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Non-processive molecular motors have to work together in ensembles in order to generate apprecia-
ble levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules
cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-
muscle myosin II motors contribute to essential cellular processes such as transport, shape changes,
or mechanosensing. Here we introduce a detailed and analytically tractable model for this impor-
tant situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting
the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent
states, we reduce the stochastic reaction network to a one-step master equation for the binding and
unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find
that for constant external load, ensemble dynamics is strongly shaped by the catch bond character
of myosin II, which leads to an increase of the fraction of bound motors under load and thus to
firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity
relation described by a Hill relation. For external load provided by a linear spring, myosin II ensem-
bles dynamically adjust themselves towards an isometric state with constant average position and
load. The dynamics of the ensembles is now determined mainly by the distribution of motors over
the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp
transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from
the pre-power-stroke state protects the ensembles against detachment. © 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4827497]

. INTRODUCTION

Numerous processes in single cells and tissues require
the generation of mechanical force and directed motion. Most
of these processes are based on the activity of molecular mo-
tors interacting with the filaments of the cytoskeleton, that is,
motors from the dynein-, kinesin-, and myosin-families in-
teracting with microtubule or actin filaments.! Examples in-
clude separation of chromosomes and closure of the constric-
tion ring during cell division, intracellular transport of cargo
vesicles and organelles, contraction of muscle cells, large-
scale rearrangements in a developing tissue, and wound clo-
sure after tissue injury. The mechanical energy used in these
processes is gained by hydrolysis of ATP (adenosine triphos-
phate) and drives a cycle of conformational changes in the al-
losteric motor molecules. Over the last decades, the way sin-
gle motor molecules work has been dissected in great quanti-
tative detail.Z> However, it remains a formidable challenge to
understand how molecular motors work in the physiological
context of cells and tissues, where they usually collaborate in
groups.* Here we theoretically address one crucial aspect of
this situation, namely, force generation in small ensembles of
non-processive motors.

A large research effort has been focused on processive
motors which stay attached to the substrate sufficiently long
as to not loose contact for many motor cycles.’ For example,
the two motor heads of conventional kinesin typically take
more than 100 steps of 8 nm length before the motor unbinds
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from its microtubule track.®’ Although this property would
enable processive motors to work alone, experimental evi-
dence suggests that also processive motors in a physiological
context often collaborate in small groups.® The main bene-
fit here is that attaching several motors to the same cargo in-
creases the walk length dramatically’ and allows the cargo to
pass over defects on the track and change reliably between
tracks of finite length.'” Furthermore, because the velocity of
a processive motor typically decreases with the applied load,
groups of motors sharing an external load are able to transport
cargo at larger velocities or to exert larger forces on a cargo
or an elastic element. As an example for the latter, it has been
shown that the force necessary to pull membrane tubes from
a lipid vesicle can only be produced by groups of processive
motors.!!12

In contrast to processive motors, non-processive motors
cannot do useful work single-handedly and therefore neces-
sarily have to operate in groups in order to generate persistent
motion or appreciable levels of force. The paradigm for a non-
processive motor acting in ensembles is myosin II in cross-
striated skeletal muscle.!® In the muscle sarcomere, hundreds
of myosin II motors are assembled in so-called thick fila-
ments. The arrangement of myosin II in a thick filament is of
bipolar order, that is, the myosin II motors in the two halves
of a thick filament are oriented in opposing directions. The
myosin II motors in either half of a thick filament walk as an
ensemble on so-called thin filaments, actin filaments which

© 2013 AIP Publishing LLC
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are anchored in the two Z-discs bounding the sarcomere. The
arrangement of thick and thin filaments is symmetric with re-
spect to the mid-plane of the sarcomere so that motor activity
leads to muscle contraction. Investigation of the structure of
muscle has been facilitated by the remarkable precision of the
spatial arrangement of myosin II motors in the sarcomere. For
example, in frog skeletal muscle each half of a thick filament
contains 294 myosin II motors which are arranged at a very
regular distance of 14.5 nm.'#

Even before myosin II had been biochemically charac-
terized, the first theoretical description of muscle contraction
was already based on the non-equilibrium binding and un-
binding kinetics of myosin to actin which effectively recti-
fied thermal fluctuations of an elastic element." In this early
model, myosin was described as an actin binding site fluc-
tuating in a harmonic potential and binding preferentially
ahead of and unbinding preferentially behind its equilibrium
position, thus inducing a net force displacing the actin fila-
ment. Precise measurements of contraction speed as function
of force in combination with X-ray diffraction and detailed
modeling allowed to identify the chemical and mechanical de-
tails of the myosin II hydrolysis cycle and led to the develop-
ment of the crossbridge model,'®!” which provided a molec-
ular mechanism for the principle of preferential binding and
unbinding proposed by Huxley.!> Those advances inspired
theoretical models analyzing the statistical physics of large
ensembles of myosin II motors simultaneously pulling on a
single filament.'® ' With these models it has been shown that
in order to describe the response of skeletal muscle to vary-
ing loading conditions it is essential that the unbinding rate of
myosin II from actin is a decreasing function of the applied
load. In contrast to, e.g., the processive motor kinesin, this
makes myosin II a catch bond rather than a slip bond**?! and
leads to the recruitment of additional crossbridges under load.
Experimentally, this has been confirmed in a combination of
mechanical and X-ray techniques.'*

Apart from muscle tissue, groups of myosin II molecu-
lar motors are also active in the organization of the actin cy-
toskeleton of non-muscle tissue cells like fibroblasts. Increas-
ing evidence shows that non-muscle myosin II motors acting
in small groups play a crucial role in cell adhesion and migra-
tion, with dramatic implications for development, health, and
disease.?” For example, myosin II motors contribute to the ret-
rograde flow of the actin cytoskeleton away from the leading
edge during cell spreading and migration®® as well as to the
maintenance of cortical tension underlying cell shape, move-
ment, and division.?*2> Adherent tissue cells in culture tend to
form contractile actin bundles called stress fibers which play
an important role in force generation and mechanosensing.
There exist several kinds of stress fibers and only some of
them (most notably ventral stress fibers) bear some similar-
ity with skeletal muscle in being characterized by a sarcom-
eric organization with alternating regions of the crosslinker
a-actinin and myosin 11.77

While skeletal and cardiac muscle show a large degree
of order, smooth muscle is characterized by far more dis-
ordered actin-myosin assemblies. Nevertheless, in all types
of muscle, myosin II motors work in large groups. The or-
ganization of cytoskeletal actin and myosin structures is, in
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general, far more disordered and far more dynamic than the
actin-myosin assemblies in all types of muscle tissue. Most
importantly, the number of myosin Il motors in the ensem-
bles is much smaller: non-muscle myosin II is usually or-
ganized in minifilaments with a bipolar structure similar to
thick filaments but comprising only 10-30 myosin II motors,
as has been estimated from the size of minifilaments in elec-
tron micrographs.?® The exact numbers of myosin II motors
in different actin modules will vary depending on the cellular
conditions under which minifilaments are formed. Recently,
contractile actin bundles have been reconstituted in vitro.?*=!
It was demonstrated that for sufficiently large concentration,
myosin II minifilaments are able to contract parallel bundles
as well as networks of actin filaments with random polarity.
In these experiments, the number of myosin II molecules in
the minifilaments depends on the type of myosin II and the
preparation of the minifilaments and was estimated to range
from 56 for non-muscle myosin I1*° to several 100 for mus-
cle myosin II. Due to the small duty ratio of (smooth) mus-
cle myosin II of 0.04*° compared to a duty ratio of 0.23 for
non-muscle myosin II,*! however, the number of myosin II at-
tached to the substrate should be comparable for muscle and
non-muscle minifilaments. For a minifilament with 200 mus-
cle myosin II molecules, the number of attached motors may
well be as low as 8.2

For the small number of myosin II motors in cytoskele-
tal minifilaments, stochastic effects are expected to become
important and have indeed been observed in measurements
of the tension generated by myosin II motors in reconsti-
tuted assays. In three bead assays, an actin filament is held
in two optical traps and myosin II attached to the surface of a
third bead is allowed to bind to the actin filament. At elevated
myosin II concentrations,?*3*33 several myosin II are able to
bind simultaneously and the displacement of the actin fila-
ment against the trap force is observed. In active gels, which
are in vitro mixtures of actin filaments, actin crosslinkers, and
myosin II minifilaments, the fluctuating tension in the actin
network induced by the activity of myosin II minifilaments is
measured.>":3* In motility assays, myosin II motors are dis-
tributed over a surface and the movement of an actin filament
against an external force is followed.*=*7 Such reconstituted
assays characteristically reveal noisy trajectories with a grad-
ual build-up of tension followed by an abrupt release, which is
likely due to the detachment of the whole ensemble of myosin
II motors, allowing the actin filament to slip. However, a de-
tailed and analytically tractable model for this important situ-
ation is still missing.

In order to interpret experimental data from cellular and
reconstituted assays in terms of molecular properties, theoret-
ical models are required which allow to calculate experimen-
tally accessible quantities like duty ratio and force-velocity
relation for small and variable number of motors in an en-
semble. At the same time, known molecular characteristics,
in particular the catch bond character of myosin II and con-
formational changes as the power stroke, should be included
in the model. Such a model should not only permit to esti-
mate the number of motors present in the experiment, but
also provide a deeper understanding of the generic princi-
ples governing the statistics of motor ensembles. Here, we
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present such a model for the non-processive molecular motor
myosin II. A short account of some of our results has been
given previously.®

Our work is motivated by the long tradition in model-
ing force generation in skeletal muscle. Generic models for
molecular motors investigate the fundamental conditions for
the generation of directed motion in a thermal environment
but do not take specific properties of molecular motors into
account. In ratchet models, a particle switches between diffu-
sive movement in a flat potential and in a periodic potential.*
By breaking detailed balance for the transitions between the
two potential landscapes, directed motion of the particle can
ensue. Ratchet models allow to study generic effects of coop-
erativity of a large number of motors such as the emergence
of directed motion in symmetric systems or spontaneous
oscillations.**" Diffusion and switching of the particles is
usually described in the framework of a Fokker-Planck equa-
tion. Within this framework, the effect of a finite ensemble
size has been included by assuming a fluctuating drift velocity
with a noise intensity that increases with decreasing ensem-
ble size.*® This approach allows to observe effects specific
for finite sized ensembles, such as the reversal of the direc-
tion of motion.*! Beginning with the work of Huxley,'> some
molecular characteristics were introduced by assuming dif-
ferent conformational states of the motor molecules. With the
focus on the large assemblies of motors in muscle, analytical
progress was usually made using mean-field approximations.
A mean-field model for molecular motors with three confor-
mational states, in which the bound motors moved with given
velocity was used to calculate the force-velocity relation of
an ensemble of motors.'® Adapting the transition rates be-
tween the conformational states allowed to study processive
as well as non-processive motors. Onset of oscillatory behav-
ior of the ensembles was investigated in a generic two-state
model, in which conformational changes of the motors upon
binding and unbinding allowed bound motors to exert force
on their environment.*? Here, the binding an unbinding rates
could be adapted to describe different types of motors and dif-
ferent force-velocity relations. In a generalization, an ensem-
ble of molecular motors working against a visco-elastic ele-
ment was investigated.*> Using a similar mean-field approach
as Leibler and Huse'® for a two-state model, the dynamic be-
havior of ensembles was investigated, revealing limit cycle
oscillations induced by the coupling to the visco-elastic ele-
ment. To describe specific properties of muscle fibers, cross-
bridge models with varying degree of detail have been used.
Using computer simulations on large ensemble of myosin
IT with a crossbridge model including explicitly the power
stroke and load dependent unbinding from the post-power-
stroke state, details of the force-velocity relation for muscle
fibers could be fitted very accurately to experimental results
and collective phenomena such as the synchronization of the
power stroke under load or the transient response of muscle
to a step change of the external load were investigated.'®**
Coupling to an external elastic element allowed to observe
oscillations for the crossbridge model.*> Recently, a detailed
crossbridge model for myosin II was used to describe also the
activity of small myosin II ensembles in the cytoskeleton.*®
The activity of small groups of myosin II in motility assays
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was studied using computer simulations. Large ensembles
were described in a mean-field approach. By comparison of
the results to experiments, parameters of the model could be
determined. The focus of the model was on the description
of the ATP dependence of the transition rates. Therefore, the
crossbridge model included two separate post-power-stroke
states of the bound motors but did not include a bound pre-
power-stroke state so that it did not explicitly describe the
power stroke.

In order to study effects of molecular details for ensem-
bles of myosin II motors, we use a crossbridge model with
three states as a starting point, which was originally used for
skeletal muscle.*** Unlike Walcott er al.,*® we use a pre-
and a post-power-stroke state as the two bound states, so that
the power stroke of myosin II is included explicitly. To re-
duce the complexity of the analytical description, we make
two approximations: (i) we assume that molecular motors in
equivalent conformational states have equal strain and (ii) we
exploit a separation of time scales in the myosin II cycle and
assume that there is thermal equilibrium of the bound states.
The partial mean-field approximation of the first assumption
still distinguishes between the two different bound states. It
can be justified by the small duty ratio of myosin II motors
which leads to a narrow distribution of the strains of bound
motors. The assumption of local thermal equilibrium between
bound states reduces the system to a two-state model. The ef-
fective properties of these states, however, still depend on the
distribution over the two bound states. The two approxima-
tions allow us to derive a one-step master equation for the
binding dynamics of the motors, which explicitly includes the
effects of strain-dependent rates and small system size. A one-
step master equation has been introduced before for trans-
port by finite-sized ensembles of processive motors with slip
bond behavior,’ but not for non-processive motors with catch
bond behavior. Together with rules for the displacement of an
ensemble upon binding and unbinding, the one-step master
equation fully characterizes the dynamics of ensembles. We
investigate two paradigmatic loading conditions for the en-
semble: constant loading and linear loading, in which the ex-
ternal load depends linearly on the position of the ensemble.
For constant external load, we can solve the one-step master
equation for the stationary states and derive binding proper-
ties and force-velocity relation from these. For linear external
load, the movement of the ensemble feeds back to the load de-
pendent binding rates, so that we have to use computer sim-
ulations to analyze this case. In both loading scenarios, we
find that the motor ensemble adapts its dynamical state to the
external conditions in a way which is reminiscent of its phys-
iological function.

Il. MODEL

A. Crossbridge model for single
non-processive motors

To describe the mechanism of force generation by non-
processive molecular motors, we use a crossbridge model for
myosin I1.'%!° Variants of cross-bridge models differ by num-
ber and type of conformational states they include,'®#+46 de-
pending on the focus of the modeling approach. Here, we
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FIG. 1. Crossbridge model for non-processive myosin II motors molecules. (a) Mechanical elements of myosin II. (b) Myosin II motor cycle with three discrete
mechano-chemical states. In the unbound state (0), the motor head binds ADP and P; and the lever arm is in the primed conformation (gray in (a)). Binding
to the substrate brings the motor to the weakly bound (pre-power-stroke) state (1) with unchanged mechanical conformation. After release of the P; group, the
lever arm swings forward into the stretched conformation (black in (a)). This power stroke brings the motor to the post-power-stroke state (2). Replacing ADP
by ATP, unbinding from the substrate and ATP hydrolysis brings the motor back to the unbound state (0). Because of the consumption of ATP, the last transition

is irreversible. All other transitions are reversible.

distinguish two bound conformations of the motors and one
unbound state. The essential mechanical elements of myosin
IT in our model are depicted schematically in Fig. 1(a). The
motor head binds the motor to the substrate, which in the case
of myosin II is an actin filament. The motor head also is the
active domain of myosin II which binds ATP or the prod-
ucts of ATP hydrolysis—ADP (adenosine diphosphate) and
a phosphate group P;. Hinged to the motor head is the rigid
lever arm which can exist either in the primed (gray) or the
stretched (black) conformation. The lever arm amplifies small
conformational changes in the head domain of the motor so
that the tip of the lever arm swings forward by a distance d
in the transition from primed to stretched conformation. This
movement stretches the elastic neck linker, which is modeled
as a linear elastic element with spring constant k. Elastic
forces in the neck linker are transmitted to the anchor, through
which a myosin II motor can integrate firmly into myosin II
motor filaments such as cytoskeletal minifilaments.

Driven by the hydrolysis of ATP, myosin II cycles
through a sequence of mechanical and chemical conforma-
tions to generate force and directed motion. The exact se-
quence of reaction steps, the rates of transitions as well as the

molecular parameters of myosin II are subject of debate. The
basic sequence of conformations we use in our model, how-
ever, is well supported by experimental observation. In partic-
ular, the reversal of the power stroke under load has been ob-
served for similar types of single headed myosin molecules.*’
In Table I, we list the values for the most important parame-
ters as determined experimentally or used in earlier models.
These parameters depend on the exact experimental condi-
tions, e.g., ATP concentration and spatial arrangement of mo-
tors, and also on the exact type of myosin I1.2%3! In the main
body of our paper we use the parameters of the last column of
Table 1. These are taken from Vilfan and Duke.*> As shown
schematically in Fig. 1(b), we model the myosin II motor cy-
cle by three discrete mechano-chemical states** with stochas-
tic transitions between them. In the unbound state (0), the mo-
tor head is loaded with ADP and P; and the lever arm is in its
primed conformation. The primed conformation is a high en-
ergy state, which stores part of the approximately 80 pN nm
of energy released in ATP hydrolysis. The motor then re-
versibly transitions to the weakly-bound state (1) with on-
rate ko; and off-rate k;p. Concomitant with the release of P;,
the lever arm swings to the stretched conformation, thereby

TABLE I. Parameters determining the dynamics of the ensemble non-processive motors. The third column list

parameter values used in previous models. The values used in this paper are taken from Vilfan and Duke*’ an

are listed in the last column.

d

Name Symbol Values Model value
Thermal energy kgT — 4.14 pN nm
Power-stroke distance d 8 nm,* 10 nm*® 8 nm
Motor elasticity km 0.3 pN nm~1,1%46 2.5 pN nm~1,% 3.0 pN nm~! 47 2.5 pN nm~!
Transition rates ko1 6 57146047 40 g—1 4546 40 57!
k10 Qg 1465145 21
o ~18s71#6 80 57145 ~ 350 571,46 80s7!
kD, ~ k9, 103 5714 103 57!
Post-power-stroke bias Epp —60 pN nm*® —60 pN nm
Unbinding distance § 0.328 nm,45 1.86 nm,* 2.60 nm?*® 0.328 nm
Unbinding force Fo — 12.62 pN
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FIG. 2. (a) Mechanical coupling of an ensemble of myosin II motors. The motors pull on the motor filament towards the right against the external load pulling
to the left. The external load is balanced by the elastic forces in the neck linkers of the bound motors. Typical cases for the external load are (i) constant load
and (ii) linear load increasing with the displacement of the motor filament. The mechanical coupling of the motors through the rigid motor filament induces a
dynamic coupling due to the strain dependence of the transition rates. (b) In the parallel cluster model (PCM) all motors in a given mechano-chemical state
are assumed to have the same strain. Weakly bound motors have the strain x;;. The power stroke corresponds to a shortening of the bound molecular motor so
that motors in the post-power-stroke state have the strain x;; + d. The arrangement of the motors is equivalent to adhesion clusters of parallel bonds, where the

closed bonds can be in two different conformations.

releasing most of the energy stored on the primed neck linker,
and the motor enters the post-power-stroke state (2). With the
stretched lever arm, the motor molecule is close to its con-
formational ground state and there is a strong free energy
bias Ep, favoring the post-power-stroke state. Compared to
the binding transitions, transitions between the bound states
are relatively fast, with unloaded transition rates k(l)2 ~ kgl
Replacing ADP by ATP, unbinding from the substrate and hy-
drolysis of ATP completes the motor cycle and brings the mo-
tor back to the unbound state (0) with primed lever arm. The
unloaded off-rate for this last step is kgo. Due to the energy
released in ATP hydrolysis this transition is considered as ir-
reversible, thus defining the direction of the motor cycle. Most
importantly in our context, both power stroke and unbinding
from the post-power-stroke state depend on load. The power
stroke (1) — (2) moves the lever arm forward by the power-
stroke distance d and strains the elastic neck linker of a motor.
Replacing ADP by ATP and unbinding from (2) requires an
additional movement of the lever arm in the same direction
as the power stroke, thus straining the neck linker further by
the unbinding distance § and making unbinding slower under
load. The load dependent rates for these transition are denoted
without the superscript (see Fig. 2).

B. Parallel cluster model for ensembles
of non-processive motors

Because non-processive molecular motors are bound
only during a small fraction of the motor cycle they have
to cooperate in groups to generate sustained levels of force
or persistent motion against an external load. A sufficiently
large number of motors ensures permanent attachment of the
group, while individual motors continuously unbind and re-

bind as they go through their motor cycle. Fig. 2(a) illus-
trates the coupling of myosin II motors in an ensemble work-
ing against an external load. With their anchors the motors
are firmly integrated into the rigid backbone of the motor
filament, whereas the motor heads bind to the substrate. In
Fig. 2(a), the motors are oriented such that the lever arm
swings towards the right during the power stroke, so that the
motors exert force on the motor filament towards the right.
The external load pulls the motor filament towards the left,
against the motor direction. Because the motors are attached
directly to the motor filament, they are working effectively
in parallel against the external load. Such parallel arrange-
ment was confirmed experimentally for the myosin II motors
in the muscle sarcomere.’>* We will discuss two paradig-
matic situations for the external load: (i) a constant external
load, which is independent of the position of the motor fila-
ment, and (ii) an elastic external load, which increases linearly
with the displacement of the motor filament. For constant ex-
ternal load, the ensemble will eventually reach a steady state
of motion with load dependent velocity. For a linear external
load, an isometric state with vanishing velocity is expected.
Experimentally, the unipolar ensemble of myosin II motors in
Fig. 2(a) would represent one half of a thick filament in the
muscle sarcomere or of a minifilament in the cytoskeleton. In
this case, the external load is generated by the motors in the
other half of the bipolar motor filament or is due to the ten-
sion in a surrounding actin network. In reconstituted assays,
a constant load could be realized through viscous forces in
a flow chamber or applying active feedback control; a linear
load might be realized using elastic elements such as optical
traps.

For an ensemble of parallel motors in mechanical equilib-
rium, the external load Fy is balanced by the sum of elastic



175104-6 Erdmann, Albert, and Schwarz

forces F,, = k&, in the neck linkers of all bound motors:

Fou= Y Fi=kn > &. (1)

bound bound

In this expression, ky, is the elastic constant of the neck link-
ers, &, is their elongation (or strain), and the index n runs
over all motors which are bound to the substrate. An imbal-
ance of forces induces a change of the position of the motor
filament. This changes the strain &, of all bound motors si-
multaneously until the balance of forces in Eq. (1) is restored.
In addition, a linear external load would be changed by the
displacement of the motor filament. In the following, we as-
sume that the relaxation time towards mechanical equilibrium
is negligible in comparison with the time scale for stochastic
transitions, so that the mechanical state of an ensemble always
obeys the force balance in Eq. (1). Anchoring of the motors
to the rigid motor filament in combination with the condition
of the force balance introduces a tight mechanical coupling
between motors: a stochastic transition of one motor changes
the force balance and hence the strain of all bound motors.
Thus, the strain &, of a bound motor does not only depend
on the state of the motor itself but results from the past ac-
tivity of the motor ensemble. Specifically, &, is determined
by the displacement of the motor filament after binding of a
motor. Therefore, Eq. (1) determines the sum but not the in-
dividual strains of the motors: while the sum over the strain
of the bound motors vanishes at vanishing external load, the
individual strains &, will in general not. The distribution of
the &, will be determined by the randomly distributed times
during which a motor remains bound to the substrate and the
displacement of the motor filament during these times.
Because the rates for the stochastic transitions (1) <> (2)
and (2) — (0) depend on the strain of a motor, the mechanical
coupling leads to a dynamical coupling of the motors, as il-
lustrated in Fig. 2(a). A stochastic description of the ensemble
dynamics as a Markov process would thus require not only the
mechano-chemical state but also the strain of every motor as
state variables. Denoting the total number of motors in an en-
semble by N, the state space for an ensemble with N; motors
would then encompass 3™ discrete states and N, independent,
continuous variables (N; — 1 considering Eq. (1)). This com-
plexity prohibits analytical solutions and previous approaches
either used mean field models or computer simulations (see,
e.g., Refs. 18, 19, and 44). Here, we use mean-field elements
to arrive at an analytically tractable model, which preserves
the molecular details contained in the crossbridge model and
allows to study stochastic effects due to finite ensemble size.
We make the assumption that all motors in the same mechano-
chemical state have the same strain. This assumption is the
essence of our parallel cluster model (PCM); its validity will
be discussed in Sec. III A 5 and demonstrated by compari-
son with computer simulations. As illustrated in Fig. 2(b), the
PCM effectively describes the ensemble of molecular motors
as an adhesion cluster of parallel bonds.’*= In this picture,
the power stroke shortens the closed bonds by the power-
stroke distance d. Therefore, closed bonds can be in two
conformations with different lengths in which they carry dif-
ferent loads. All motors in a given conformation, however,
carry an equal share of the external load and have the same
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strain. Thus, all motors in a given mechano-chemical state are
mechanically equivalent within the PCM so that the state of
a motor ensemble of N; motors can be characterized by the
number of motors in each of the mechano-chemical states.
We use the number i of bound motors (0 < i < N;) and the
number j (0 < j < i) of motors in the post-power-stroke state.
The number of motors in the weakly-bound state then follows
as i — j and the number of unbound motors is Ny —i. The
strain of the motors in the weakly bound state (1) is referred
to as x;;, where the indices indicate the dependence on the en-
semble state (i, j). Since the power stroke stretches the neck
linker by d, the strain of the motors in the post-power-stroke
state (2) is given by x;; + d. With i — j motors with strain x;;
and j motors with strain x;; + d, the force balance in the PCM
reads

Fext = kn[(i — j)xij + j(xij +d)] = km[ixij +jdl. ()

This expression can be solved for the strain x;; of the weakly
bound motors. For constant external load, F. = const,
Eq. (2) yields

_ (Fexl/km) - ]d

Xij = 3)

For linear external load, we have to introduce an external co-
ordinate describing the position of the motor ensemble. We
define z as the average position of the bound motor heads.
The position of the motor filament then is given by z — x;;.
The definition of ensemble position is described in detail in
Sec. I E. With the external elastic constant k¢, the linear exter-
nal load is Fex = k¢(z — x;;). Inserting this into Eq. (2) yields

o e/ kw)z — jd
Y i (ke/ k)

for the strain of the weakly bound motors. Here, we define the
strain of a weakly bound motor to be positive when the neck
linker is stretched in the direction of the external load (to-
wards the left in Fig. 2(a)), whereas the average position z of
bound motor heads increases in the motor direction (towards
the right in Fig. 2(a)) (see Sec. II E). If all bound motors are
in the weakly-bound state (j = 0), the strain x;; = x;o is posi-
tive, that is, the neck linkers pull on the motor filament against
the external load. When the external load is not too large, the
strain of the weakly bound motors can become negative, if
sufficiently many motors have gone through the power stroke.
In this case, the neck linkers of the weakly bound motors pull
the motor filament against the motor direction, thereby sup-
porting the external load. Because j < i, the strain x; + d
of motors in the post-power-stroke state is always positive. It
is this pulling of post-power-stroke motors which eventually
drives force generation and motion by the ensemble.

The major benefit of the PCM lies in the fact, that it elim-
inates the history dependence of the strain and introduces x;;
as a state function. Within the PCM, the strain of all motors
follows from the current ensemble state (7, j) and the external
load F,,. For constant external load, F.y = const takes the
role of a parameter and the ensemble dynamics is fully char-
acterized by (i, j). For linear external load, Fex = ke(z — x;;)
is changed through the activity of motors so that additional

“)
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FIG. 3. (a) Two-dimensional stochastic reaction network for transitions be-
tween the states (i, j) of an ensemble within the PCM. Binding to and un-
binding from the weakly bound state changes the number of bound motors i
(vertical lines). The power stroke changes the number of motors in the post-
power-stroke state j (vertical lines). Unbinding from the post-power-stroke
state changes both i and j (diagonal lines). This is the only irreversible transi-
tion and is marked by an arrow. (b) Local thermal equilibrium (LTE) projects
all states with different j but given i onto a single state so that the state of an
ensemble is described by the number i of bound motors alone. Transitions are
described by effective reverse and forward rates.

rules for the position z of the ensemble are required to fully
characterize the dynamics of an ensemble.

C. Local thermal equilibrium of bound motors

For an ensemble with N, myosin II motors, the num-
ber i of bound motors ranges from 0 to N,. The number j
of motors in the post-power-stroke state ranges from 0 to i.
Fig. 3(a) shows the corresponding network of states (i, j)
which are connected by the possible stochastic transitions.
Binding to and unbinding from the weakly bound state change
i by £1 without changing j (vertical transitions). The power
stroke and its reversal change j by £1 but leave i constant
(horizontal transitions). Unbinding from the post-power-
stroke state reduces i and j simultaneously (diagonal tran-
sitions). This is the only irreversible transition in the net-
work and is marked by an arrow. In total, there are (N, + 1)
(N +2)/2 states and 3N(N, + 1)/2 transitions (of which
N{(N; + 1) are reversible) in this network.

To further reduce the complexity of the model, we take
advantage of the strong separation of time scales between the
slow binding and unbinding transitions and the transitions be-
tween the bound states, which are at least an order of magni-
tude faster!>*3 (see Table I). Following previous modeling ap-
proaches, we assume that a local thermal equilibrium (LTE)
is maintained within the bound states.*> For a given number i
of bound motors, the conditional probability to find j motors
in the post-power-stroke state and i — j in the weakly bound
state is given by the Boltzmann distribution

1
PGl = — exp(—Ei;/kgT). ®

Here, Z; is the appropriate partition sum for given i,

Z; =y exp(—Eij/ksT). (6)
Jj=0
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The energy E;; = jEpp + Ef]l + E;}' of an ensemble in state
(7, j) is the sum of the free energy bias E,p >~ —60 pN nm < 0
towards the post-power-stroke state for j motors, the elastic
energy Efj] stored in the neck linkers and a possible external
contribution Ef]’“ The elastic energy of the neck linkers is
given by

k. . :
Ef = > (G — j)x7 + jxj +d)]. (7)

The strain x;; is given by Eq. (3) for constant and Eq. (4) for
linear external load. The external contribution to the energy
vanishes for constant external load, Ef]’“ = 0. For linear ex-
ternal load, Ei“’j?‘t is given by the energy stored in the external
harmonic potential,

8 xpn ®)
2

where x;; is given by Eq. (4) and z—x;; is the position of the
motor filament.

Combining Eqgs. (3) and (7) reveals that for constant ex-
ternal load, the elastic energy of the neck linkers is identical in
states (7, 7) and (i, i — j). Efjl is minimal when all bound motors
are either weakly bound (j = 0) or in the post-power-stroke
state (j = 7). Intermediate states with 0 < j < i have a larger
elastic energy because bound motors in opposite conforma-
tions are pulling against each other. Because of this symmetry
of Ef}, the free energy bias E, translates directly into a strong
bias of the LTE distribution towards the post-power-stroke
state so that almost all bound motors are in the post-power-
stroke state. The symmetry of the elastic energy is not affected
by the exact value of the constant external load, which merely
changes the absolute values of El.ej!, so that the bias of the LTE
distribution persists for arbitrary values of a constant external
load.

A linear external load is increased by the power stroke
of a motor. Therefore, elastic energy Ele} and external en-
ergy Ef}“ tend to increase with an increasing number of post-
power-stroke motors and introduce a bias towards the weakly
bound state, opposite to the free energy bias Ep,. To demon-
strate this, we compare the energy in the extreme states (7, 0)
and (i, i). For a given z, Efjl and Efj?“ take the smallest value in
state (i, 0), in which all bound motors are weakly bound with
strain x;o = (k¢/ km)z/(@ + k¢/ k). In state (i, i), all bound
motors are in the post-power-stroke state with the strain
Xii +d = (ke/ k)2 +d) /(i + ki/kn). Because xip < x;
+ d, the elastic energy in state (i, 0) is smaller than in state
(i, i), E$) < E{!. On the other hand, x;o > x; and z — x; < 2
— Xji, so that also the external energy Efj?“ = (ke/2)(z — x; j)z
is smaller in state (i, 0) than in state (i, i), E5y' < Ef". The
total energy difference is

ext __
ESt =

ikmke d(d +22)

Cikmt ke 2
It increases with increasing k; and z so that the bias of the LTE
distribution will shift from the post-power-stroke state to the
weakly bound state at large values of the external elastic con-
stant k¢ or the ensemble position z. This transition eventually
will stall ensemble movement, because movement is driven
by post-power-stroke motors and requires passage through the
motor cycle.

(Ei + EF) = (Ep + Eiy)

€))



175104-8 Erdmann, Albert, and Schwarz

D. One-step master equation for binding dynamics

As illustrated in Fig. 3(b), the assumption of a LTE within
the bound motors effectively projects all ensemble states (i, j)
with different j but given i onto a single variable. Thus, the
state of an ensemble is described by the number i of bound
motors alone. In this effectively one-dimensional system, the
probability p;(¢) to find i motors bound to the substrate at time
t follows the one-step master equation

%pi =r(i 4+ Dpis1+ &G — Dpi—y — [r(@) + g()] pi .

(10)
Once p;(7) is known, the probability p;;(f) = p(jli)p:(?) to find
the ensemble in the state (i, j) at time ¢ is obtained as the prod-
uct of p;(f) with the time independent LTE distribution p(j|i)
from Eq. (5). In the one-step master equation, the effective
reverse rate r(i) describes the rate at which bound motors un-
bind from the substrate, that is, (i) is the rate of the transition
i — i — 1. The effective forward rate g(i) describes the rate
at which free motors bind to the substrate, that is, g(i) is the
rate of the transition i — i + 1. The effective transition rates
r(i) and g(i) with their dependence on i and Fy define the
stochastic dynamics of binding and unbinding in the motor
ensemble.

In the state (i, j) of an ensemble, weakly bound mo-
tors unbind with off-rate ko(i, j) and post-power-stroke mo-
tors unbind with off-rate kyy(i, j). Following previous mod-
eling approaches,'”* we assume that the off-rate from the
weakly bound state is independent of the load on a motor and
therefore independent of the state of an ensemble, kjo(i, j)
= k9 = const. Unbinding from the post-power-stroke state
requires the lever arm to work against the external load over
the unbinding distance §. Assuming a Kramers-type load de-
pendence, the off-rate from the post-power-stroke state de-
creases exponentially with the load F;; = kn(x;; + d) on the
neck linker

kao(i, j) = ko exp(—Fij/ Fo). Y

The unbinding force scale Fy = kg7 /6 ~ 12.6 pN is set by
the thermal energy kg7 and the unbinding distance §. In state
(i, j), there are i — j weakly bound motors and j post-power-
stroke motors. Because all stochastic transitions proceed in-
dependently, the rate for unbinding of a motor in state (i, j) is
the sum over the single-motor transition rates

r(i, j) = (@ — pkio(i, j) + jkao(i, j)- 12)

The effective reverse rate r(i) for the transition i — i — 1
in the one-dimensional system is then obtained by averaging
r(i, j) over j with the LTE distribution from Eq. (5),

r@) =Y _r(i, HpGli). (13)

j=0

Considering the exponential dependence of k»((i, j) on strain
and the strain dependence of the LTE distribution, r(i) is a
strongly nonlinear function of the external load and the num-
ber of bound motors. Since the off-rate ko (i, j) decreases un-
der load (see Eq. (11)), the post-power-stroke state of myosin
IT behaves as a catch bond. Due to the strong bias of the
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LTE distribution towards the post-power-stroke state, myosin
II motors predominantly unbind from the post-power-stroke
state. This implies that also the effective reverse rate r(i) de-
creases under load and the myosin II ensemble as a whole
behaves as a catch bond. For constant external load, the bias
persists for arbitrary values of Fgy, so that the catch bond
character of myosin II motors is found for all values of the
external load. For elastic external load, the bias of the LTE
distribution passes over to the weakly bound state for very
stiff external springs. This means that myosin II behaves as
a catch bond at small values of k¢ and z, but unbinds with
load-independent rate at large values of k¢ or z. For very large
loads, it is expected that unbinding of motors is accelerated
under load as for slip bonds,** but such large loads will not be
considered here.

The only pathway for binding is the transition (0) — (1)
from the unbound state to the weakly bound state of a motor.
Because unbound motors are not subject to any load, the on-
rate is assumed to be constant, ky; = const. With N; — i mo-
tors binding independently, the effective forward rate is given
by

g(i) = (Ny — i)koi - (14)

The forward rate g(i) increases linearly with the number
N, — i of unbound motors but is otherwise independent of the
state of the ensemble. Because there is no dependence on j,
averaging with the LTE distribution is not required.

With the definition of the effective transition rates in
Egs. (13) and (14), the one-step master equation of
Eq. (10) for the binding dynamics in an ensemble of myosin
II motors is fully characterized for the case of constant exter-
nal load. If the external load depends on the position of the
ensemble, as for a linear load, Eq. (10) has to be solved to-
gether with additional rules for the movement of the motor
ensemble, which will be introduced in Sec. II E.

E. Ensemble movement

With the introduction of the PCM, we have focused on
modeling the dynamics of binding and unbinding of molecu-
lar motors in an ensemble. The displacement of the ensemble,
on the other hand, seems to be eliminated by the analogy to
a cluster of parallel adhesion bonds. Nevertheless, there are
clear prescriptions for the transformation of binding and un-
binding of motors to a displacement of the ensemble. In or-
der to derive these prescriptions and to elucidate the inherent
approximations, we take a step back and consider the gen-
eral case of an ensemble of molecular motors without the ap-
proximation of the PCM, that is, we consider an ensemble in
which every motor is characterized by an individual value of
the strain. The spatial coordination of the motors is schemati-
cally depicted in Fig. 2(a). The anchors are integrated into the
motor filament at fixed positions. Because the motor filament
is rigid, the relative positions of the anchors are constant and
we can assume that all anchors are at the same position zg,
which is identified with the position of the motor filament. In
the following, we consider a reference state in which i motors
are bound to the substrate and N, — i are unbound. The neck
linkers of the bound motors have the strains &,, where the
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index n € {1, ..., i} labels the bound motors. The posi-
tion z, of a bound motor head on the substrate is related
to the position zg; of the motor filament via its strain &, as
Zn = za1 + &, for weakly bound and z, = zg + &, — d for
post-power-stroke motors. To abbreviate notation, we define
the offset of a motor head from its anchor as x, := &, for
weakly bound and x, := &, — d for post-power-stroke mo-
tors. Using this definition, the position of a bound motor head
can be written as

Zn = Zfil + Xy (15)

for all bound motors with n € {1, ..., i}. We now define the
position of an ensemble as the average position of the bound
motor heads

1
7= - n- 16

With this definition, the ensemble position Z can only change
through binding or unbinding of motors, because motor heads
are bound at fixed positions on the substrate. By contrast, the
position zg; of the motor filament also changes through tran-
sitions within the bound states which change the balance of
forces in Eq. (1). Only for completely detached ensembles, in
which no motor is bound to the substrate, we have to use the
position zg; of the motor filament as the ensemble position.
Because unbound motors have vanishing strain and unbound
motor heads are at the same position as the anchors, zg; is
identical to the average position of the unbound motor heads.
Inserting z, from Eq. (15) into Eq. (16), the average position
of the bound motor heads is

Z=1zm + X . (17)

The average offset X;; between anchors and motor heads is
related to the external load Fgy via the balance of forces in
Eq. (1) as

I (Fext/ k) — jd
Xij :=17an=¥. (18)

1

Unlike the absolute position Z and the individual values of
x, or &,, which all result from the history of the ensemble,
%;; follows from the current state of the ensemble alone. In
particular, it depends on the external load Fey, the number i of
bound motors, and the number j of post-power-stroke motors.

We now calculate how the average position of bound mo-
tor heads changes through binding of one additional motor.
Assuming that i motors are bound initially with average po-
sition Z and that the new motor binds with vanishing strain at
zg) to the substrate, the new average position 7’ of i + 1 bound
motor heads is

_ iZ+Zﬁ1
= — Xij. 19
i1 T +1 / (19
Thus, binding of a motor changes ensemble position by
i Xij
AZM =7 — 7= —1|x=——L. 20
Gjme s |:i~|—1 ]xf EEE

—OII

Like ¥;;, the binding step AZ{ is a function of the ensemble
state before binding. After blnding, the average offset of the
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motors is adjusted to
iy i
Xipyj = P lx” 21D
Combining this with 7' confirms that the position of the
motor filament remains unchanged, zg =2 —¥,,; =2
— X;j = zf1. This is required for consistency, because the bal-
ance of forces is not affected by a motor binding with van-
ishing strain. In a more general description, motors could
be allowed to bind with a finite value of the strain chosen
from a random distribution with vanishing mean. In this case,
Eq. (21) for AZ?}‘ would remain valid in the ensemble average.
Unlike the binding step AZ;}, the change of the ensem-
ble position upon unbinding depends on which of the motors
unbinds. Assuming that a motor head with offset x,, unbinds

from the position z, = z + x,, on the substrate, the average
=4

position Z” of the i — 1 remaining motor heads is
2 —zp  i(za + X)) — (Za + x0) IXij — Xn
7= = ; =zl + ———
i—1 i—1 i—1

(22)
Thus, unbinding of a motor from z, changes the position of
the ensemble by
ff =1 _ iiij X = Xij — Xn
AZjy =% —i=—— %=
Assuming that all motors are equally likely to unbind, the av-
erage of the unbinding step over all bound motors vanishes

(23)

Il

_off Z Azf)jffn _ zl - icij —0. (24)

For weakly bound motors this assumption is valid, because
the off-rate k9 = const is independent of strain. Post-power-
stroke motors, on the other hand, are catch bonds with an off-
rate ko(i, j) decreasing exponentially with increasing strain.
Therefore, post-power-stroke motors unbind preferentially
with small strain and small offset, x, < X;;. Averaging the un-
binding step AZ{I" with the actual off-rates would then lead to
a positive displacement AZ{[' > 0. The size of the unbinding
step depends on the distribution of strains of the bound motor
heads and vanishes when all motors have the same offset. In
addition, unbinding of a motor with non-zero strain changes
the balance of forces so that the position zg of the motor fila-
ment is changed.

When the last bound motor unbinds and the ensemble
detaches completely from the substrate, the motor head re-
laxes instantaneously from its position 7 = z; = z5 — X; on
the substrate to the position zg = z — x; of the motor fila-
ment. Because the position of the detached ensemble is de-
scribed by the position zg of the motor filament, unbinding of
the last motor changes the ensemble position by

AT = _—x; for j=0,1. (25)

1j

The dependence on the state of the unbinding motor is in-
cluded in the definition of the offset x;.

Within the PCM, weakly bound motors have the strain

x;; and the strain of post-power-stroke motors is x;; + d, so

that all bound motors are characterized by the same offset

x;;. Therefore, all bound motor heads are at the same position
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FIG. 4. Change of ensemble position z upon binding of a motor within the PCM. (a) Before binding, all bound motor heads are at the ensemble position z. In
the illustrated case, the strain of the weakly bound motor is negative, x;; < 0, so that motor heads will bind at zg = z — x;; > z ahead of the current ensemble
position. The post-power-stroke motors have positive strain, x;; + d > 0, and work against the external load and the elastic force from the weakly bound motor.
For the illustration, motors are depicted with length £y so that the anchors are at zg — £9. (b) After a motor has bound, all bound motor heads are shifted to the
new ensemble position z to implement the PCM assumption of equal x;; of all bound motors. Because the external force is distributed over a larger number of

bound motors, the position zg; of the motor filament also shifts to larger values.

Z = zf1 + x;; on the substrate. To apply the general expres-
sions for the displacement to the PCM, the averages Z and X;;
are replaced by the quantities z and x;; which are the same for
all motors in the PCM ensemble. In a given state (i, j), binding
of a new motor changes the position z of the ensemble by

(26)

This is the actual change of the average position of the bound
motor heads assuming that the new motor has bound with van-
ishing strain at the position zg. As illustrated in Fig. 4, in or-
der to implement the assumption of the PCM, all i + 1 bound
motor heads have to be shifted to the new common position
7' =z + Azj}' on the substrate after binding. This shift is not
meant to correspond to an actual physical process but is a the-
oretical procedure required to maintain the PCM assumption
of identical strains of bound motors. As in the general case,
the position of the motor filament does not change upon bind-
ing of a motor because the balance of forces is unchanged.
Because all bound motor heads have the same offset x;; and
are at the same position z on the substrate, the position z of
the ensemble is unchanged by the unbinding of a motor

AZ'=0 for i>2. (27)

This is the same result as for the average in Eq. (24). Compar-
ison with the general case reveals that the PCM predicts too
small a displacement upon unbinding and will underestimate
the velocity of an ensemble when there is a wide distribution
of the strains of motors. When the last motor unbinds from
the substrate, according to Eq. (25) the position of the motor
ensemble changes by the unbinding step

AZOf-f = —Xij for

o j=0,1. (28)

Equations (26)—(28) completely specify the rules for ensem-
ble movement resulting from the binding dynamics in an en-
semble. The ensemble moves forward, when a motor binds
while the strain x;; of the weakly bound motors is negative and
moves backwards when x;; is positive. Unbinding of a motor

does not change the position unless the last motor unbinds. In
this case, the position of the unbinding motor head relaxes to
the position of the motor filament.

The velocity v;; of an ensemble in state (i, j) is given
by the product of the displacement step induced by a binding
or unbinding transition with the rate at which this transition
proceeds. Unbound motors bind with the effective forward
rate g(i) defined in Eq. (14). Unbinding only changes en-
semble position when the last motor unbinds. Weakly bound
motors unbind with the constant off-rate kjy = const; post-
power-stroke motors unbind with the off-rate k>o(1, 1). Thus,
the velocity of the ensemble in state (i, j) is

vij = ()AL + [kioAz08j0 + kao(1, DAZSTS;1] 811 (29)

X,’j
i+1

= —g(i) — [k10x108j0 + kao(1, Dx118;1] 81 . (30)

The last term applies only to unbinding from the state i = 1
and distinguishes between weakly bound motors (j = 0) and
post-power-stroke motors (j = 1).

To combine the expressions for ensemble displacement
and velocity with the solutions of the one-step master equa-
tion for the binding dynamics, we have to average over the
variable j using the LTE distribution. The offset of the bound
motors in state i is given by

i . 1 i
xi =) xipGil) = — D xiexp(—Ey/keT). (1)
i=0 Lj=0

The binding step of the ensemble due to the transition i — i
+ 1 then becomes

Xi
i+1
(32)
for i > 1. The unbinding step is Azl‘?ff =0 for i > 2 and
AT = —x; for i = 1. Averaging the velocity v;; from

i N 1 < .
Azfnzz AZ?;p(ﬂl)Z—i_}_—l injp(ﬂl):—
j=0 Jj=0



175104-11 Erdmann, Albert, and Schwarz

Eq. (29) over j yields the velocity in state i,

vi = g()AZ" — [kiox10p(0[1) + kao(1, Dxyy p(111)] 8i1.

(33)
The expression for the velocity applies to attached ensembles
with at least one bound motor, that is, i > 1. To complete the
description of ensemble movement, the velocity of detached
ensembles with i = 0 has to be defined. The position of the
detached ensemble is described by the position of the motor
filament, zg;, which is identical to the position of the unbound
motor heads. We assume that the external load F. moves the
motor filament through the viscous environment with effec-
tive mobility 1. For constant external load, detached ensem-
bles move with constant velocity

Vo = —NFex - (34)

The negative sign follows from the definition of the direction
of the external load opposite to the working direction of the
motors. Detached ensembles attach to the substrate with for-
ward rate g(0) = Niko; so that the random attachment times
follow an exponential distribution with average g~'(0). For
constant velocity vy = const, this implies an exponential dis-
tribution also for the size of the backsteps. The average back-
step size is then given by

) nke

AZOn —_ 7 - _ .
0 7 g(0) Niko

(35)

For a linear external load, F.x, = k¢zg, the velocity of the de-
tached ensemble depends on the position zg = z of the en-
semble

vo(2) = 21 = —nkezsi. (36)

Therefore, the average backstep size for linear external load
depends on the position z{), of the motor filament at detach-
ment

nkugl

A = — T
“ Nikor + nke

(37)
For a large mobility with nk; 3> Niko;, the average backsteps
size is AzJ" ~ zJ,, that is, the ensemble is effectively reset to
the initial position z = 0.

Together, the master equation of Eq. (10) for the stochas-
tic binding dynamics and the rules for the displacement upon
binding and unbinding of motors fully characterize dynamics
and movement of an ensemble of molecular motors. For con-
stant external load, ensemble movement is slaved to binding
and unbinding of motors, because on- and off-rates are in-
dependent of the position z of the ensemble. In this case, the
master equation can be solved independently for the probabil-
ity distribution p;(¢) and the average velocity of an ensemble
can be inferred from this solution. The average bound veloc-
ity, that is, the average velocity of ensembles with at least one
bound motor, is given by

N

Ny
~ pi(t)
= i Di = T . 38
up(2) ;:1 vi pi(t) ,E:l R p— (3%)

The probability distribution p;(¢) is normalized over the at-
tached states i € {1, ..., N} of the ensemble. The effective
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velocity of an ensemble, which includes the backward motion
(slips) of the unbound ensemble, is given by the average

N
verr(t) = Y vi pi(t) (39)
i=0
over all states i € {0, ..., N;}. Because vp = —nFy < 0, the

effective velocity is smaller than the bound velocity, veg(f)
< (). From the average ensemble velocity as function of
time, the position z(f) can be calculated as

) = 20 + / Vet ). (40)
0

For linear external load, the transition rates characterizing the
master equation depend on the position of the motor ensem-
ble, so that the master equation has to be solved together with
the displacement of the ensemble, which usually has to be
done numerically.

lll. RESULTS
A. Constant load

1. Analytical solutions of the one-step
master equation

Mathematically, the reduction of the stochastic bind-
ing dynamics on the two-dimensional network of states of
Fig. 3(a) to the one-dimensional system of Fig. 3(b) described
by Eq. (10) is a dramatic advance, because many general re-
sults are known for one-step master equations.>® For constant
external load, the transition rates are independent of the posi-
tion z of the ensemble and stationary solutions of the one-step
master equation can be derived analytically. For a single vari-
able and in the absence of sources and sinks, stationarity im-
plies detailed balance, that is, 7(i + 1)p; + | = g({)p;. Iterating
this condition yields the stationary probability p;(co) to find i
bound motors in an ensemble

Hifl 8(j)
=0 r(j+D

N, k=1 _g(j) *
1+ Zk[=1 ]_[j=0 rG+1)
This distribution immediately allows to calculate the average
number of bound motors as

pi(00) = (41)

Ny
Ny = (i) =Y ipi(c0). (42)
i=0
In order to calculate averages restricted to attached ensembles

with i > 1, the stationary probability distribution p;(co) has to
be re-normalized for the N, attached states

i—1 _g(j)
R pi(00) [Tj=o G+
p,'(OO) = 1 — po(c0) = N, k=1 g(j) ° (43)
po i im0 75

The average detachment time 7y of an ensemble is de-
fined as the mean first passage time of the ensemble from
the initial attached state, in which only a single motor is
bound (i = 1), to complete detachment of the ensemble,
where all motors have dissociated (i = 0). The mean first pas-
sage time T can be calculated analytically using the adjoint
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master equation®?
N, i1
1 g(k)
To=Y — [,
1 X;r(ng r(k)

j=

(44)

The average attachment time of an ensemble is defined as the
mean first passage time Ty; from the detached state (i = 0)
to the initial attached state (i = 1). This transition involves
only a single binding step so that the mean first passage time
is given by the inverse of the forward rate g(0),

_ 1 _ 1
g(0)  Nikor

A measure for the ability of ensembles of non-processive mo-
tors to generate force and directed motion is the duty ratio
of an ensemble. For a single molecular motor, the duty ra-
tio is defined as the fraction of time in the motor cycle, dur-
ing which the motor is attached to its substrate. Processive
motors usually are characterized by large duty ratios close to
unity, which allows them to walk along the substrate for many
motor cycles. Non-processive motors, on the other hand, are
characterized by small duty ratios, which reduces the interfer-
ence between cooperating motors. For ensembles of molecu-
lar motors, we define the ensemble duty ratio pq as

Ty
Tio+ Tor

This is the ratio of detachment time T, which is the average
time during which an ensemble remains attached to the sub-
strate before detaching again, to the average time it takes to
complete one attachment-detachment cycle of an ensemble,
which is the sum Tj9 + To; of detachment and attachment
time. To allow for efficient motion and force generation, the
duty ratio of an ensemble of non-processive motors should be
close to unity, comparable to that of processive motors.

The average bound velocity of an ensemble in the station-
ary state is given by Eq. (38) with the stationary probability
distribution from Eq. (43) replacing p; (), that is,

N
vp =Y vipi(00).

i=l1

Tor 45)

Pd (46)

47
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Correspondingly, the average effective velocity in the sta-
tionary state is found by inserting p;(co) from Egs. (41)
in (39) as

N

Verr = Y, v; pi(00).

i=0

(48)

The effective velocity can be also expressed using the ensem-
ble duty ratio

Tiovs + To1vo
T+ Tor

Because vy < 0, the effective velocity of an ensemble is al-
ways smaller than the bound velocity. The closer the ensem-
ble duty ratio is to unity, the closer is the effective velocity to
the bound velocity.

Processive motors can be characterized by their proces-
sivity, that is, the average number of steps a motor takes on a
substrate before unbinding. For ensembles of non-processive
motors, we can use the average walk length dy, between at-
tachment and complete detachment as a measure for the effec-
tive processivity. Assuming that relaxation to the stationary
distribution p;(oco) is fast compared to the detachment time
T, the ensemble moves with constant bound velocity v, from
Eq. (47) over the detachment time 77 so that the average walk
length is given by the product

Veff = Pavp + (1 — pa)vy = (49)

dw = Uleo. (50)

Unlike processive motors, dy, does not correspond to a fixed
number of binding and unbinding steps of motors because the
displacement steps depend on the state of the ensemble.

2. Binding dynamics

To demonstrate the stochastic effects resulting from the
finite number of motors in an ensemble and the influence of
the catch bond character of the post-power-stroke state, we
first study the dependence of the binding dynamics on ensem-
ble size N, and external load Fy;.

Fig. 5(a) shows the average detachment time 77 (see
Eq. (44)) of an ensemble of myosin II motors as function

(b) : z

__terto | —— Ne=4 g

~

1e+08 |

—_
)
+
o
(&)

10000 }

100 |

detachment time T (s
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0 2 4 6 8 10 12 14 16 18 20
load per motor Fgy / Ny (pN)

FIG. 5. Analytical results for the parallel cluster model with constant external load: average detachment time 7. (a) T1¢ as function of ensemble size N; for
the values Fexi/Ny = 0.0126 pN, 1.262 pN, 3.787 pN, and 8.835 pN of the external load per motor. The black, dashed-dotted curve is the approximation of
Eq. (51) for Fext/Ny = 0. (b) To as function of the external load per motor Fey/N; for ensemble sizes Ny = 4, 6, 9, and 15. Black, dashed-dotted curves are

exponential approximations. Constant parameters are listed in Table I.
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of ensemble size N, for different values of the external load
per motor Fe/Ny. T appears to increases exponentially with
N, where prefactor and scale of the exponential increase with
Fext/ Ny. An approximation for T can be derived for vanish-
ing external load under the assumption that all bound motors
are in the post-power-stroke state, which is justified by the
strong bias of the LTE distribution towards the post-power-
stroke state. For F = 0, the dynamics of the bound motors
is not coupled so that not only the on-rate k¢, but also the off-
rate kyy = kgo is independent of the ensemble state (i, j). A
series expansion of Eq. (44) for Ty then leads to

1 k9o + ki
S
k()]Nt k20
k9 + k
= TOI |:exp <1n [—20 _'(; Oli| Nt> — 1] .
k2()

Comparison with the exact results for Fey /Ny = 0.013 pN in
Fig. 5(a) shows excellent agreement. For finite load, no closed
form can be found, because the off-rate kyo(i, j) is a strongly
nonlinear function of the ensemble state (i, j). A fit of Ty to
a function of the type of Eq. (51) with adapted prefactor and
scale of the exponential yields a better approximation than a
pure exponential but deviations at small N; are still observed,
in particular for large external load (not shown).

Fig. 5(b) shows the average detachment time T, for dif-
ferent ensemble sizes as function of the external load per
motor. T}y increases exponentially for not too small val-
ues of Fey/N; where the scale of the exponential increases
with N,. This exponential increase is a consequence of the
catch bond character of the post-power-stroke state: for all
values of a constant external load, the LTE distribution is
strongly biased towards the post-power-stroke state, that is,
p(li) < 1 and 0 < p(j # i|i). Hence, unbinding will occur
predominantly from the post-power-stroke state so that the
effective reverse rate r(i) ~ p(i|i)kao(i, i) x exp (Fext/ i Fp)
decreases exponentially under load. This induces the expo-
nential increase of Tjo observed in Fig. 5(b). Only for very
large loads beyond Fy/N; =~ 20Fp, unbinding from the post-
power-stroke state would become slow enough to make un-
binding from the weakly bound state significant so that T’
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would reach a plateau. At this level of force, however, forced
unbinding would have to be taken into account*’ and we do
not consider such large forces in our model. The average at-
tachment time 7j; of a myosin II ensemble involves only a
single binding step, so that the dependence on Fy and N, is
rather weak: Ty, = (ko Ny)~! is independent of external load
and decreases inversely with ensemble size.

The ability of a molecular motor to generate sustained
levels of force or continuous motion depends crucially on its
duty ratio. Due to the increase of the detachment time Tg
and the decrease of the attachment time Ty, with N, the en-
semble duty ratio can be adjusted via the ensemble size N;.
The minimal number of motors, which could allow for a duty
ratio close to unity and almost continuous attachment of an
ensemble, is determined by the inverse of the duty ratio of a
single motor. For Fy; = 0, the off-rate of myosin II can be ap-
proximated as ky =~ k3, 2~ 80 s~! because myosin II unbinds
almost exclusively from the post-power-stroke state. With the
on-rate ko; = 40 s~!, the duty ratio of a single myosin II is

poinde _ Ty ko
¢ Toir +Tio kot + k3

~(.33. (52)
This value is significantly larger than the observed duty ra-
tio of skeletal and smooth muscle myosin II but comparable
to the duty ratio (>~ 0.23) of non-muscle myosin II.3! For
Pi™ ~ 0.33, a minimum of N; ~ 3 motors is required for
continuous attachment. However, due to the stochastic bind-
ing dynamics and the lack of coordination of individual mo-
tors, the ensemble duty ratio will be smaller than the sum over
the single motor duty ratios and a larger number of motors
will be required to ensure continuous attachment. For van-
ishing external load, the approximation of Eq. (51) for the
average detachment time 7y can be used to derive an ap-
proximation for the duty ratio. Inserting Eq. (51) for T} in
Eq. (46) for the ensemble duty ratio yields

kS, + k,
pa ~ 1 —exp (— In [M} Nt> . (53)
k0
With increasing N, the duty ratio saturates exponentially
from the single motor value pg =1 — k(z)o /(kgo + koy) for

Ny =1 towards pg ~ 1 for large N,. Fig. 6(a) shows pq as

o
©
a

duty ratio py
o
©
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load per motor Fg,;/N; (pN)

FIG. 6. Analytical results for the parallel cluster model with constant external load: ensemble duty ratio pq. (a) pq as function of ensemble size N; for the values
Fext/Ny = 0.0126 pN, 1.262 pN, 3.787 pN, and 8.835 pN of the external load per motor. The black, dashed-dotted curve is the approximation of Eq. (53).
(b) pq as function of the external load per motor Fex/N; for ensemble sizes Ny = 4, 6, 9, and 15. Constant parameters are listed in Table I.
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FIG. 7. Analytical results for the parallel cluster model with constant external load: average number of bound motors Ny. (a) Ny as function of ensemble size
N for the values Fex¢/ Ny = 0.0126 pN, 1.262 pN, 3.787 pN, and 8.835 pN of the external load per motor. (b) N}, as function of external load per motor Fexi/N¢
for ensemble sizes Ny = 4, 6, 9, and 15. Constant parameters are listed in Table I.

function of N, for different values of the external load per
motor. Equation (53) provides an excellent approximation for
near-vanishing load. For Fe/N; = 0.013 pN, the duty ratio
is pg =~ 0.33 for a single motor. For N, = 3, the duty ratio
is pg >~ 0.7 < 1 and reaches unity for ensemble sizes beyond
Ny >~ 15. With increasing external load, the duty ratio is ele-
vated already for Ny = 1 and a smaller number of motors is
required to reach a duty ratio of pg ~ 1. Fig. 6(b) shows the
ensemble duty ratio (see Eq. (46)) as function of the external
load per motor. For Ny = 4, Tjg ~ 0.025 s and Tp; >~ 0.006 s
so that pg >~ 0.8 at Fex/N; = 0. Due to the exponential in-
crease of Tjg with Fe/ Ny, the duty ratio increases quickly
and saturates at pq >~ 1 above Fex/Ny >~ Fy =~ 12.6 pN. With
increasing ensemble size N, the duty ratio increases and the
limiting value pq ~~ 1 is reached at smaller values of Fey/N;.
For N; = 15 the duty ratio is practically unity for all values of
the external load, because 719 >~ 0.73 s and Tj; ~ 0.0017 s so
that pg >~ 0.998 at F = 0.

Fig. 7(a) shows the average number of bound motors N,
as function of ensemble size N, for different values of the ex-
ternal load. For all values of the load, N, increases linearly
with N, where the increase becomes steeper under larger
external load. Fig. 7(b) shows N, as function of the exter-
nal load per motor for different ensemble sizes. At vanish-
ing load, Ny, ~ ,o;mgleNt ~ 0.33N,. For F., = 0, the motors
bind independently, because the PCM assumes that motors in
equivalent states have equal strains and because most bound
motors are in the post-power-stroke state, so that no inter-
nal stress is built up between motors in different states. With
increasing Fex /Ny, the average number of bound motors in-
creases sub-linearly and plateaus towards N; for large loads.
The recruitment of additional bound motors under increas-
ing load was described theoretically'® and has been observed
experimentally for myosin II in muscle.'* The increase of
the average number of bound motors under load observed in
Fig. 7(b), as well as the increase of Ty and p4 under load, con-
firms that myosin II as a whole behaves as a catch bond over
a large range of values of a constant external load. Thus, the
efficiency of an ensemble of non-processive motors for the
generation of motion and force, which is determined by de-
tachment time, duty ratio, and number of bound motors, can

be adjusted by changing the ensemble size N; or by using the
force sensitivity of the motors.

3. Stochastic trajectories

To gain more insight into the movement of an ensem-
ble of non-processive molecular motors and the relation be-
tween binding and movement, it is instructive to look at sin-
gle, stochastic trajectories. We use the Gillespie algorithm>*
to simulate stochastic binding and unbinding trajectories ac-
cording to the one-step master equation of Eq. (10) and apply
the rules for the displacement upon binding and unbinding
to implement ensemble movement. Within the Gillespie algo-
rithm, the transition rates r(i) and g(i) are used to choose time
and type of the next stochastic transition from an exponen-
tial probability distribution. After a binding transition i — i
+ 1 with i > 1, the position z of the ensemble is changed by
Az = —x; /(i +1). For i = 0, the position of the detached
ensemble is changed by Azi" = —nF. before attachment.
Here, t is a random attachment time with average Ty;. After
an unbinding transition { — i — 1, z is unchanged for i > 2.
If the last motor unbinds, that is for i = 1, ensemble position
is changed by Az‘fff = —x1. After adjusting ensemble posi-
tion, the new value of the strain x;; of weakly bound motors is
determined from the balance of forces in Eq. (1) and the posi-
tion zg of the motor filament is set to zg = z — x;;. With the
updated LTE distribution p(j|i), the average strain of weakly
bound motors, x; = le':o x;jp(jli), and the transition rates
r(i) and g(i) are calculated and new random time and type of
the next reaction are chosen.

Fig. 8(a) shows a stochastic trajectory of an ensemble
with N; = 4 motors working against the constant external
load Fey /Ny = 0.126 pN. The lower panel shows the fluctuat-
ing number of bound motors i, the upper panel the ensemble
position z. The external load is below the stall force so that
the attached ensemble moves forward with a velocity fluctuat-
ing around the average bound velocity v, > 0. The number of
bound motors fluctuates strongly and the ensemble frequently
detaches completely from the substrate. Unlike z, the posi-
tion zg = z — x; of the motor filament is also changed by a
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FIG. 8. Stochastic trajectories for constant external load. Ensemble position z (upper panel) and number i of bound motors (lower panel) as function of time # for
ensemble size Ny = 4 and external load per motor (a) Fexi/N¢ = 0.126 pN and (b) Fex¢/Ni = 0.835 pN. In (a) and (b), the detached ensemble slides backwards

with mobility n = 103 nm pN~—!

change of the strain x; of the motors. When a motor binds, the
external load is distributed over a larger number of motors,
so that the strain is reduced and the motor filament slides for-
ward in addition to the change of z. When a motor unbinds,
the strain x; of the remaining bound motors increases, so that
the motor filament slides backwards, while z remains con-
stant. Trajectories of zg = z — x; therefore are rather close
to z but show stronger fluctuations (not shown). Complete de-
tachment of the ensemble leads to backward steps of average
size Azg" = —voTp;. For a small load as in Fig. 8(a), how-
ever, backsteps are too small to be resolved so that detachment
events appears as pauses in the trajectory. Fig. 8(b) shows a
stochastic trajectory for an ensemble with Ny = 4 motors but
at larger external load. At this load, the average bound ve-
locity is positive so that the net movement of the attached
ensemble is forward, although the strain x; is positive for a
single bound motor so that binding of the second motor leads
to a backward step in z. Detachment of the ensemble has be-
come only marginally less frequent under the larger load, but
the size of the backward steps has increased (note the larger
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z scale in (b) compared to (a)) such that the effective velocity
is close to zero. Hence the value of the external load is close
to the effective stall force, at which the forward movement
of the attached ensemble balances the backward slips of the
detached ensemble.

Fig. 9(a) shows a stochastic trajectory of an ensemble at
larger ensemble size N, = 8. The external load is below the
stall force, so that the attached ensemble moves forward with
slightly fluctuating velocity. Due to the larger ensemble size,
complete detachment occurs less frequently but the large ex-
ternal load leads to large backsteps. In Fig. 9(b), the ensemble
size is the same as in (a) but Fgy, is increased to a value close
to the stall force with v, >~ 0. Due to the catch bond character
of myosin II, the typical number of bound motors is increased
and complete detachment is rare. Nevertheless, the ensemble
position z fluctuates strongly because binding at small i leads
to backsteps Az{" < 0, whereas binding at larger i leads to
forward steps Az?" > 0 of the ensemble. At the stall force
these two effects balance so that the average bound velocity
vanishes, v, = 0.
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FIG. 9. Stochastic trajectories for constant external load. Ensemble position z (upper panel) and number i of bound motors (lower panel) as function of time ¢

for ensemble size Ny = 8 and external load per motor (a) Fexi/Nt = 1.26 pN and (b) Fexi/N; =
!, Constant parameters are listed in Table 1.

with mobility 7 = 10° nm pN~! s~

12.6 pN. In (a) and (b), the unbound ensemble slides backwards
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FIG. 10. Analytical results for the parallel cluster model with constant external load. (a) Average bound velocity v, and (b) average effective velocity vegr
as function of the external load per motor Fex/N; for ensemble sizes Ny =4, 8, 15, 25, and 50. For ves the viscous mobility of detached ensembles is
n = 10> nm pN’1 s~L. The insets show vy, and vesr as function of external load Fey. Black, dashed-dotted curves in the inset of (a) show the Hill-relation from
Eq. (54) with o = 0.46, 0.205, 0.2, 0.215, and 0.215 for N; = 4, 8, 15, 25, and 50. Constant parameters are listed in Table I.

4. Velocity and walk length

Fig. 10(a) shows analytical results for the average bound
velocity vy, (see Eq. (47)) as function of the external load per
motor for different ensemble sizes. For Fi = 0, the average
bound velocity is vy(Fex = 0) ~ 640 nm s~! and is indepen-
dent of ensemble size N;. From its maximal value, v, de-
creases with increasing Fx/N; in a concave fashion and be-
comes negative for loads above the stall force Fs. The concave
shape of the force-velocity relation has been explained before
by the increase of the average number of bound motors under
load'®** which is a consequence of the catch bond charac-
ter of myosin II. Compared to a system with constant Ny, the
increase of Ny, reduces the load on the individual bound mo-
tors and reduces their strain x;;. According to Eq. (33) for v;,
this increases the velocity at given external load and hence the
stall force of the ensemble. Beyond sufficiently large ensem-
ble sizes of N; > 15, the force-velocity relation vy(Fext/Nt)
hardly changes with further increasing N,. At N; = 15, the
stall force per motor is Fy/N; ~ 12.4 pN. With increasing
ensemble size, it increases slightly to F;/N; >~ 13.5 pN for
N, = 50 because the force-velocity relation becomes very
shallow near F;. Smaller ensembles show a more rapid de-
crease of v, from the value at Fo; = 0 as well as a smaller
F;/N;. The inset in Fig. 10(a) shows v}, as function of the ab-
solute load Fey for the same values of N, as in the main panel.
The analytical results from the model are compared to the ef-
fective, Hill-type force-velocity relation

Fs_Fexl

Vhill(Fext) = vp(Fext = 0) ——7——.
g ' Fs + (Fext/a)

(54)

For the comparison, the values of v,(Fexe = 0) and F; are
taken from the model results. The parameter « is dimension-
less and is used to fit the curvature of the force-velocity re-
lations. The comparison shows that Eq. (54) describes the
force-velocity relation for all N, extremely well. The param-
eter « is almost identical for ensemble sizes N; = 8-50 with
a typical value of o ~ 0.21 and differs significantly only for
Ny = 4. For N, = 4, the ensemble detaches frequently so that

the off-step Az‘f&f from Eq. (28), in which the strain of the last

unbinding motor is released and changes the ensemble po-
sition, contributes significantly to the bound ensemble veloc-
ity. This causes the markedly different dependence on Fex /N,
with smaller curvature of the force-velocity curve for Ny = 4.
For N; = 1, this off-step upon unbinding can still generate
forward movement.

The good fit of v,(Fext) by vhin(Fext) demonstrates the
qualitative agreement of the PCM with the experimental
force-velocity curve of muscle, for which vy was originally
derived. Our model can now be used to estimate the values for
load free velocity and stall force and to elucidate their depen-
dence on the model parameters. For vanishing force, the num-
ber of bound motors on average is Ny =~ pg Nt >~ N¢/3. Since
almost all of these motors are in the post-power-stroke state,
we find x; = —d and the binding step of the ensemble is Az}
= —x;/(Ny, + 1) = d/N,. Together with the forward rate
g(Np) = (N — Np)kor = (2N;/3)ko;, we obtain the bound
velocity  vp(Fexe = 0) > g(Ny)Azyy > d[(Ny — Nb)/Nplkor
= 2dko; = 640 nm s~!. To estimate the stall force, we again
assume that all N, bound motors are in the post-power-stroke
state. At the stall force, the strain xy, = (Fs/knNp) —d
should vanish so that Azj{,‘; = 0. Thus, the stall force fol-
lows the relation Fy/Ny = kynd >~ 20 pN. For N, =15 at
Fy/Ny >~ 12.4 pN, the number of bound motors can be
read from Fig. 7(b) as Ny, >~ 0.68N;. This yields the ratio
F,/Ny ~ 18.2 pN, which is consistent with the estimate. The
estimate of the stall force shows that F; increases linearly
with the number of bound motors. If the number of bound
motors remained constant at Ny(Fexe = 0) >~ 0.33 NV, the stall
force would be reduced to one half the actual value. On the
other hand, the velocity at vanishing external load decreases
with the number of bound motors. If Ny, at F.; = 0 had the
same value N, = 0.68N; found at F. = F;, the unloaded
velocity would be reduced to v, (Feyxy = 0) ~ 160 nm s™!. In
this way, the catch bond character of myosin II motor allows
ensembles to adapt the typical number of bound motors to
the environmental conditions and to increase the dynamic
range of an ensemble. At small external load, a small number
of bound motors is able to generate fast movement of the
ensemble. At large external load, a large number of bound
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motors is needed to overcome the external load and to
generate slow forward movement.

Fig. 10(b) shows the average effective velocity vs (see
Eq. (48)) as function of the external load per motor for dif-
ferent ensemble sizes. For large ensembles with Ny > 15, the
effective velocity is essentially identical to the bound ve-
locity because large ensembles rarely detach from the sub-
strate (pq >~ 1). The difference between v, and veg < vy,
which is observed for smaller ensemble sizes, is determined
by the frequency TI_O1 of detachment and the size Azg" of
the backsteps. As shown in Fig. 5, T161 decreases exponen-
tially with Fy, while Azg" increases linearly with Fey (see
Eq. (35)). For Fe = 0, detached ensembles do not move so
that even very small ensembles (including single motors) ef-
fectively move forward. Because the frequency of detachment
as well as the average duration Tp; = (ko) N)~! of detachment
events increases with decreasing Ny, veg( Fexy = 0) is smaller
for smaller N,. For N; = 4 it is veg(Fexy = 0) ~ 513 nm s~!
and v.g decreases very rapidly with increasing external load.
The stall force is reduced to Fy/N; >~ 1 pN compared with
the value Fy/N; ~ 7 pN for the bound ensemble. For N; = 8§,
the effective velocity initially decreases quickly under load.
Once the detachment frequency has decreased sufficiently,
the force-velocity relation becomes rather shallow. As detach-
ment becomes very rare under further increasing load, the stall
force for Ny = 8 is almost identical to the stall force of the
bound ensemble with v, = 0. The interplay of the linear in-
crease of the size of the backsteps and the exponential de-
crease of the detachment frequency under load can also lead
to a non-monotonous force-velocity relation.

Fig. 11(a) shows the average walk length of an ensemble
as function of ensemble size for different values of the ex-
ternal load Fex/N,. The stationary approximation dy = vy T1o
is compared to numerical results from stochastic simulations.
After an initial transient, the average walk length increases
exponentially with N,. This increase reflects the exponential
increase of the detachment time 7o with N;. The initial tran-
sient is due to the variation of vy, for small N, at given Fex/N;.
With increasing external load, the walk length increases as
long as Fex/ N is below the stall force. For the smallest exter-
nal load, the walk length reaches dy, >~ 500 nm for N, = 15.
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For Fex/N: ~ 1.3 pN =~ 0.1F;, the walk length increases to
10* nm because the exponential increase of Ty outruns the
decrease of the velocity. Fig. 11(b) shows d,, as function of
the external load per motor for different ensemble sizes. For
N, = 4, the walk length decreases slowly because the quick
decrease of vy, under load compensates the increase of the
detachment time. For larger N, dy, increases with Fiy/N;
over the range of force shown in the figure. Only when the
stall force is reached, the walk length plummets to nega-
tive values. The stationary approximation describes the exact
numerical results remarkably well over the whole range of
ensemble size and external load. This confirms that bound en-
sembles are characterized by the stationary values for bound
velocity v, and processivity dy, in analogy to processive
motors.

5. Validation of the parallel cluster model

The assumption underlying the parallel cluster model—
motors in equivalent mechano-chemical states have identical
strains—is not justified a priori. In fact, a finite distribution
of strains is expected because motors remain bound at fixed
positions on the substrate for random time intervals, while
the ensemble moves with fluctuating velocity. When the en-
semble moves forward, the bound motor which was bound
for the longest time should have the largest strain, while the
motor which has bound most recently should have the small-
est strain. For groups of processive motors (see Refs. 9, 56,
and 57) the load dependence of the velocity seems to provide
a natural mechanism for equalizing the load on the motors:
as a motor moves ahead of the group it will be subject to a
large load; this reduces the velocity of the motor so that the
group will catch up with the advancing motor and the loads
will be equalized. On the other hand, if a motor trails be-
hind the group it will be subject to the smallest load and will
have the largest velocity so that the trailing motor catches up
with the group. Such a mechanism does not seem to be at
work for ensembles of non-processive motors, which cannot
move along the substrate. However, movement of an ensem-
ble of non-processive motors requires continuous unbinding
and binding of the motors. Thereby, the motors remain bound
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FIG. 11. Comparison of analytical and numerical results for the parallel cluster model with constant external load: Average walk length dy,. (a) dy as function
of N for Fexi/Ny = 0.013 pN, 0.379 pN, 1.26 pN, and 3.79 pN. (b) dy, as function of Fe/N; for ensemble sizes Ny = 4, 8, 10, and 15. The approximation
dyw = vpT1o (see Eq. (50)) (curves) is compared to results from stochastic simulations (symbols). Constant model parameters are listed in Table 1.
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to the substrate for short time intervals and the strain, which
was build up while the motor was bound, is released com-
pletely before the motor binds again with vanishing strain.
Frequent binding and unbinding of motors as a prerequisite
of movement in combination with the release of strain after
unbinding should result in a narrow distribution of strains of
the bound motors, which is the basis for the PCM. Interest-
ingly, equalizing the load in a group of processive motors re-
quires several step of the motors along the substrate, that is,
several unbinding and binding events of the individual mo-
tor heads, whereas the strain of a non-processive motors is
released in a single step. Due to the catch bond character of
myosin II it might occur that motors remain bound for long
time intervals and build up excessive strains. This, however,
should only possible for a small fraction of bound motors,
because the majority of motors in the ensemble is required
to displace the ensemble and build up the strain. Therefore,
most bound motors will still have a narrow distribution of
strains.

To validate the assumptions of the PCM, we compare an-
alytical results obtained within the PCM for constant external
load to results from computer simulations which do not use
the PCM assumption of equal motor strains. Moreover, these
simulations do not apply the LTE of bound states but include
stochastic transitions between weakly bound state and post-
power-stroke state explicitly. In the simulations, the motor cy-
cle is described by the three distinct mechano-chemical states
depicted in Fig. 1. Without LTE, the stochastic transitions in
an ensemble with N; motors proceed on the two-dimensional
network of mechano-chemical state shown in Fig. 3(a). The
mechano-chemical state of the ensemble has to be comple-
mented by the strain &, of every bound motor in order to cal-
culate strain dependent transition rates. Every bound motor
head is assigned an individual position z, on the substrate.
For given external load F and positions z,, the strain &, for
every bound motor is calculated from the balance of forces in
Eq. (1). The position z of the ensemble is defined as the av-
erage position of the bound motor heads (see Eq. (16)). As in
the PCM, detached ensembles slip backwards in the direction
of the external load with mobility ».

Transitions between unbound and weakly bound state are
independent of strain so that the transitions (0) — (1) and
(1) — (0) proceed with constant transition rates ky; = const
and kjg = const, respectively. The values are listed in
Table I. For transitions (1) — (2) and (2) — (1) be-
tween weakly bound and post-power-stroke state we assume
constant transition rates ki = k?z exp(—Epp/2kgT) and ky
= k9, exp(+Epp/2ksT), respectively. For our simulations, we
use kY, = k9, = 10% s~! but the actual value does not affect
the results as long as the forward rate ki, is not smaller
than the off-rate ko from the weakly bound state. Because
ky1/kio = exp(Epp/kgT), a Boltzmann distribution for two
states with free energy difference Ey, < O will establish in
equilibrium. Compared to the LTE distribution of Eq. (5), the
elastic energy of the motors has been omitted. For constant
external load, however, the LTE distribution is dominated by
the strong bias E},, towards the post-power-stroke state so that
the omission will have little effect on results. Unbinding from
the post-power-stroke state is irreversible. The transition (2)
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— (0) proceeds with strain dependent transition rate

kao(€,) = kS exp(—ki,/ Fo) (55)

for £, > 0 and kao(&,) = k3, for &, < 0, where k3, and Fy
from Table I are used. Unbinding is slowed down when the
neck linker is stretched in the direction of the external force
but remains constant when the neck linker is compressed in
the opposite direction. The latter case does not occur in the
PCM model (as long as the external load is positive) so that
the distinction was not necessary. Results of simulations us-
ing the Kramers’ type off-rate for positive and negative strain
are discussed in Sec. S.1.2 of the supplementary material.’®
As in the simulations with the PCM, we used the Gillespie
algorithm®* to simulate the stochastic reactions: the reaction
rates for all the motors are used to choose the waiting times
between transition and the kind of reaction from the appro-
priate probability distributions. After every transition, strains
&, and transition rates are updated and the next reaction is
determined.

Neglecting the change of the elastic energy in the kinetic
description of the power stroke seems necessary because of
the large value of the stiffness &, of the neck linkers assumed
in our model. The neck linker of a motor is stretched when
it goes through the power stroke. This step is favorable as
long as the increase of the elastic energy of the neck linker
is smaller than the (negative) free energy bias —E, towards
the post-power-stroke state. For a larger number of bound mo-
tors, i >> 1, the power stroke stretches the neck linker of a mo-
tor approximately by the power-stroke distance d >~ 8 nm and
the decrease of the elastic energy of the other bound motors
can be neglected. For k;, >~ 2.5 pN nm~!, the elastic energy
increases by kmd?/2 =~ 80 pN nm > 60 pN nm ~ —E,,. For
the given elastic constant of the neck linkers, individual mo-
tors are effectively unable to perform the power stroke when
a large number of bound motors holds the motor filament in
place. Thus, the motor ensemble is stuck kinetically with most
motors in the weakly bound state although the energy of the
ensemble as a whole would be reduced by a transition of all
bound motors to the post-power-stroke state. To overcome this
problem and to make the power stroke favorable also for in-
dividual motors in a kinetic description, significantly smaller
values of ky ~ 0.3 pN nm~! have been used.!>** For larger
values kp, ~ 2.5 pN nm~' as in our model, the LTE assump-
tion has been used before.* For a kinetic description with a
large value of the neck linker stiffness, variants of the motor
cycle have been used, which do not require an explicit load
dependence of the power stroke.***” This approach, however,
does not allow to describe the transition of the LTE distri-
bution to the weakly bound state when working against very
stiff external springs (see Sec. III B 1) or the synchronization
of the power stroke against large forces.'”

In the following, we compare analytical results from the
PCM with numerical results from simulations with individ-
ual motor strains. Fig. 12(a) shows the ensemble duty ratio
pq as function of ensemble size for different values of the ex-
ternal load per motor; Fig. 12(b) shows the average number
of bound motors N, as function of Fe/N; for different val-
ues of N;. For all ensemble sizes, analytical results from the
PCM agree very well with numerical results with individual
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FIG. 12. Validation of the parallel cluster model: comparison of analytical results using the PCM (lines) with computer simulations with individual motor
strains (symbols). (a) Duty ratio pq as function of ensemble size N; for the values Fexi/N; = 0.0126 pN, 1.262 pN, 3.787 pN, and 8.835 pN of the external load
per motor. (b) Average number of bound motors N}, as function of external load per motor Fey/N; for ensemble sizes Ny = 4, 6, 9, and 15. Constant parameters

are listed in Table I.

motor strains. Significant deviations are only observed for
small external load where the analytical results underestimate
the duty ratio as well as the number of bound motors. These
deviations are caused by the distribution of strains among
bound motors. For vanishing and small external load, unbind-
ing of those motors with positive strain will be slowed down
while unbinding of those motors with negative strain is unaf-
fected. With increasing external load, the strain of the motors
is dominated by the external load and the effects of the distri-
bution of strains become negligible.

Fig. 13 compares analytical and simulation results for the
bound velocity vy, in (a) and for the effective velocity veg in
(b) as function of external load per motor for different ensem-
ble sizes. The agreement is quite good for small N, but clear
deviations are observed for large N, at small and intermedi-
ate values of F.. At vanishing and small load, the simula-
tions show a decrease of the bound velocity v, with increas-
ing N;. In the PCM, vy, (Fexy = 0) was independent of N;. The
N, dependence of v, is caused by the increase of the average
number of bound motors at small external load observed in
Fig. 12(b). As demonstrated in Sec. III A 4, an increasing
number of bound motors reduces the bound velocity at vanish-
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ing external load. At intermediate values of Fy, the numeri-
cal results for v, and v are larger than predicted by the PCM
because the numerical force-velocity relation is less concave
than the analytical one. This underestimation of the velocity
has been predicted in Sec. II E and is due to the preferential
unbinding of post-power-stroke motors with small strain in
the presence of a distribution of internal strains. Close to the
stall force, the analytical and numerical results again agree
very well even for large values of N,.

B. Linear load
1. LTE distribution and effective reverse rate

For constant external load, the elastic energy stored in
the neck linkers was symmetric against exchanging weakly
bound and post-power-stroke motors, j <> i — j. This sym-
metry was not affected by the value of F, so that the LTE
distribution remained strongly biased towards the post-power-
stroke state for all values of a constant external load. For a lin-
ear external load, on the other hand, the elastic energy stored
in the neck linkers of bound motors and in the external spring
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FIG. 13. Validation of the parallel cluster model: comparison of analytical results using the PCM (lines) with computer simulations with individual motor
strains (symbols). (a) Average bound velocity v, and (b) average effective velocity vefr as function of the external load per motor Fex/N; for ensemble sizes
N; = 4, 8, 15,25, and 50. The mobility of the free ensemble entering vef is 7 = 10° nm pN—! s~!. Constant parameters are listed in Table I.
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parameters are listed in Table 1.

favor the weakly bound state (see Eq. (9)). Because this con-
tribution to the elastic energy of the ensemble increases with
increasing stiffness of the external spring, the bias of the LTE
distribution will shift towards the weakly bound state for large
values of k;. This transition between post-power-stroke and
weakly bound state has been described as a possible basis for
unconventional elastic behavior of muscle fibers.>

Fig. 14(a) plots the conditional probabilities p(i|i) (all
bound motors in the post-power-stroke state) and p(0|i) (all
bound motors in the weakly bound state) from the LTE dis-
tribution of Eq. (5) as function of the external spring constant
per bound motor, k¢/i, for the ensemble position z = 0 and
different numbers of bound motors, i. The probabilities p(j|i)
for the intermediate states 0 < j < i are negligible due to inter-
nal strains built up by bound motors in opposite states work-
ing against each other. For small k¢/ i, most bound motors are
in the post-power-stroke state with p(i[i) < 1. At a critical
value of the external spring constant, k§/i ~ 7.5 pN nm™!,
the bias of the LTE distribution shifts rapidly from the post-
power-stroke state to the weakly bound state. The ratio ki /i
is independent of the number of bound motors but the transi-
tion becomes sharper with increasing i. The power stroke of a
bound motor is driven by the free energy bias E},, < 0 towards
the post-power-stroke state. Thus, the transition of the LTE
distribution from post-power-stroke to weakly bound state oc-
curs, when the increase of the elastic energy of an ensemble
upon the transition of i bound motors from weakly bound to
post-power-stroke state (see Eq. (9)) exceeds the free energy
gain — j Ep, upon this transition. Solving the condition

iknk¢ dQ2z+d)

iky + kf 2 = 1By =1 Ep| (56)
for the critical spring constant yields
ke kmd(2z +d B
ek knd(2z +d) 1 (57)
l 2|Ep

The ratio k{(z)/ i is independent of i for all values of z. This is
due to the parallel arrangement of the motors under the exter-

nal load. The inset in Fig. 14(a) plots k{(z)/i as function of z.
Because k; > 0, a finite critical elastic constant exists for all
z > 0 only if kyd? > 2|Eppl. This is the case for our model
parameters listed in Table 1. In Walcott et al.,*® the parame-
ters d = 10 nm and k,, = 0.3 pN nm~' are used to character-
ize the power stroke. For these values, knd? < 2| Epp| so that
the transition of the LTE distribution can only occur above a
finite ensemble position z > (| Epp|/kmd) — d/2. The corre-
sponding kf(z)/i is also plotted in the inset in Fig. 14(a). For
both parameter sets, the critical spring constant decreases as
k§/i oc z7! for large z so that the external load kfz/i at the
LTE transition becomes independent of z.

The LTE transition from post-power-stroke to weakly
bound state affects the binding dynamics of an ensemble
quantitatively and qualitatively, because the off-rate from the
weakly bound state is significantly smaller than the unloaded
off-rate from the post-power-stroke state, kg < kgo, and be-
cause kjo is independent of the load on a motor. Fig. 14(b)
plots the effective reverse rate divided by the number of bound
motors, r(i)/i, as function of k¢/i for different values of i and
z. For k¢/i — 0, motors unbind predominantly from the post-
power-stroke state (p(i|i) < 1) and r(i)/i approaches the value
of the unloaded off-rate from the post-power-stroke state,
r(i)/i — k(z)o ~ 80 s~!. From this limit, r(i)/i decreases expo-
nentially with k¢/i, because the load on a post-power-stroke
motor increases linearly with k¢/i and ko decreases expo-
nentially under load. Below the LTE distribution, it is r(i)/i
> kjo. Thus, the effective reverse rate decreases strongly as
the LTE distribution shifts towards the weakly bound state
and approaches the off-rate from the weakly bound state,
r(i)/i — kip ~ 2 s~! = const for large kf > kf. The expo-
nential decrease of r(i)/i and the critical elastic constant are
independent of i but the transition becomes sharper with
increasing i. With increasing z, the initial exponential de-
crease of r(i)/i becomes faster. Nevertheless, the drop of
r(i)/i at the LTE becomes more pronounced because the LTE
transition occurs at smaller values of k¢/i, as predicted by
Eq. (57).
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FIG. 15. Stochastic trajectories for linear external load. Elastic load kfz on the ensemble (upper panel) and number i of bound motors (lower panel) as function
of time ¢ for ensemble size Ny = 4 and external elastic constant per motor (a) k¢/ Ny = 0.126 pN nm~! and (b) k;/N; = 1.26 pN nm~'. In (a) and (b) detached
ensembles are stationary with mobility n = 0. Constant parameters are listed in Table I.

In an ensemble with N, molecular motors, the number
i of bound motors fluctuates continuously. Because the crit-
ical elastic constant k{(z) is proportional to i, the LTE dis-
tribution follows the fluctuations of i and alternates between
post-power-stroke state (for large i with k¢/i < kf(z)/i) and
weakly bound state (for small i with k¢/i > kf(z)/i) when
the ensemble is in the transition region. Because the transi-
tion to the weakly bound state occurs first for the smallest i
and unbinding from the weakly bound state is significantly
slowed down, onset of the LTE distribution will stabilize the
ensemble against unbinding. Furthermore, the critical elastic
constant is itself a dynamic quantity, because k(z)/ i reduces
with increasing ensemble position. Thus, for linear external
load two different mechanisms can stabilize an ensemble as it
moves to larger z: (i) for ensemble positions below the LTE
transition, unbinding is slowed down by the catch bond char-
acter of motors in the post-power-stroke state and (ii) above
the LTE transition threshold, unbinding is slowed down by
the transition to the weakly bound state. Moreover, because
ensemble movement relies on the presence of motors in the
post-power-stroke state, ensemble movement feeds back neg-
atively on itself and the ensemble will stall as the LTE transi-
tion threshold is reached.

2. Stochastic trajectories

As for the case of constant external load, it is instruc-
tive to study individual stochastic trajectories in order to gain
more insight into the interplay of ensemble movement and
binding dynamics. The stochastic trajectories are generated
using the Gillespie algorithm as described for the case of con-
stant load. The upper panel of the stochastic trajectories is
now used to display the external load k¢z, which is propor-
tional to ensemble position but omits the strongly fluctuating
contribution of the strain of the motors. The actual external
load depends on the number of bound motors and their states:
if all bound motors are in the post-power-stroke state, the ex-
ternal load is larger than k¢z. If all bound motors are in the
weakly bound state, the external load is smaller than k¢z.

Fig. 15(a) shows a stochastic trajectory of an ensem-
ble with Ny =4 motors working against a linear exter-
nal load with elastic constant k¢/N; = 0.126 pN nm~! (k¢
= 0.504 pN nm~"). At z = 0, the ratio k;/ i is below the criti-
cal elastic constant k¢ /i ~ 7.5 pN nm~' for all i > 1. There-
fore, ensemble position initially increases gradually. During
this transient movement, the ensemble occasionally detaches
completely, because for all i > 1 unbinding occurs from the
post-power-stroke state with large intrinsic off-rate against
small external load. After the initial transient, the ensem-
ble reaches a stationary state in which k¢z fluctuates around
a constant average. The typical external load kfz ~ 12 pN
in this isometric state corresponds to the ensemble position
z>~24nm. For this value of 7z the critical elastic
constant is lowered to kf(z)/i ~ 0.3 pNnm~!. With k;
= 0.504 pN nm~!, the LTE distribution shifts to the weakly
bound state for i = 1 but remains in the post-power-stroke
state for i > 1. Due to the very slow unbinding of the last
(i = 1) bound motor from the weakly bound state, complete
detachment of the ensemble is no longer observed in the iso-
metric state, although i continues to fluctuate between i = 1
and N,. This demonstrates the stabilization of the ensemble
due to the LTE transition. On the other hand, the LTE tran-
sition for i = 1 also causes stalling of the ensemble and pre-
vents movement beyond the isometric state. Assuming that
all bound motors are in the post-power-stroke state, even for
the largest values of z the strain x;; is negative for all i > 1 so
that the ensemble still steps forward in these states. (Although
the size of the steps may be reduced due to the increased
probability for weakly bound motors in the proximity of the
LTE transition). Because the ensemble can only step back-
wards when all bound motors are in the weakly bound state,
the ensemble alternates between forward stepping for large i
(k¢/ i below the threshold) and backward stepping for small
i (k¢/i above the threshold). The isometric state is reached,
when these two contributions balance and the ensemble fluc-
tuates around a constant average position. Excursion to large z
will shift the LTE to the weakly bound state for higher values
of i and induce quick backward movement and restoring of
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the isometric state. Excursions to small z, on the other hand,
will shift the LTE distribution towards the post-power-stroke
state for i = 1, thus inducing quick forward movement to-
wards the isometric state. This stalling mechanism is differ-
ent from the case of constant external load, where the LTE
distribution was always in the post-power-stroke state and
the stall force was determined by vanishing x; under large
load. Fig. 15(b) shows a stochastic trajectory of an ensem-
ble with Ny = 4 motors working against the larger external
elastic constant k¢/ Ny = 1.26 pN nm~!. The isometric load
kez >~ 12 pN is comparable to the trajectory from Fig. 15(a).
Due to the larger elastic constant, however, this corresponds to
the smaller ensemble position 2.4 nm. Moreover, small fluctu-
ations in z induce strong fluctuations of k¢z. The critical elas-
tic constant for the LTE transition is k§/i ~ 2.5 pN nm™".
Again, the value of k¢ ~ 5.04 pN nm~! is below the critical
elastic constant for i > 1 and above for i = 1 so that complete
detachment is prevented by the LTE transition to the weakly-
bound state in the lowest bound state i = 1. As in Fig. 15(a),
the strain x;; of the bound motors is negative for i > 1 (as-
suming they are all in the post-power-stroke state) so that the
stalling of the ensemble is caused by the LTE transition.

For the trajectories with Ny = 4 in Fig. 15, the LTE transi-
tion occurred only in the lowest bound state i = 1. For increas-
ing N¢, more states with i > 1 undergo the LTE transition and
fluctuations of i in the isometric state are effectively restricted
to values above the threshold (compare Fig. S4 in the supple-
mentary material>®). For large ensembles as in Fig. S4 of the
supplementary material,®® the alternating forward and back-
ward motion in the isometric state displays a characteristic
pattern of rapid increase of k¢z concomitant with an increase
of i, followed by a gradual decrease of k;z accompanied by a
decrease of i. This pattern, which becomes more pronounced
for larger values of the external spring constant, is reminis-
cent of oscillation pattern for ensembles of motors working
against an elastic element.** A Fourier analysis, however, has
not shown any characteristic time scale for the fluctuations.

In the above trajectories, detached ensembles are station-
ary with mobility n = 0. Fig. 16 demonstrates the effect of
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resetting an ensemble to z = 0 after detachment. Fig. 16(a)
shows a trajectory for Ny = 4 with the small external elastic
constant k¢/N; = 0.0126 pN nm~!. The small ensemble size
and the small external elastic constant allows frequent detach-
ment during the initial, transient movement. Because the po-
sition is reset to z = 0 after detachment, the ensemble cannot
reach the isometric state which would stabilize the ensem-
ble and prevent detachment. Therefore, the stochastic trajec-
tories show a characteristic pattern of gradual linear buildup
of load, followed by rapid release upon detachment. This pat-
tern resembles trajectories observed experimentally in three
bead assays,?*3233 active gels,’"3* and motility assays.®
Fig. 16(b) shows a trajectory with larger external elastic
constant. During the transient increase of k¢z, the ensemble
detaches occasionally and is reset to z = 0. Because the iso-
metric ensemble position is smaller for larger k¢/ N, the iso-
metric state can eventually be reached. This isometric state
is not affected by the movement of the detached ensemble.
As observed above, complete detachment from the isometric
state is rare. As detachment occurs in a rare fluctuation, how-
ever, the ensemble detaches several times on its trajectory un-
til the isometric state is again reached.

3. Binding dynamics

To study the interplay of ensemble movement and bind-
ing dynamics, we first analyze the dependence of detachment
time Tj9 on ensemble size N; and external elastic constant
k¢. Because the one-step master equation Eq. (10) cannot be
solved with position dependent transition rates, the detach-
ment time is calculated numerically by averaging the first pas-
sage time from i = 1 to i = 0 over repeated, stochastic trajec-
tories. The trajectories all start at z = 0 and are terminated as
soon as the ensemble detaches, so that the mobility » has no
influence on the result.

Fig. 17(a) plots simulation results for the average detach-
ment time 7o of an ensemble as function of ensemble size
N, for different values of the external elastic constant k¢/ Ny.
The largest value of k¢/ N, is above the critical external elastic

N; = 4, kf/N; = 0.126 pN/nm

o

0.5 1 1.5 2 25
time t (s)

FIG. 16. Stochastic trajectories for linear external load. Elastic load k¢z on the ensemble (upper panel) and number i of bound motors (lower panel) as function
of time ¢ for ensemble size N; = 4 and external elastic constant per motor (a) k¢/ Ny = 0.126 pN nm~! and (b) k/Ny = 1.26 pN nm~. In (a) and (b) detached
ensembles are reset to z = 0 with infinite mobility n = co. Constant parameters are listed in Table 1.
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FIG. 17. Numerical results for the parallel cluster model with linear external load: average detachment time 7. (a) 7o as function of ensemble size N; for
the values kf/N; = 0.126 pN nm~!, 1.262 pN nm~!, 3.787 pN nm~', and 12.0 pN nm~! of the external elastic constant per motor. (b) Tyo as function of the
external elastic constant per motor k¢/N; for ensemble sizes N; = 2, 3, 4, and 5. Constant parameters are listed in Table I.

constant at z = 0 so that unbinding proceeds predominantly
from the weakly bound state for all values of N; and is inde-
pendent of load. Thus, T increases approximately exponen-
tially with increasing N, and reaches T}y ~ 10* s already for
Ny = 5. For constant load, such detachment times required
external loads well beyond the stall force. For the smallest
value of k¢/Ni, which is well below ki(z = 0)/i, a transient
regime with a very slow increase of T is observed. Here, the
average detachment time results from a combination of fast
detachment from the post-power-stroke state during the tran-
sient increase of z and slow unbinding from the weakly bound
state (for small values of i) once the isometric state is reached.
For sufficiently large N, detachment before reaching the iso-
metric state becomes unlikely and T} is determined by slow
unbinding from the weakly bound state. Thus, the increase
of Tjyp with N; becomes similar to the exponential increase
observed for large k¢/N;. For increasing values of k¢/Ny,
the transient regime of slow increase of N, becomes less
pronounced and T increases exponentially for most values
of M.

Fig. 17(b) plots Tjo as function of k¢/N; for different
N;. The plot reveals three different regimes of the detach-
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ment time which corresponds to different detachment mecha-
nisms. At very small k;/ N; ensembles detach during the initial
increase of z. Here, unbinding of motors proceeds predom-
inantly from the post-power-stroke state under small exter-
nal load, so that the detachment time is almost independent
of k¢/Ni. In an intermediate regime, the detachment time in-
creases significantly. Here, the ensembles can reach the iso-
metric state so that the contribution of slow unbinding from
the weakly bound state becomes more prominent. Because
the ensembles adjust themselves dynamically to the isomet-
ric state, large ensembles display a plateau region with con-
stant 779. When the external elastic constant approaches the
absolute threshold kf/N, ~ 7.5 pN nm~! for z = 0, the LTE
distribution shifts towards the weakly bound state for an in-
creasing number of states i. This increases the typical number
of bound motors and the detachment time increases rapidly
(see Fig. S4 of the supplementary material®).

Fig. 18(a) plots the ensemble duty ratio pg as function
of ensemble size N, for different values of the external elas-
tic constant k¢/ N;. Because the attachment time Ty is inde-
pendent of k¢ and decreases with N,~!, the dependence of pq
on k¢ and N, mainly reflects the corresponding dependence of
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FIG. 18. Numerical results for the parallel cluster model with linear external load: ensemble duty ratio pq. (a) pg as function of ensemble size N; for the values
Fext/Nt = 0.13 pN nm~!, 1.26 pN nm~!,5.05 pN nm~!, and 12.0 pN nm~! of the external elastic constant per motor. (b) pq as function of the external elastic
constant per motor k¢/N; for ensemble sizes Ny = 2, 3, 4, and 5. Constant parameters are listed in Table 1.
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FIG. 19. (a) Numerical results for the parallel cluster model with linear external load: average number N, of bound motors. (a) Ny, as function of ensemble
size N for the values k¢/N; = 0.13 pN nm~!, 3.16 pN nm~', 6.31 pN nm~!, and 16.4 pN nm~! of the external elastic constant per motor. (b) Ny, as function
of external elastic constant per motor kg/N; for the ensemble sizes Ny = 4, 6, 9, and 15. Detached ensembles at stationary with 7 = 0. Constant parameters are

listed in Table 1.

T)o. For the largest value with k¢/ N; > kf / Ny, the duty ratio at
N, = 1 is increased significantly with respect to the duty ratio
of a single free motor, p;"¢* ~ 0.33. Due to the exponential
increase of the detachment time, pq =~ 1 is reached already for
N > 2. For smaller kr/N; < ki /N, the duty ratio at N; = 1
is close to the duty ratio of a single free motor. This indicates
that unbinding proceeds predominantly from the post-power-
stroke state. Due to the rapid increase of Ty with N, per-
manent attachment with pg ~ 1 is achieved for N, > 5. This
is significantly smaller than the ensemble size N, = 15 re-
quired for permanent attachment under constant external load.
Fig. 18(b) plots pg4 as function of k¢/ N, for different N,. In
analogy to the detachment time, pg displays two regimes: a
constant duty ratio at small k¢/ Ny followed by a rapid increase
at intermediate values of k¢/N;. Because pg ~ 1 is already
reached here, the strong increase of Ty for k¢/N; 2 ki(z
= 0)/ N; cannot be resolved.

To calculate the average number of bound motors Ny
= (i), we average i over long trajectories in which the en-
sembles are allowed to detach from the substrate. The de-
tached ensembles are stationary with vanishing mobility, n
= 0, so that the isometric state of the ensembles is probed.
Fig. 19(a) plots the average number N, of bound motors as
function of ensemble size N, for different values of the ex-
ternal elastic constant per motor k¢/N,. For all the values of
k¢/ Ny the average number of bound motors increases linearly
with N,. The slope becomes steeper with increasing k¢/N;
but saturates for very large k¢/N;. Only for small values of
k¢/ N there is a short transient with a slower increase of Ny.
Fig. 19(b) plots Ny as function of the external elastic con-
stant per motor k¢/N; for different values of N;. For k¢/ Ny <
kf(z = 0)/ N, the average number of bound motors is con-
stant. Here, the ensembles adjust themselves to an isometric
state at finite ensemble position z > 0. As the value of k¢/N;
exceeds the critical values kf(z = 0)/N,, the average number
of bound motors increases steeply. Here, the LTE transition to
the weakly bound state occurs already at z = 0 and for an in-
creasing number of states i (see Fig. S4 of the supplementary
material>®).

4. Average external load

For linear external load, analogous to the force-velocity
relation as a characteristic for the dynamic properties of an
ensemble under constant external load, is the average exter-
nal load (Fex) = (ksz) of the ensemble in the stationary state.
As explained in the context of the stochastic trajectories, this
quantity differs from the actual load in the external elastic el-
ement by leaving out the strain x;; of the motors.

As for the average number of bound motors, the average
external load is determined by averaging over long trajecto-
ries with multiple unbinding events. In Fig. 20, the detached
ensembles are stationary with mobility n = 0, so that the av-
erage load in the isometric state is probed. Fig. 20(a) plots
the average external load (Fe) in the stationary state of an
ensemble as function of ensemble size N, for different val-
ues of the external elastic constant per motor, k¢/N;. Below
the critical value for the LTE transition, k;/N; < ki /Ny, the
average external load increases with N;. For very small exter-
nal elastic constants, k;/N; < 1 pN nm~!, the curves are al-
most identical for different k¢, but begin to decrease for k¢/ N;
> 1 pN nm~'. This decrease of { Fey) for given N, is observed
in the trajectories of Fig. S4 of the supplementary material.>®
At the critical external elastic constant, ks/ N; > ki /N, the av-
erage external load is independent of N,. Above the critical
threshold, the LTE transition towards the weakly bound state
occurs already at z = 0 so that ensemble movement is severely
reduced. Here, (Fex) decreases with increasing N;. Fig. 20(b)
plots the average external load as function of k¢/ N, for differ-
ent N,. For small k¢/ Ny < kf /Ny, the average external load is
independent of k¢/ N;. Close to the critical value, ( Fex) breaks
down because ensemble movement is effectively impossible.

Fig. 21(a) plots the average external load as function of
ensemble size N, for different values of k¢/N; for the case
that the ensemble is reset to its initial position z = O after
complete detachment. This corresponds to the limit of large
mobility 7 — oo. The values of k¢/N; are below the critical
value kf(z = 0)/N; and from a range in which (Fey) atn =0
was independent of k¢/ N;. For small external elastic constant,
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FIG. 20. Numerical results for the parallel cluster model with linear external load: average external load { Fex¢) for n = 0. (a) (Fext) as function of ensemble size
N for values k¢/ Ny = 0.13 pN nm~!, 5.05 pN nm~!, 7.57 pN nm~!, 8.84 pN nm~!, and 16.4 pN nm~! of the external elastic constant per motor. (b) (Fext)
as function of external elastic constant per motor k¢/N; for ensemble size Ny = 4, 6, 9, and 15. Constant parameters are listed in Table 1.

the isometric state corresponds to a large ensemble position z.
Therefore, ensembles detach frequently during the long tran-
sient movement towards the isometric state. Because detached
ensembles are reset to z = 0, this reduces the average external
load, as observed in Fig. 16(a). Because detachment becomes
less likely with increasing N, and ensembles are stabilized
in the isometric state, (Fe.y) increases with N; and eventually
jumps discontinuously to the average load for n = 0. With in-
creasing k¢/ N, the average external load grows in proportion
to k¢/ N, at given N,. This means that the movement of the
ensemble during the initial transient is hardly affected by the
small external load. Because the isometric state corresponds
to smaller ensemble position z, however, the discontinuous
jump to the curve for n = 0 occurs at smaller values of N; and
becomes less pronounced. Fig. 21(b) plots the average exter-
nal load for  — oo as function of k¢/ N; for different ;. For
small k¢/ Ny, (Fex) increases linearly towards the average iso-
metric load. For larger NV, (Fex) for given k¢/ N, increases and
jumps discontinuously towards isometric load. The disconti-
nuity becomes more pronounced with increasing N; and the
position of the jump decreases.
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IV. DISCUSSION AND SUMMARY

In this paper, we have introduced and analyzed a stochas-
tic model for ensembles of non-processive motors such as
myosin II working against an external load. The model al-
lows us to investigate in detail the effect of a finite number of
motors in an ensemble, most importantly the stochastic bind-
ing dynamics of the motors. Introducing the parallel cluster
model and using the local thermal equilibrium approxima-
tion allowed us to reduce the complexity of the model sig-
nificantly, eventually leading to efficient numerical simula-
tions and analytical results for stationary properties. In detail,
we have analyzed two paradigmatic situations in which the
motor-ensemble works against either a constant or a linear
external load. Both situations are highly relevant for a large
class of experiments.

For constant external load, our results for large ensemble
sizes are in good qualitative agreement with previous model
results for large assemblies of myosin I1.'%* Due to the lo-
cal thermal equilibrium assumption, however, our model is
not able to describe, e.g., the synchronization of motors under
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FIG. 21. Numerical results for the parallel cluster model with linear external load: average isometric load (Fex¢) for n — 00. (a) (Fext) as function of ensemble
size Ny for values kf/ Ny = 1.26 x 1074 pN nm~!, 0.00126 pN nm~ !, 0.0126 pN nm~ !, 0.126 pN nm~!, and 1.26 pN nm~'. (b) {Fey) as function of external
elastic constant per motor k¢/ N; for ensemble size Ny = 4, 6, 9, and 15. Constant parameters are listed in Table I.
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large external load which is due to the kinetic hindrance
of the power stroke. Average quantities, however, are well
represented. In particular, the force-velocity relation of an
ensemble follows the characteristic concave shape which is
described by a Hill relation and is found experimentally for
muscle fibers>® as well as for small ensembles of myosin I1.40
The parallel cluster model makes it easy to identify the rele-
vant quantities determining the force-velocity curve. In partic-
ular the role of the load-sensitivity of unbinding from the post-
power-stroke state and the increase of the number of bound
motors under load for the adaption of the dynamic range of
an ensemble becomes clear. Due to the strong bias of the LTE
distribution towards the post-power-stroke state, myosin II as
a whole behaves as a catch bond for the whole range of con-
stant external load considered in this paper. This induces the
increase of the number of bound motors under load, which is
the basis for the concave shape of the force-velocity relation.
At small external load, a small number of bound motors is
able to work against the external load and the large number of
unbound motors generates fast ensemble movement with lit-
tle resistance from the bound motors. At large external load,
on the other hand, the increase of the number of bound mo-
tors allows to increase the stall force of the ensemble rela-
tive to the case of a constant number of bound motors. Thus,
the mechanosensitive response of myosin II to a constant ex-
ternal load greatly increases the dynamic range over which
myosin II ensembles can operate and the robustness of ensem-
ble movement. As demonstrated in Sec. S.2.1 of the supple-
mentary material,’® the apparent load-sensitivity of myosin I
becomes stronger for small duty ratios, for which a stronger
increase of the number of bound motors is observed. The rel-
evance of this mechanism of mechanosensitivity for the effi-
ciency of motor ensembles is underlined by the experimental
observation of the increase of the number of bound motors in
muscle filaments which use myosin II'* and the recent iden-
tification of a similar load-sensitive step in myosin 1.0 This
last result indicates that the mechanisms described here might
have wider applications. In addition to reproducing previous
results for large ensembles, our model in particular allows to
identify the range of ensemble sizes in which stochastic de-
tachment of ensembles is relevant and reduces the efficiency
of ensembles. As demonstrated in Sec. S.2 of the supplemen-
tary material,’® this range depends strongly on the duty ra-
tio of the single motor. The smaller the single motor duty ra-
tio, the larger is the number of motors in an ensemble that is
needed to ensure practically permanent attachment. For the
model parameters used in the main part of the paper, the sin-
gle motor duty ratio is similar but slightly larger than reported
for non-muscle myosin I1.>' Here, it turns out that roughly N,
= 15 motors are needed for almost permanent attachment.
This number is in the range of the size of minifilaments, in
particular if one considers that due to spatial restrictions, not
all motors which are contained in a minifilament can actu-
ally bind to a substrate at the same time. Thus, unbinding
will be relevant for cytoskeletal myosin II minifilaments. In-
terestingly, due to the load-sensitivity of myosin II minifil-
aments, detachment of the ensembles will occur most fre-
quently for ensembles under small load, whereas ensembles
working against large external load are stabilized by the catch
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bond character of myosin II so that they can form efficient
crosslinkers of actin fibers.

For linear external load, it has been shown that the load-
sensitivity of the unbinding step is less relevant for the behav-
ior of a motor ensemble. Rather, the reverse transition from
the post-power-stroke state to the weakly bound state, which
is induced by the stiffness of the external spring or by large
external load, eventually stalls the ensemble in the isometric
state. As long as the stiffness of the external spring is below
the critical threshold, ensembles can move forward until the
isometric state is reached. Because ensembles adapt their po-
sition dynamically towards the isometric state, characteristic
dynamic properties such as the detachment time or the typical
number of bound motors in the isometric state are indepen-
dent of the external elastic constant state and increases sig-
nificantly only when the critical stiffness is reached. Thus,
measuring the change of the number of bound motors with
the stiffness of the external force is a characteristic sign of the
relative size of the unbinding rates from the different bound
states of the motors. The critical value of ks above which en-
semble are no longer able to generate force allows to deter-
mine the free energy bias towards the post-power-stroke state.
The qualitative change of behavior of the ensemble should al-
low to observe this experimentally even in noisy data, e.g., in
extensions of the three bead assay with better control over the
number of motors. Typical stochastic trajectories reveal a be-
havior which is qualitatively similar to previously predicted
or experimentally observed types of behavior. For relatively
large ensembles which do not unbind, a sort of irregular oscil-
lation pattern has been observed, similar to the oscillation pre-
dicted using a ratchet model for large ensembles of motors.*’
The linear increase of stress followed by a fast stress relax-
ation which is observed in three bead assays>> and in active
gels®* has been reproduced for the case that unbinding from
the substrate occurs before the ensemble reaches its equilib-
rium position.

The sequence of reactions in our basic crossbridge model
is compatible with experiments.?*** Compared to other mod-
els, we have neglected one additional post-power-stroke state,
which will be important for detailed descriptions of the force-
velocity relation in skeletal muscle'® or inclusion of the ATP
dependence of the motor cycle.*® The ATP dependence, how-
ever, could also be included in our model via an ATP depen-
dent off-rate from the post-power-stroke state. On the other
hand, our model explicitly includes the weakly bound state (or
pre-power-stroke state) as a load bearing state, which is omit-
ted by Walcott et al.*® Because for constant external load, the
weakly bound state is hardly occupied so that motors bind ef-
fectively directly to the post-power-stroke state as in Walcott
et al.* For linear external load, however, the isometric state
of the ensemble is determined by the transition from the post-
power-stroke to the weakly bound state, which could not be
described without a model for the power stroke. Without the
weakly bound state, which is stable under load, this transition
would destabilize the ensemble instead of stabilizing it. The
choice of the set of parameters used in our model was moti-
vated by previous modeling approaches and did not aim at a
description of a specific molecular motor. However, the basic
conclusions of the model do not depend on the exact choice
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of parameters. The only prerequisite for the application of
the model is that transitions between the bound states are fast
so that the local thermal equilibrium can establish. Compar-
ison with simulations without PCM or LTE have shown that
this requires a forward rate k;, for the power stroke which
is faster than the off-rate ko from the weakly bound state.
Thus, our model can be used with different choices of param-
eters. This is demonstrated in Sec. S.2 of the supplementary
material®® for different choices of the single motor duty ratio.
The discussion of the result has demonstrated the dependence
of experimentally measurable quantities such as the number
of bound motors, the load free velocity, or the stall force on
the model parameters so that the parameters can be adapted
to describe a desired behavior of the motor ensemble.

Ensembles of non-processive motors behave very simi-
lar to processive motors with a specific force-velocity relation
and a typical walk length. The analytical expressions allow to
integrate such ensembles in larger systems in a similar man-
ner as it has been done for processive motors.”!! In such a
systems, ensembles of ensembles would be multiply coupled
either in series or in parallel through forces that they generate.
Such model could be used to describe, e.g., tension generation
in a stress fibers or the cell actin cortex. Since the relaxation
to the stationary values is relatively fast, slow external stimuli,
changing for example the motor activity, could be included to
mimic signaling events which a cell experiences, e.g., during
cell migration.
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