comparison.
Finally, the bottom row shows surface representations of the atomistic struc-
tures taken from the protein database atomistic structures taken from the
protein data bank �PDB�.
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fusion crosses over into isotropic diffusion because the infor-
mation about the initial orientation gets lost after a certain
relaxation time due to the rotational diffusion.37 In general,
translational and rotational diffusions are coupled so that
large time steps cannot be used. However, for the particular
systems studied here, we found that the diffusive coupling is
a very small effect. In particular, the major entries in the
diffusion matrix of the proteins used here according to
HYDROPRO multiplied with different powers of the Stokes
radius R�10−7 cm to make the dimensions comparable are
Dtt /R2�108 s−1, Drr�107 s−1, and Dtr /R�105 s−1. There-
fore, the effect of diffusive coupling is 10−2 and 10−3 smaller
than rotational and translational diffusions, respectively. Fi-
nally, the typical time scale at which the crossover is ex-
pected can be calculated to be 1 / �6Drr�	10 ns. Time steps
of this magnitude were rarely used in the simulations �see
below�, so that for most of the steps, the anisotropicity is
well preserved. Therefore we can safely neglect changes in
the anisotropicity of the mobility matrix.

E. System size and time step adaption

The simulations were performed in a cubic box with
periodic boundary conditions. Schreiber and Fersht5 used
concentrations between 0.125 and 0.5 �M in their experi-
mental studies of the association rate of the barnase:barstar
complex. The average volume containing one particle at a
concentration c is 1 /cNA with the Avogadro number NA=6
�1023 mol−1. Hence, the edge length of a cubic boundary
box representing concentration c can be calculated from L
=�3 V=1 /�3 cNA. For example, c=0.125 �M leads to L
	2370 Å for one pair of particles, which is two orders of
magnitude larger than the size of the proteins. Due to this
low density, the FPTs for encounter can be expected to be
much longer than the chosen time step. For computational
efficiency, we therefore used a variable time step in our
simulations. van Zon and ten Wolde38 suggested a method to
control the next collision when they introduced their Green’s
function reaction dynamics �GFRD�. In contrast to our work,
however, this method is based on isotropic diffusion. Gener-
alizing the GFRD to anisotropic diffusion is out of the scope
of our work and we therefore used the following scheme. We
first note that in GFRD each time step is chosen such that it
includes the next reaction. In our case, we also want to in-
vestigate the stochastic dynamics before the next encounter
event takes place. Thus a large time step is not chosen to
include the next encounter, but to bring the system to such a
configuration that encounter becomes more likely. This step
can be well represented by isotropic diffusion with an overall
diffusion constant D= �D11+D22+D33� /3 following from the
anisotropic diffusion matrix.

For an isotropic random walk, the displacement prob-
ability is given by a Gaussian distribution with spherical
symmetry. Thus, large spatial steps are exponentially sup-
pressed, which makes a step of size �rmax

H �H�6D�t an
H-sigma event. By setting �rmax

H =min
rij
eff� the smallest ef-

fective particle distance in the system, where effective means
the distance of the surfaces rij

eff= �ri−r j�−Ri−Rj with Ri de-
termining the maximal steric interaction radius of particle i,

one can estimate a reasonable time step for which a collision
is highly improbable. van Zon and ten Wolde found that the
choice H=3 provides good results, combined with the fact
that wrongly sampling a collision event would need a certain
direction of the displacement in addition to the length. As the
particles reach close proximity min
rij

eff�→0, the estimated
�t vanishes and thus the simulation would be slowed down
infinitely. Therefore, there has to be some lower boundary
for the time step �tmin, which is generally chosen to be
�tmin=1 ps as explained earlier. Thus, the adapted time step
is given by

�tad = min
 H2

6D
�min
rij

eff��2, �tmin� . �5�

In practice, most time steps are in the picosecond range, with
very few time steps coming up to the nanosecond range.

F. Electrostatic interactions

Electrostatic interactions are known to play an important
role in protein association. To study the effect of electrostat-
ics in our generic model, the models M2 and M3 utilized
the DSM, following Refs. 39 and 40. The DSM effectively
models monopole and dipole interactions by summing over
the interactions of three charges, one positioned in the center
of each particle, and two close to its surface in opposite
positions. Taking into account the Debye screening function
due to the presence of counterions in solution, the electro-
static interaction energy between two charges qi/j at positions
ri/j, respectively, with distance rij = �rij�= �r j −ri� is

Wij =
1

4��0�r
qiqj

e−	�rij−Bij�

�1 + 	Bij�rij
. �6�

Here, 	= lD
−1 is the inverse Debye screening length, which

typically has a value of 	1 nm under physiological condi-
tions. We assume a value of �r=78 for the relative static
permittivity of the medium, which reflects the properties of
water at ambient temperature. Bij is a correction to the
screening of charges which are placed in an object like a
protein which has no free charges inside. Taking bi/j as the
closest distance of qi/j from the surface of the surrounding
protein, it is approximately given by Bij =bi+bj. This poten-
tial leads to a force of charge qj on qi

Fij = − �ri
Wij = −

�Wij

�rij
· ��ri

rij�

= −
1

4��0�r
qiqj

e−	�rij−Bij��1 + 	rij�
�1 + 	Bij�rij

2

rij

rij
. �7�

As our simulation uses periodic boundary conditions, actu-
ally an infinite number of copies exists for every charge.
However, due to the very fast decay of the screened electro-
static interaction, only the minimum image distance of two
charges is considered in the force calculation. Two model
particles m and n feel the sum of the Coulomb forces Fij

between all pairs of the three complementary charges mim-
icking the monopolar and dipolar interactions. Thus the full
force between particle m and n is Fmn=�i=1

3 � j=1
3 Fij, where i / j

run over the charges of m /n, respectively.
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As explained earlier, the action of the force on a particle
in the Langevin equation is weighted with the mobility ma-
trix M. The HYDROPRO software directly gives the diffusion
matrix D=kBTaM. This means that in our case the force ac-
tion should be rewritten as MF�t=DF�t /kBTa. Considering
a time step of �t=10 ps and a typical diffusion constant D
=10−10 m2 /s, we have D�F�1 nm���t /kBTa�10−13 m and
D�F�4 nm���t /kBTa�10−15 m for typical distances rij

=1 nm and rij =4 nm, respectively. In contrast, the typical
step length due to the Brownian motion is �D�t�10−11 m.
This shows that the magnitude of electrostatic interactions at
distances of 1 nm is much smaller than thermal energy.
Therefore the effect of force is also not considered in our
adaptive scheme for the time steps. However, it can be ex-
pected that the systematic drift, although small, will still lead
to an altered encounter behavior.

G. Parametrization

Gabdoulline and Wade23 used several criteria to define
contact areas of bimolecular protein complexes. In our stud-
ies, we define the contact area to consist of those atoms in
the two interacting proteins that are at 5 Å or less distance
from an atom of the complementary protein. The center of
mass of these atoms is considered as the center of the reac-
tive area. For M1 and M2, the reactive patch is centered at
the surface of the sphere modeling the excluded volume such
that it has the same relative direction from the center of mass
as obtained by the method described. In the case of M3, the
center of the patch is set to the center of the reactive area.

The contact area has a diameter of �10–20 Å for the
three systems studied here. Following the earlier Brownian
dynamics simulations with atomistic details7 we have per-
formed an in-depth analysis of the free energy landscape and
the encounter state of the protein complexes considered in
this work �unpublished results�. This showed that the en-
counter complex is typically located at relative separations of
the two protein surfaces of about 10 Å compared to their
positions in the final complex. As the spherical reactive
patches used in this study simultaneously determine both the
size of the contact area on the surface and the distance above
their surface at which an encounter will be possible, values
in the range of 5–10 Å seem to be reasonable. Note that as
long as physical considerations do not dictate nonspherical
reaction patches, the spherical choice is highly favorable for
computational efficiency.

As already stated in the beginning, two types of ex-
cluded volume structures are taken into account. In the first

case, used in M1 and M2, the proteins are assumed to have
an approximately spherical form. The radius for the model
spheres determining the hard core interaction follows as the
radius of gyration of the protein, which is also calculated by
the HYDROPRO software. The underlying data in the more
detailed approach M3 are obtained using the ATOB bead
modeling software.41,42 In this way, the three-dimensional
structure of the proteins is modeled with a comparably small
number of 8–25 spheres of different sizes.

The monopole charge is the sum of all elementary
charges in a protein and is placed at the center of the respec-
tive model particle. The dipole moment p is obtained by
summing over the product of all atomic charges due to the
xyz force field and their relative position to the center of
mass. In the model, it is represented by two opposing charges
which are positioned along the direction of p and at a dis-
tance rp=Rgyr−4 Å. The magnitude p� is chosen such that
�p�=2p�rp. We found that the particular choice of rp does not
have a noticeable influence on the results. The resulting pa-
rametrization is given in Table I for the proteins considered
here.

III. RESULTS

A. Encounter frequency and encounter rate

The Langevin dynamics simulations were performed for
cubic boxes containing two model proteins. Simulations
were conducted until the encounter condition was met for the
first time �typically after milliseconds�. Because in our
Langevin simulations we measure the distribution of FPTs to
encounter, from which we can deduce the mean FPT �MFPT�
�T�, the encounter frequency is defined as k=1 / �T�. This
choice is motivated by the fact that for a Poisson-type pro-
cess, the distribution of FPTs is given by f�T�=ke−kT and
therefore the encounter frequency k, indeed, satisfies k
=1 / �T�. As the preparation of a comparable experiment
would never allow knowing the particular initial positions
and orientations of the unbound proteins, it makes sense to
average over the possible initial configurations in the com-
puter simulations. Therefore, we started a large number of
runs �typically 104–105� with random initial positions and
orientations for all involved model particles, under the con-
straint that the initial pairwise distance is at least large
enough to prevent an immediate encounter. The “first pas-
sage” is defined as the first overlap of two complementary
reactive patches. Interestingly, due to this averaging the first
passage process becomes Poisson-type, see Fig. 2. The data

TABLE I. Protein structures and parameters used in the study. The coordinates of the patches �rpatch� and the
dipole moment �p� are given relative to the center of mass.

Protein System PDB code Ref. Rgyr /Å q /e rpatch /Å p /Å e

Barnase S1 1brs 23,52 14.68 2 �5.43,−4.75,−3.41� �3.84,−0.67,−36.15�
Barstar 13.42 −6 �−6.05,3.75,6.34� �54.75,−14.39,0.621�
Cytc S2 2PCC 31 13.89 6 �−2.08,7.99,−3.83� �−7.03,117.79,−10.99�
CCP 20.00 −13 �8.89,−8.19,11.46� �−23.47,93.85,−171.82�
p53 S3 1YCR 53 10.20 −2 �0.28,0.21,0.59� �21.64,−17.73,−17.12�
MDM2 16.81 1 �1.577,−4.74,−0.51� �75.07,14.15,4.67�
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show a clear exponential behavior. This means that it is jus-
tified to use the notion of an “encounter frequency,” as the
FPT distribution is indeed represented by a single stochastic
rate. The finite probability at small FPT is due to the possi-
bility that the two model particles are already in close prox-
imity when the simulation is started. The large errors in the
histogram at T→0 are caused by the fact that exponentially
sized histogram bins were used to sample the behavior for
small T. Therefore, events hitting a particular bin are rare
because of the small width of the bins at T→0, which then
leads to bad statistics in this domain.

As the encounter process is purely diffusion limited in
M1, one would expect the encounter frequency to scale lin-
early with concentration. Figure 3 demonstrates for the
barnase:barstar system that this is, indeed, the case. Hence, it
is reasonable to always scale the encounter frequencies with
the inverse concentration, as will be done for the rest of this
work. We will denote these rescaled quantities as encounter
rate, i.e., the encounter rates have the dimension M−1 s−1. In
summary, we have demonstrated here that our microscopic
model leads to a well-defined macroscopic encounter rate.

B. Finite size effects

In most of the simulations, only one instance of the final
complex was considered, i.e., one model particle of each
kind. Using such small systems could lead to undesired finite
size effects. We therefore considered the effect of having
many particles in the simulation box. Figure 4 shows the
simulation results for the encounter frequency k for an in-
creasing number of barnase:barstar pairs, while keeping the
size of the boundary box constant. In order to understand the
expected effects, consider a system with molecules of bar-
nase �A and A�� and two molecules of barstar �B and B��
randomly distributed over the boundary box. The relative
alignment of any pair of As and Bs is therefore random
again. For a particular pair the distribution of times to first
encounter will thus look very similar to the case with a single
pair in the box, which is a simple exponential decay with
respect to the encounter frequency k1: f1�T�=k1 exp�−k1T�.
The probability that, e.g., the particular pair A−B reaches
encounter at a certain time t before the three other possible
pairs �A�−B, A−B�, and A�−B��, is therefore

p�t� = �
0




dt1�
t1




dt2�
t1




dt3�
t1




dt4��t1 − t��
i=1

4

k1e−k1ti

= k1e−4k1t. �8�

Thus, the probability that any of the four possible particle
pairs reaches encounter before the respective three other
pairs do, is 4� p�t� as just calculated, i.e., f2�T� has again a
Poisson form f1�T� and k2=4k1. In general, for higher num-
bers of particle pairs N, we expect to again find an exponen-
tial distribution of the time to first encounter with the en-
counter frequency kN=N2k1. This quadratic behavior is
nicely confirmed by the data shown in Fig. 4, which suggests
that even for small systems with only two particles, no se-
vere finite size effects have to be expected. In particular, this
rules out that larger numbers of particles lead to noticeable
three-body interactions or hindering of the encounter pro-
cess.
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boundary box of edge length L=2370 Å, representing a concentration of
0.125 �M for each protein. The dashed line represents a single exponential
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C. Alignment during encounter

One feature of special interest which we can address
with our Langevin equation approach is the pathway through
which the encounter is formed. We dissected the encounter
process into several parts as visualized in Fig. 5. At the start
of each run, the systems were prepared in the unaligned state
A1, as described earlier. A state of close approach which,
however, does not allow for binding is called A2. The two
model proteins will switch between states A1 and A2 a
number of times N, until they finally reach the encounter
complex A3 due to a favorable combination of translational
and rotational diffusions. In the following, each occurrence
of A2 will be termed a contact. Thus N counts the number of
unsuccessful contacts before the encounter is finally formed.
A separate set of simulations was performed to measure the
distribution of N. Furthermore we analyzed the distribution
of return times Toff. This is the time it takes for two model
proteins to get into contact again �A1→A2� after having
lost translational alignment �A2→A1�, i.e., after they were
in close proximity. Finally, we determined the distribution of
resting times Ton in translational alignment A2 before the
two model particles separated again.

As an example, Fig. 6 shows the distribution of N for the
barnase:barstar model system at c=0.5 �M in the frame-
work of M1. Surprisingly the distribution of the number of
contacts has again a Poisson form. Note that the number of
unsuccessful trials in state A2 can be rather large �up to 104�.
We also found that the distribution of N is roughly indepen-
dent of concentration. This is reasonable, as after the two

proteins were in contact once, the further encounter process
is guided by returns to state A2 and thus should be more or
less independent of system size.

Figure 7 shows that the return time Toff �plotted with the
plus symbol� is not exponentially distributed. Instead, it fol-
lows a power law p�Toff��Toff

−3/2 and undergoes an exponen-
tial cutoff due to the finite size of the boundary box at large
Toff. Therefore, there is a high probability for very small
return times, i.e., situations, where the two model proteins do
not really separate, but immediately after loosing transla-
tional alignment �A2→A1� get closer again �A1→A2�.
The power law behavior of the return time is consistent with
the problem of a random walk to an absorber in three
dimensions.43,44 In principle, these two situations are equiva-
lent since the relative motion of the two proteins while un-
aligned A1 can be approximately understood as an isotropic
random walk, and the criterion for going over to translational
alignment A2 reflects an absorbing boundary in the configu-
ration space of relative positions.

The distribution of resting times Ton �plotted with the
cross symbol in Fig. 7� follows the same power law as
f�Toff�, but the exponential cutoff occurs much earlier. The
reason is that here the cutoff is determined by the region in
configuration space where the two model proteins are in state
A2. As this is much smaller than the whole volume of the
boundary box, in which they are unaligned and therefore in
state A1, a random walk in state A2 will end earlier.

The differences we obtain in the distributions of Ton and
Toff when using the variants M2 and M3 compared to M1
are generally very small and unlikely to account for any de-
viations in the overall encounter rates. Also, the distribution
of N is always well described by a single exponential decay.
However, the inverse decay length �N� significantly varies
between the different situations. Therefore, changes in the
overall encounter rate are mainly caused by a different prob-
ability for reaching state A3 from state A2. This is reason-
able when considering that the interactions are strongly lo-
calized and can thus only act while the system is in the
aligned state A2.

FIG. 5. �Color online� Different alignment states during the encounter pro-
cess. A1 proteins are completely unaligned. In state A2, referred to as
contact in this paper, the proteins are translationally aligned, i.e., they are
close enough to actually encounter �denoted by the overlap of the lightened
area around the model particles�, but lack the correct orientation. A3 pro-
teins reached the encounter meaning that the reactive patches are in trans-
lational and rotational alignments.
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D. Three bimolecular systems with different
physicochemical interface properties

So far we have only considered barnase:barstar �S1� to
demonstrate how our computational model works. We now
use our setup for a more comprehensive investigation. In
particular, we also apply our method to two other systems,
cytochrome c and its peroxidase �S2� as well as the
p53:MDM2 complex �S3�. Those represent systems with dif-
ferent interface characteristics and where the role of electro-
statics is either much stronger �S2� or much weaker �S3�
than for S1. To this end, all the previously described quan-
tities were measured for eight different concentrations c
= 
125,250,500,750,1250,2500,5000,7500� pM. Further-
more, to find out how the choice of the radius of the reactive
patch affects the results, we used patch radii of r=6 Å and
r=3 Å in addition to the initially considered value of r
=10 Å.

Table II lists the encounter rates k as obtained from these
simulations. The rates are all roughly of the same order of
magnitude. Yet several interesting qualitative features are
readily apparent. First, for decreasing patch sizes, the rates
generally decrease. Second, this effect is weaker for M2
compared to M1, which basically means that the electro-
static attraction and orientation due to the dipole interaction
are indeed enhancing the encounter. The strongest effect of
the electrostatic interaction is obtained for Cytc:CCP, which
is the system with the largest monopole and dipole and the
best alignment of the directions of the dipoles and the reac-
tive patches. On the other hand p53:MDM2 is nearly unaf-
fected by the effective charges, due to its weak monopole
charges and, additionally, an unfavorable alignment of the
dipolar interaction and the reactive surface area. Further-
more, regarding the results with detailed steric structure M3,
the effect on the rate is correlated with the deviations of the
protein forms from the spherical excluded volume approach
in M1 and M2. This deviation is smallest for Cytc:CCP and
largest for p53:MDM2.

The findings for the encounter rate k are also reflected in
the results for �N�. As expected, an increase in k correlates
with a decrease in �N�. The only exception is Cytc:CCP ob-

served in M2, which is also special in regard to the effect of
patch size. Here, the effective Coulombic interaction is stron-
gest and the dipole moment is best aligned with the reactive
patches. Therefore, having reached state A2 once, the pro-
teins do systematically orient toward A3, while they are ad-
ditionally strongly steered back toward A2 when loosing
their translational alignment. This behavior is the stronger
the closer the model proteins have approached once—i.e., for
the case of small patch sizes, where state A2 implies the
smallest distance. While this only explains the inversion in
the �N� behavior as a function of patch size r, k is obviously
still slightly decreasing with smaller patch sizes. This can be
explained by the fact that the time to the first approach of
state A2 is larger for smaller patches, as this implies a
smaller relative distance. This obviously compensates the
fact that afterwards the encounter is formed even quicker, as
reflected by the decreasing �N�.

The strong correlation between the encounter rate k and
the mean number of contacts �N� is also evident from the
correlation plot in Fig. 8. Indeed, k��N�−1 seems valid for
most of the different systems and models. It is noteworthy
that the prefactor is very similar in all cases. Basically, this
means that one unsuccessful contact takes the same amount

TABLE II. Encounter rates k which have been averaged over several simulations at different concentrations as
given in the text. The values are given in k /109 M−1 s−1 for the three different versions of our model. �N� are
average values for the number of unsuccessful contacts before encounter. �N� is basically independent of the
concentration. Therefore it is again averaged over the different simulations for each of the chosen systems. The
errors were determined by one standard deviation from the eight values obtained at different concentrations.
Some of the choices for the patch radius were not applicable to M3, as for these cases an encounter was
completely prevented by the detailed excluded volume model.

System Patch radius k�M1� k�M2� k�M3� �N��M1� �N��M2� �N��M3�

Brn:Brs 10.0 1.56�0.04 2.76�0.07 2.02�0.02 474�2 198�5 282�10
6.0 0.57�0.01 2.13�0.01 1.34�0.08 1140�4 232�8 534�50
3.0 0.13�0.001 1.28�0.03 ¯ 4120�10 653�15 ¯

Cytc:CCP 10.0 1.12�0.02 4.31�0.20 4.15�0.15 842�3 61�5 71�7
6.0 0.40�0.01 4.29�0.21 4.05�0.09 2040�20 30�3 77�10
3.0 0.09�0.001 4.03�0.05 0.21�0.02 7540�63 21�3 4160�375

p53:MDM2 10.0 2.05�0.05 2.51�0.04 1.27�0.02 362�2 266�4 823�10
6.0 0.80�0.01 1.12�0.01 0.15�0.01 815�10 582�13 8720�200
3.0 0.19�0.002 0.28�0.01 ¯ 2900�35 2550�30 ¯
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FIG. 8. Correlation plot of encounter rate k and mean number of contacts
�N� with all the data from Table II.
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of time on average, no matter what the local details of the
system are. This gets more obvious recalling the distributions
of the resting and return times Ton and Toff in Fig. 7, which
shows that �Toff�� �Ton�. As the average time for one contact
will be approximately �Ton�+ �Toff�, it is dominated by Toff,
which is only marginally influenced by the local details of
the system and the chosen model. Therefore it can be con-
cluded, that for S1 and S3 the incorporation of a more de-
tailed modeling approach influences k and �N�, but not the
overall characteristics of the encounter process.

The only exceptions for the clear correlation of k and
�N� are M2 and M3 for the case Cytc:CCP �S2�, where k is
nearly independent of �N� because of the strong electrostatic
interaction. This is consistent with the earlier finding, that the
behavior of Cytc:CCP is qualitatively different,19 as its elec-
trostatic interactions would facilitate long-lived nonspecific
encounters between the proteins that allowed the severe ori-
entational criteria for reaction to be overcome by rotational
diffusion. For all three systems studied, in M3 the smallest
patch size r=3 Å leads to a somewhat artificial slowing
down, because in this case an overlap of the patches is rather
hindered by the beads modeling the protein structure.

E. Size of the reaction patches

We next address the dependence of the data on the size
of the reaction patches in more detail. This behavior is ex-
emplary studied with the barnase:barstar model system. In
Fig. 9, the encounter frequency has been obtained from
simulations for barnase:barstar-like model particles in the
framework of M1 at several concentrations c0

= 
5 �M,125 nM,2.5 nM,125 pM� and varying patch
sizes r. All values in the figure have been scaled with the
concentration, which leads to data collapse. It is obvious that
as r gets larger than 2R at around r=40 Å, the reactive patch
covers the whole model particle and we therefore cross over
to the Smoluchowski limit of isotropic reactivity, where k
�r. However, at high densities and large r, the patches span
a large part of the simulation box of edge length L, and do
immediately encounter for a threshold value of r=rmax

=L�3 /4, where the sum of the patch diameters 4r equals the
triagonal. Thus, the encounter frequency must diverge with
�1 / �rmax−r�
, where we suppose 
=3, as the volume of

configurational space without immediate encounter is de-
creasing with r3. This assumption in addition with the
Smoluchowski behavior would lead to k�r / �rmax−r�3 for
large r, which follows the data in Fig. 9 well �black dashed
lines�.

As already mentioned it is well known that the electro-
static interaction of proteins can severely increase the asso-
ciation rate. However, under physiological salt conditions,
Coulombic interactions are screened by counterions in the
solution on a small length scale of �1 nm. Thus, deviations
from case M1 without effective charges will only arise for
small r. Figure 10 shows the results of respective simulations
for M2 compared to the results for M1, as considered be-
fore. Indeed, for large patch radii r, the results are similar,
while for smaller r, the encounter rates in M2 are clearly
higher compared to M1. However, the crossover to a power
law behavior with roughly �r9/4 can be detected for very
small r, but at a prefactor of about 50 times larger than for
M1.

IV. DISCUSSION

The main goal of this work was to model protein en-
counter in a generic framework which allows us to include
molecular details without making future upscaling to larger
complexes impossible. Our model approach incorporates
steric, electrostatic, and thermal interactions of the proteins
considered. These interactions are thought to be the major
factors governing protein encounter. Not included are confor-
mational changes in the proteins upon association, related
entropic terms, and the molecular nature of the surrounding
solvent that becomes relevant at close distances. The model
parameters are extracted from the atomic structures available
in the protein data bank by generally applicable protocols as
described in Sec. II. In principle, these methods of data ex-
traction can be fully automatized.

The biggest advantage of our coarse-grained model is
the possibility to extend the simulations to large scales in
terms of particle numbers, time, and system size. In many of
the earlier studies,39,45–47 the system was prepared already
close to encounter and the overall association rate was then
calculated via a sophisticated path-integral-like procedure. In
contrast, our simulations account for the whole process of
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FIG. 9. Encounter rates in dependency of the patch size for the
barnase:barstar model system in the M1 variant.
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diffusional encounter and is thus rather general, allowing for
spanning large time scales via our adaptive time step algo-
rithm. In particular, each set of simulations consists of
104–105 runs of lengths up to the order of seconds and could
be performed on a standard CPU within hours of computer
time.

Being able to directly obtain the FPTs of the encounter
processes in our model allows to check the validity of sev-
eral phenomenological assumptions. First of all, the FPT dis-
tribution matched very well a Poisson process with a single
stochastic rate, as seen in Fig. 2, which validates the notions
of encounter and association. Moreover, our approach pro-
vides two ways of controlling the particle density and for
both cases the results corresponded well to the expected scal-
ing. First, the concentration is inversely correlated with the
size of the periodic boundary simulation box. We show that
the encounter rate grows linearly with the particle concentra-
tion. Furthermore, leaving the box size constant, the concen-
tration can also be varied by adding a higher number N of
particles. Considering only the first encounter of any of the
possible complementary pairs of model particles, the MFPT
to this event is not only lowered by a factor N but also we
show that the expected behavior is an enhancement of the
encounter frequency by N2, which is nicely matched by the
results of the simulations. Therefore we can conclude that the
computational model studied here satisfies the general re-
quirement of stochastic bimolecular association processes
that describe binding by a single rate constant.

To test our model against known results we have chosen
three well-known bimolecular systems with different charac-
teristics. The barnase:barstar complex is the gold standard
for protein-protein association and characterized by rela-
tively strong electrostatic steering. The association of cyto-
chrome c and its peroxidase is even more strongly affected
by Coulombic attraction. Here, both proteins have a rather
spherical form. Finally, the p53:MDM2 complex has a dif-
ferent characteristic with a very small net charge and a deep
cleft perfectly matching the small peptide p53, whose reac-
tive area is therefore nearly spanning over its whole surface.
These model systems were purposely chosen to check
whether our effective representations of the protein proper-
ties would lead to reasonable and significantly distinguish-
able results. Indeed, this is the case as the discussion of the
results in Table II in the respective section shows.

When comparing the results for the encounter rates in
Table II with previous studies from the field of bimolecular
protein association, several aspects have to be kept in mind.
First, throughout this study, we do only consider the encoun-
ter of our model particles. As explained in the beginning, the
complete association of the complex still lacks the step over
a final free energy barrier, which is due to effects such as the
dehydration of the protein surfaces and thus requires more
detailed modeling. In the framework of our approach, this
final step could be modeled by a stochastic rate criterion,
where the rate can be obtained by transition state theory from
the energy landscapes characterized in atomistic calculations.
In any case, any additional process to be included can only
lower the values found in our study.

In the work on barnase:barstar by Schreiber and Fersht,5

the authors reported that the association between barnase and
barstar is a diffusion-limited reaction. The argument for this
is that the association rates at high ionic concentrations in the
solution, i.e., for the limit in which the electrostatic steering
gets negligible, are clearly lowered by the addition of glyc-
erol, which will lead to slower diffusion. Assuming diffusion
control, the reactive step over the final barrier should be
kinetically unimportant, as generally discussed in Ref. 48.
Indeed, we see that our results for the encounter rates lead to
values in the correct order of magnitude of k	109 M−1 s−1,
which is similar to the experimental value obtained by
Schreiber Fersht49 for the association constant of
barnase:barstar k=8�108 M−1 s−1 at physiological salt.
However, the basal association rate, i.e., the rate at high ionic
strength, is reported as k�106 M−1 s−1 from experiments.5

Given that the association process of Brn:Brs is diffusion
limited, these findings should actually coincide with our val-
ues for M1. However, as we already discussed in Sec. III, in
our simulations the influence of the effective electrostatics
introduced in M2 do not result in such a drastic change in
the encounter behavior.

In several earlier approaches, similar problems have
been addressed by computational and analytical studies. In
work by Zhou,15 basal encounter rates for particles with re-
active patches have been found to be k=4�106 M−1 s−1 and
k=107 M−1 s−1,20 that is closer to the basal rates reported by
Schreiber and Fersht. It has to be noted that, in both cases,
the patches were flat areas above the surface of the spherical
model particles, which had a smaller angular extension com-
pared to our cases, and especially required a much closer
translational approach �0.7 Å in Ref. 15� to form the en-
counter. If we expand the graph in Fig. 9 to smaller patch
radii such as r=1 Å, we also find basal rates in the order of
k=107 M−1 s−1. Also, the deviation between M1 and M2,
i.e., the influence of the effective electrostatics, is more
prominent and could enhance the encounter rate by about
two orders of magnitude, which is consistent with the find-
ings in the previously cited work. There, the effect of Cou-
lombic interaction is reflected with a Boltzmann factor due to
a pairwise Coulomb energy. This approach works well, as
shown in Ref. 47, and has been recently used in a more
complex model study of the energy landscape of protein-
protein association.50,51

Any model for the reaction patches has to rely on results
obtained from more detailed modeling. The surface of a pro-
tein is typically densely covered by water molecules due to
the hydrophilic nature of its surface. This hydration shell has
a thickness of about 3 Å and will therefore, in principle,
hinder the approach of two proteins to distances below 6 Å.
Setting the encounter patches to values below this threshold
of 3 Å would then mean that part of the dehydration would
already have happened before the encounter is actually
formed, which is probably hardly described by simple diffu-
sion with drift. Moreover, all of the considered protein sys-
tems feature distinct key-lock binding interfaces regarding
the steric structure, apart from some flexibility due to intrin-
sic thermal motion. Therefore, it makes sense to represent
the encounter area by a three-dimensional extended object
rather than by a flat surface region. Indeed, the results of our
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studies show that our approach is capable of reproducing
encounter rates in a reasonable order of magnitude, qualita-
tively reproducing generally expected features. In an in-
depth investigation of the dependency of the encounter rate
and the patch radius it is shown, that the choice of the ge-
ometry of the reactive area is at least as crucial for the results
as definition of the model interactions and its parameters. In
principle, one could think of the patch radius as a valuable
tuning parameter to fit experimental results and the encoun-
ter kinetics in the computational model.

Our approach makes it possible to observe general fea-
tures of the encounter process. In particular, we dissect the
pathway to the encounter complex in several levels of align-
ment between our model proteins. As we observe the full
trajectory to encounter in our simulations, we are able to
extract the number of unsuccessful contacts N between the
proteins until they finally reach a reasonably aligned state to
bind. The distribution of N is again in all cases well de-
scribed by a single exponential decay. This behavior is not
obvious as the probability of success for one contact is de-
pending on several aspects of diffusion in a complex manner.
First, the closer the rotational alignment at the beginning of
the contact is to the encounter state, the higher is the prob-
ability of success. Second, this initial alignment is also
coupled to the last contact if the time in between Toff is
small. Finally, longer contact resting times Ton also increase
the probability of encounter. It is interesting, that all these
effects still lead to a simple Poisson distribution of the num-
ber of contacts N when averaging over the initial conditions
as it is done in this work. Furthermore, we find that the
distributions of these resting and return times cannot be de-
scribed by a Poisson process, but are consistent with the
expectations for a spatially constricted random walk in three
dimensions. We find that the particular MFPT to encounter
is, in most of the cases, directly proportional to the number
of unsuccessful contacts. This seems to be a very fundamen-
tal qualitative feature irrespective of the details of the pro-
teins and the applied model. However, for Cytc:CCP the be-
havior is qualitatively different, which is consistent with
earlier studies of this highly electrostatically steered
complex.

In summary, here we have presented a Langevin equa-
tion approach to protein-protein association which, in prin-
ciple, allows us to combine long simulation times and large
systems with molecular details of the involved proteins. This
first study has focused on bimolecular reactions and has
proven that this approach is capable of reproducing known
association rates with a reasonable dependence on the main
parameters involved. One special strength of our approach is
that it allows us to address the details of the binding pathway,
for example, by measuring the statistics of unsuccessful con-
tacts before encounter. In the future, this approach will be
extended to large protein complexes of special biological
interest.
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