
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Coupling biochemistry and mechanics in cell
adhesion: a model for inhomogeneous stress
fiber contraction

Achim Besser and Ulrich S Schwarz 1

University of Heidelberg, Bioquant, BQ 0013 BIOMS Schwarz,
Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany
E-mail:Ulrich.Schwarz@bioquant.uni-heidelberg.de

New Journal of Physics 9 (2007) 425
Received 3 July 2007
Published 30 November 2007
Online athttp://www.njp.org/
doi:10.1088/1367-2630/9/11/425

Abstract. Biochemistry and mechanics are closely coupled in cell adhesion.
At sites of cell-matrix adhesion, mechanical force triggers signaling through the
Rho-pathway, which leads to structural reinforcement and increased contractility
in the actin cytoskeleton. The resulting force acts back to the sites of adhesion,
resulting in a positive feedback loop for mature adhesion. Here, we model
this biochemical–mechanical feedback loop for the special case when the actin
cytoskeleton is organized in stress fibers, which are contractile bundles of actin
filaments. Activation of myosin II molecular motors through the Rho-pathway is
described by a system of reaction–diffusion equations, which are coupled into a
viscoelastic model for a contractile actin bundle. We find strong spatial gradients
in the activation of contractility and in the corresponding deformation pattern of
the stress fiber, in good agreement with experimental findings.
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1. Introduction

Adhesion of biological cells to each other and the extracellular matrix is one of the hallmarks
of multicellular organisms and a very active area of research in cell biology. Investigating
cell adhesion is crucial to understand physiological processes like tissue development and
maintenance, but also disease-related processes like growth and migration of cancer cells
[1, 2]. In general, biological cells have a limited repertoire of possible behaviors, including
spreading, adhesion, migration, division or death, but very sophisticated ways of controlling
the switching between these different processes. Traditionally, investigation of this cellular
decision making has focused strongly on the biochemical aspects, including detailed models
for signal transduction [3, 4]. During recent years, it has become increasingly clear that in
adhesion-related processes, cellular behavior is not only controlled by biochemical cues, but
also involves many physical determinants like the structural organization of the extracellular
matrix and the cytoskeleton or force generation through molecular motors [5]–[8]. For example,
it has been shown that the stiffness of the extracellular environment determines migration of
tissue cells [9] and differentiation of stem cells [10]. In particular, these cellular responses have
been found to depend on the ability of the cells to contract their environment with actomyosin
contractility and to convert this mechanical process into a biochemical signal. Although these
processes are essential for such important situations like tissue functioning or cancer cell
migration, theoretical models describing the coupling between biochemistry and mechanics
in cell adhesion are still rare, albeit essential for a future systematic understanding of how
multicellular organisms organize themselves.

Cell adhesion is closely related to the actin cytoskeleton, whose organization is central
in determining the structural properties of cells. In cell culture with stiff substrates, the actin
cytoskeleton tends to organize instress fibers, which are bundles of actin filaments tensed
by myosin II molecular motors [11]. Stress fibers usually end infocal adhesions, which are
integrin-based adhesion contacts which can grow to a lateral size of several microns [12, 13].
On their cytoplasmic side, focal adhesions recruit more than 90 components (mostly proteins)
which physically reside in the adhesion structure [14]. In 1992, Ridley and Hall published a
landmark paper demonstrating that the assembly of stress fibers and focal adhesions is regulated
by a small GTPase called Rho [15]. Rho has many isoforms, but the one mainly associated
with focal adhesions is RhoA, which for simplicity in the following we referred to as Rho.
In a companion paper of the same year, Ridleyet al [16] showed that another small GTPase
called Rac stimulates the formation of lamellipodia as they appear in cell migration. The main
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isoform associated with focal adhesions is Rac1 which for simplicity in the following we will
refer to as Rac. While Rho mainly acts through activation of actomyosin contractility, the main
effect of Rac is activation of actin polymerization, in particular activation of the actin nucleation
factor Arp2/3. It has been reported later that activation of Rac downregulates Rho, leading to
disassembly of stress fibers and focal adhesions [17]. In many situations, Rho and Rac can
be regarded as antagonists, switching the cytoskeleton between different structural states [18].
They are part of a larger family of small GTPases, called the Rho-family, which for example also
includes Cdc42, which stimulates the formation of filopodia and maintains cell polarity [19].
Apart from regulation of the actin cytoskeleton, the small GTPases from the Rho-family have
many other functions in the cell, for example in cell cycle control and differentiation.

Although the small GTPases from the Rho-family are simple molecular switches, they are
regulated by many different factors. In general, GTPases are upregulated by guanine nucleotide
exchange factors (GEFs), which convert the inactive Rho-GDP form to the active Rho-GTP form
by exchanging GDP for GTP. They are downregulated by GTPase-activating proteins (GAPs),
which stimulate Rho-GTPase activity, thus leading to GTP-hydrolysis and transforming the
active Rho-GTP to the inactive Rho-GDP. For the 20 members of the Rho-family, 60 different
GEFs and 70 different GAPs as well as more than 60 different downstream targets have been
identified [20]. At the current stage of affairs, there is no way how this complex network can
be modeled in full detail. However, certain parts of this network have been well characterized
by biochemical assays, in particular different parts of the Rho-mediated signal transduction
pathway leading from focal adhesions to actomyosin contractility.

Here, we focus on the role of Rho as a stabilizing factor for mature adhesion. During
recent years, it has been shown that Rho is the central component of a biochemical–mechanical
feedback loop which regulates mature adhesion. In detail, it has been shown that application
of force on focal adhesions triggers their growth in a Rho-dependent manner [21] (reviewed in
[13, 18]). Two main downstream targets of Rho leading to stress fiber formation have been
identified. The formin mDia leads to actin polymerization, while the Rho-associated kinase
(ROCK) leads to phosphorylation of myosin light chain (MLC) and thus to increased motor
activity. Together these effects lead to the formation of and contractility in stress fibers and
therefore to increased force levels at focal adhesions. In this way, a positive feedback loop is
closed for upregulation of mature adhesion characterized by focal adhesions and stress fibers.
This biochemical–mechanical feedback loop is schematically depicted in figure1. An essential
part of this feedback loop is the growth of focal adhesion under force, which recently has
been the subject of different modeling approaches [22]–[27] (reviewed in [28]). However,
these models have focused mainly on the mechanical and thermodynamic aspects of the
growth process, neglecting the interaction of mechanics and biochemical signaling. The positive
feedback loop between contractility and growth of adhesions has been modeled before in the
framework of kinetic equations, but without addressing the details of force generation and its
regulation by signaling pathways [29]. Similar kinetic equations have been used to model the
antagonistic roles of Rho and Rac in cell adhesion, but again without addressing the details of
force generation and regulation [30]. Recently force generation has been addressed in more
detail in a model for whole cell contractility and stress fiber formation [31, 32]. However,
no details of the signaling pathway have been modeled except for an unspecified activation
signal.

Because the actin cytoskeleton is very dynamic and interacts with many different molecular
factors, including actin-associated proteins and molecular motors, it is very difficult to model its

New Journal of Physics 9 (2007) 425 (http://www.njp.org/)

http://www.njp.org/


4

Substrate

Rho-signal Rho-signal
Stress fiber

FA Focal adhesion

α-actinin

Myosin minifilament

Actin filament

FA FA

FA

MyosinSubstrate

Rho-signal

Force

Biochemistry

Mechanics

0 xL

Figure 1. Cells adhere to the extracellular matrix by integrin-mediated contacts
called focal adhesions. These contacts are the anchor points of stress fibers,
which are actin filament bundles held together by the crosslinker molecule
α-actinin and myosin II molecular motors. The myosins are assembled in myosin
mini-filaments. Due to myosin motor activity stress fibers are under tension and
exert forces to focal adhesions. This mechanical stimulus initiates biochemical
signals (Rho-signal) that originate from focal adhesions and propagate into
the cytoplasm, altering in turn myosin activity. Therefore the system of focal
adhesions and stress fibers are connected by a biochemical and mechanical
positive feedback loop (inset). The spatial part of our model is 1D with one stress
fiber extending between the two focal adhesions atx = 0 andx = L.

mechanical properties in a general way. However, modeling becomes feasible if one focuses on
one of the well-characterized states of the actin cytoskeleton, for example the lamellipodium
or stress fibers. Because here we are mostly interested in mature cell adhesion in culture,
we will focus on the latter case. Modeling stress fibers can be approached from different
perspectives. An obvious starting point are their common characteristics with muscle fibers,
which is a linear sequence of sarcomeres, each containing around 300 myosin II molecular
motors working collectively together as they slide the actin filaments relatively to each other.
This field has been pioneered by the Huxley model [33], which later has been modified in many
regards, e.g. in regard to filament extensibility [34] or by a detailed modeling of the myosin
II hydrolysis cycle [35]. In contrast to muscle fibers, stress fibers are more disordered and a
complete description therefore requires a model for their assembly process from polar filaments
interacting through molecular motors. Such a description has been achieved in the framework of
a phenomenological theory which however does not model the details of the underlying motor
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Figure 2. (A) Petersonet al [38] studied the deformation of stress fibers
in fibroblasts by using fluorescently labeledα-actinin (in green) and MLC
(in red). These two components arrange sequentially along the stress fibers
and thereby form regular striation patterns. Myosin contractility was stimulated
with the drug calyculin A. Then an inhomogeneous striation pattern results:
stress fibers contract at the cell periphery (B) but expand at the cell center (C).
These results were quantified by time course measurements of the mean pattern
bandwidths in the respective regions. Compared with the control (D), stimulation
of contractility leads to very strong spatial gradients (E) on the timescale of tens
of minutes.

activity [36, 37]. This theory does predict different dynamical states of the system, including a
stationary state of isometric contraction as observed in stress fibers.

Although less ordered than muscle on the level of electron microscopy, stress fibers do
exhibit a periodic organization. Figure2 shows experimental data for fibroblast adhesion to a
stiff substrate [38]. The image of a whole cell shown in figure2(A) reveals a banding pattern
in the stress fibers. The green regions correspond to the actin crosslinkerα-actinin while the
red regions correspond to myosin II molecular motors. Non-muscle myosin II is known to
assemble into bipolar minifilaments consisting of 10–30 myosins, as depicted in the cartoon
of a stress fiber in figure1. In contrast to muscle, the striation pattern of stress fibers shows
considerable variability along the length of a stress fiber. In particular, it has been observed that
upon stimulation of contraction with the drug calyculin A, only the sarcomeres in the periphery
(close to the focal adhesions, figure2(B)) shorten, while those in the center (close to the cell
body, figure2(C)) elongate. The exact time course of the striation width is shown in figures2(D)
and (E) for control and stimulation experiments, respectively. This demonstrates that activation
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of contractility leads to strong spatial gradients in the striation pattern. Thus, it is not sufficient
to model only one sarcomeric unit as it is typically done for muscle [33]–[35]. Rather at least a
one-dimensional (1D) chain of such sarcomeres has to be considered.

Here, we introduce a new 1D model for stress fibers which essentially models them as
linear sequence of viscoelastic Kelvin–Voigt bodies, whose stationary state is determined by
the elastic part. The action of the molecular motors inside each sarcomeric unit are included
on the level of a linearized force–velocity relationship. The signaling pathway is modeled
as a system of reaction–diffusion equations. For this study, we have conducted an extensive
survey of the relevant literature and have collected the measured rate and diffusion constants in
such a way that they now can be used for mathematical modeling. The coupling between the
biochemical signaling pathway and the mechanical stress fiber model proceeds by introducing
a spatially varying fraction of active molecular motors. The local activation level is thereby
determined by the outcome of the signaling pathway. A continuum limit of the mechanical
model for many sarcomeric units in series results in a partial differential equation with mixed
derivatives. The whole system of reaction–diffusion equations for the signal transduction and
the partial differential equation for the mechanical part can be solved simultaneously. By feeding
the force resulting from the mechanical model back into the activation of the signaling pathway,
we obtain for the first time a model for the closed biochemical–mechanical feedback cycle
described above. As a first application of our model, here, we show that it predicts heterogeneous
contraction of stress fibers, in good agreement with experiments. In general, our work
shows how models for the coupling of biochemistry and mechanics can be devised in a
meaningful way.

The paper is organized as follows. In section2, we start with our model for the part of
the Rho-pathway which is relevant for our purposes. We then introduce our mechanical model
for one sarcomeric unit of the stress fibers in section3 and its continuum limit for a whole
stress fiber in section4. In section5, our model predictions for inhomogeneous contraction
upon activation of contractility by calyculin are compared to the experimental results. Finally,
we conclude in section6.

2. Biochemical model for the Rho-pathway

In this study, we concentrate on stress fibers and their regulation by the Rho-pathway. In figure1,
we introduce a coordinate system for our 1D model: the stress fiber extends along the positive
x-direction and the endpoints atx = 0 andx = L correspond to two focal adhesions. Because
the two focal adhesions are treated as equivalent, our model has inflection symmetry around
x = L/2. In figure3, we schematically depict the biochemical part of our model in the spatial
context of the focal adhesion atx = 0 (by symmetry, the same description applies to the one
at x = L). Three compartments have to be considered: the focal adhesion, the cytoplasm and
the stress fiber. In our model, each of these compartments corresponds to one or two important
biochemical components. The reaction pathway is a linear sequence of activating or inhibitory
enzyme reactions initiated at focal adhesion, transmitted through the cytoplasm by diffusion and
resulting in spatially dependent myosin activation in the stress fiber. In the following we discuss
each reaction step in detail and show how these processes are translated into reaction–diffusion
equations. The abbreviations used for the biochemical components are compiled in table1,
together with a short description of their functions. The model equations are summarized in
table2.
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Figure 3. Signaling pathway that controls myosin contractility depicted in
its appropriate spatial context: mechanical cues are transduced to various
biochemical signals at focal adhesions, however the precise mechanisms have
not been resolved yet. One possible mechanism is that a Rho-GEF is activated
by a mechanosensitive process at focal adhesions. Rho-GEF then promotes Rho-
GTP loading and subsequent complexation with ROCK which gets activated.
Active ROCK is able to phosphorylate MLCP at its MBS. MLCP and MLCP-P
are freely diffusible in the cytoplasm and thus can reach the myosins in the stress
fibers. Increased phosphorylation of MLCP to MLCP-P by ROCK effectively
leads to increased phosphorylation of MLC, thus increasing myosin contractility.

Our modeling of the biochemical signaling pathway starts with the activation of Rho
at focal adhesions. The Rho-protein has a lipophilic end that serves to anchor it to lipid
membranes [39]. Complexation with guanine nucleotide dissociation inhibitors (GDIs) shields
the hydrophobic parts of the Rho-protein and make it inactive as well as soluble in the
cytoplasm [40]. It is expected that Rho is released from these complexes at focal adhesions.
More importantly, focal adhesions are known to recruit different Rho-GEFs, thus activating
Rho at the focal adhesions. The active Rho is then able to bind ROCK and thereby activate its
kinase activity [41]. Since the active ROCK is bound to Rho-GTP, we assume in our model
that these components are not diffusible but are localized to the focal adhesions. For the same
reason, we neglect the direct interaction of ROCK and myosin which has been reported to occur
in vitro. Active ROCK phosphorylates the diffusible myosin light chain phosphatase (MLCP) at
its myosin-binding subunit (MBS). MLCP and its antagonistic partner myosin light chain kinase
(MLCK) are the main regulators of myosin contractility in the context we are interested in. Both
enzymes interact with the regulatory MLC subunit of the myosins. Depending on the respective
activities, MLC gets either phosphorylated or dephosphorylated. MLC, in turn, controls the
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Table 1. Abbreviations and full names of the biochemical components. For each
component, a short description of its function is given.

Abbreviation Full name Function

GDP/GTP Guanosine diphosphate/guanosine Small molecule without and with a third phosphate
triphosphate group, energy source of conformational changes

GEF Guanine nucleotide Activates GTPases by exchanging GDP for GTP
exchange factor

GAP GTPase-activating protein Stimulates GTP-hydrolysis, converting active GTPases
(GTP-bound) to their inactive (GDP-bound) form

GDI Guanine nucleotide Binds to inactive form of GTPases, the complex is soluble
dissociation inhibitor in the cytoplasm

MLC Myosin light chain Subunit of myosin II molecular motors, regulates myosin
binding to actin filaments

MLCK Myosin light chain kinase Phosphorylates MLC
MLCP Myosin light chain phosphatase Dephosphorylates MLC
MLCP-P Phosphorylated MLCP Inactive form of MLCP
MBS Myosin-binding subunit Subunit of MLCP whose phosphorylation makes MLCP

inactive
ROCK Rho-associated kinase ROCK phosphorylates MLCP at its MBS
I Effect of calyculin Inhibits MLCP from dephosphorylating myosin,

thus enhancing contractility

myosin binding to actin filaments. Only if MLC is phosphorylated is myosin able to bind actin
filaments and perform its ATPase cycle that converts chemical energy into mechanical work,
e.g. contraction of stress fibers [42]. By phosphorylating MLCP, ROCK effectively enhances
the phosphorylation level of MLC. In this way, Rho-activation can lead to an increase in myosin
contractility in the stress fiber.

Our model for the biochemical reaction–diffusion system assumes that each enzyme
stimulation follows Michaelis–Menten kinetics [43]. In Michaelis–Menten kinetics, production
first increases linearly with educt concentration and then saturates at a maximal production
velocity if educt concentration exceeds the value set by the Michaelis–Menten constant. The
precise molecular process corresponding to the conversion of force into a biochemical signal
at focal adhesions has not been identified yet. However, it is expected that mechanical forces
exerted on to focal adhesions eventually initiate the loading of Rho-GTP leading to ROCK
activation. For lack of information we therefore lump the focal adhesion associated processes
into one equation that effectively describes the conversion of ROCK into its activated form
(presumably complexed with Rho-GTP). The mechanical forceFb that stimulates the activation
is treated as enzyme in the framework of Michaelis–Menten kinetics:

∂ROCK(t)

∂t
=

r1Fb(t)(ROCKtot − ROCK(t))

K1 + (ROCKtot − ROCK(t))
−

V−1ROCK(t)

K−1 + ROCK(t)
. (1)

The variable ROCK denotes the activated form of ROCK and we assume that the overall
concentration of ROCK is constant at ROCKtot. The force exerted by the stress fiber on to
the focal adhesion,Fb(t), stimulates the conversion of ROCK into its activated form with maxi-
mum velocity r1Fb(t) and Michaelis–Menten constantK1. The parameterr1 is equivalent to a
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Table 2. Summary of model equations. Equations (m1)–(m4) describe successive
biochemical signaling events: (m1) focal adhesion associated activation
of ROCK; (m2) and (m3) phosphorylation and diffusion of MLCP and
dephosphorylation and diffusion of MLCP-P; (m4) regulation of the active
fraction of the myosins, which is identified with the phosphorylated fraction of
MLC. Equation (m5) is the mechanical model equation for stress fibers, where
u(x, t) is the displacement along the fiber. The boundary conditions for the
partial differential equations (m2), (m3) and (m5) are given by (bc2), (bc3) and
(bc5), respectively. In equation (bc2) and (bc3), the upper (lower) sign is valid for
the leftx = 0 (right x = L) boundary. For the sake of clarity, we have introduced
the listed abbreviations for the stall forceFstall, the effective viscosityηe and the
force exerted on to the boundaryFb. The presented results have been derived
with the assumptions that: (I) the diffusion properties of the phosphorylated and
unphosphorylated form of the phosphatase are the same, henceD = Dp. (II) The
viscoelastic properties of the stress fiber do not vary in space, thereforek(x) → k
andηe(x, t) → η + Fmaxn(x, t)/v0.

Model equations

∂ROCK(t)

∂t
=

r1Fb(t)(ROCKtot − ROCK(t))

K1 + (ROCKtot − ROCK(t))
−

V−1ROCK(t)

K−1 + ROCK(t)
(m1)

∂MLCP(x, t)

∂t
=

V−2MLCP-P(x, t)

K−2 + MLCP-P(x, t)
+ D

∂2MLCP(x, t)

∂x2
(m2)

∂MLCP-P(x, t)

∂t
= −

V−2MLCP-P(x, t)

K−2 + MLCP-P(x, t)
+ Dp

∂2MLCP-P(x, t)

∂x2
(m3)

∂n(x, t)

∂t
=

V3 (1− n(x, t))

K3 + (1− n(x, t))
−

r−3MLCP(x, t)n(x, t)

K−3I + n(x, t)
(m4)(

∂

∂x
ηe(x, t)

∂

∂x

∂

∂t
+

∂

∂x
k(x)

∂

∂x

)
u(x, t) = −

1

a

∂

∂x
Fstall(x, t) (m5)

Boundary conditions atx = 0, L

∂MLCP(x, t)

∂x
= ±

V2

D

ROCK(t)MLCP(x, t)

K2 + MLCP(x, t)
(bc2)

∂MLCP-P(x, t)

∂x
= ∓

V2

Dp

ROCK(t)MLCP(x, t)

K2 + MLCP(x, t)
(bc3)

u(x, t) = 0 Stiff boundaries (bc5)

Abbreviations

Fstall(x, t) = Fmaxn(x, t)

ηe(x, t) = η(x) + Fstall(x, t)/v0

Fb(t) = aηe(0, t)∂x∂tu(0, t) + ak(0)∂xu(0, t) + Fstall(0, t)
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rate constant but relates mechanical force to a chemical reaction. For this reason the units of
r1 are given as [nM/s nN]. The forceFb(t) will depend on the stress fiber deformation. The
second term accounts for the degradation of activated ROCK to its inactive form, with maximum
velocity V−1 and Michaelis–Menten constantK−1. Since we expect ROCK in its active form to
be associated with focal adhesions, we omit diffusive contributions to this equation.

One main effector of ROCK is MLCP which we regard as a diffusible compound leading
to a reaction–diffusion equation:

∂MLCP(x, t)

∂t
=

V−2MLCP-P(x, t)

K−2 + MLCP-P(x, t)
+ D

∂2MLCP(x, t)

∂x2
. (2)

Here, the variables MLCP-P and MLCP denote the phosphorylated and unphosphorylated form
of MLCP, respectively. The first term accounts for the dephosphorylation of MLCP-P with
maximum velocityV−2 and Michaelis–Menten constantK−2. The second term allows for the
diffusion of the phosphatase with diffusion constantD. The phosphorylation level of MLCP
is also regulated by the active form of ROCK which catalyzes the reverse reaction, i.e. the
conversion of the phosphatase into its phosphorylated form. However, ROCK is active only in
the vicinity of focal adhesions located at each end of the stress fiber. Therefore, this source term
can be incorporated into the boundary conditions for equation (2), in the sense that the diffusive
flux into the boundary has to balance the conversion into its inactive form:

D
∂MLCP(x = 0, t)

∂x
=

R2ROCK(t)MLCP(x = 0, t)

K2 + MLCP(x = 0, t)
. (3)

The same relation, but with inverted sign is valid at the other end atx = L, compare the overview
in table2. The reaction is again modeled with Michaelis–Menten kinetics, whereR2 = r2vb is
the product of a rate constantr2 with an effective volumevb of the focal adhesion in which
the reaction takes place.K2 is the usual Michaelis–Menten constant. For the phosphorylated
form of the phosphatase (MLCP-P) equations similar to equations (2) and (3) are valid, but with
inverted signs of the source terms and a diffusion constant which in principle can be different,
see table2.

MLCP together with MLCK regulates the phosphorylation level of MLC. Since myosins
in stress fibers form mini-filaments which are bound to actin filaments, we neglect diffusion of
this compound, leading to the rate equation for the phosphorylated fractionn of MLC:

∂n(x, t)

∂t
=

V3 (1− n(x, t))

K3 + (1− n(x, t))
−

r−3MLCP(x, t)n(x, t)

K−3 I + n(x, t)
. (4)

By allowing only the ratio of the phosphorylated fraction to vary, we assume that the overall
amount of myosin in the stress fibers is fixed. MLC is phosphorylated by MLCK with a
maximum velocityV3 = r3MLCK and respective Michaelis–Menten constantK3. Here, we
assume that the concentration of MLCK is constant within the cell. The kinase is antagonized
by MLCP that dephosphorylates MLC with a rate constantr−3 and Michaelis–Menten constant
K−3. The factorI is an inhibition parameter defined below. Since MLCP has spatial-dependent
source terms and is diffusible, the inhibition of MLC by the phosphatase will vary in space.

To complete the biochemical modeling, we have to specify how the induction of calyculin
is treated in our model. Calyculin is an inhibitor of MLCP and thereby enhances the
phosphorylation level of MLC. We model the interaction of calyculin with its target MLCP
as a competitive inhibition leading to the additional factorI in the last term of equation (4) [44].
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Table 3. Model parameters based on literature search. We have set the model
parameters such that they fit into the reported range. The equation for the
phosphorylated fraction of MLC is normalized to the total myosin concentration
denoted byM . In order to make the involved reaction constant comparable to
the literature values we giveK3, K−3, r3 andr−3 scaled withM . Equation (1)
translates mechanical forces into biochemical activation. For this reason the
units of the rate constantr1 are given as [nM s−1 nN−1]. The typical relaxation
time, τ , of stress fibers is of the order of a few seconds [45] therewith we
roughly estimate the viscosity value asη ≈ τk where we useτ = 1 s. Myosin
activation by calyculin is modelled as competitive inhibition of the phosphatase.
The inhibition parameterI is switched instantaneously fromI = 1 to I = 3.
Some of the reported values have been measured for the interactions of protein
fractions and not for the native proteins. Furthermore, the experiments have been
done on proteins extracted from different species.

Abbreviation Meaning Used value Reference values References

Time dependent reaction variables
ROCK Activated form of ROCK 0. . . 5 nM & 1 nM [41]
MLCP Unphosphorylated form 0. . . 1.2µM 1.2± 0.3µM [46]

of MLCP
MLCP-P Phosphorylated form of MLCP 0. . . 1.2µM 1.2± 0.3µM [46]
n Fraction of active myosin 0. . . 1 [MLC-phos]/[myosin]

Reaction constants
MLCK Myosin light chain kinase 0.1µM & 100 nM [47]
M Myosin concentration 30µM 25 . . . 30µM [48]
K1 Michaelis constant 5 nM (No value)
K−1 Michaelis constant 4.7 nM (No value)
K2 Michaelis constant 0.1µM 0.10± 0.01µM [41]
K−2 Michaelis constant 15µM (No value)
K3 ∗ M Michaelis constant 20µM 52.1± 7.1µM [49]

34.5± 2.8µM [41]
18µM [50]
7.7 . . . 96.0µM [51]
19. . . 53µM [47]
20µM [52]

K−3 ∗ M Michaelis constant 10µM 10µM [53]
r1 Rate constant 0.3 nM s−1 nN−1 (No value)
V−1 Maximum velocity 1.8 nM s−1 (No value)
r2 Rate constant 2.4 s−1 2.36± 0.10 s−1 [41]
R2 Maximum velocity 4.8µm s−1 r2 ∗ vb

V−2 Maximum velocity 0.1µM s−1 (No value)
r3 ∗ M Rate constant 10 s−1 2.00± 0.36 s−1 [49]

3.85± 0.095 s−1 [41]
5.17 s−1 [50]
7.37. . . 171.3 s−1 [51]
70. . . 100 s−1 [47]
4.64 s−1 [52]

New Journal of Physics 9 (2007) 425 (http://www.njp.org/)

http://www.njp.org/


12

Table 3. (Continued.)

Abbreviation Meaning Used value Reference values References

V3 Maximum velocity 1.0µM s−1 r3 * MLCK
r−3 * M Rate constant 21 s−1 21 s−1 [53]
D Diffusion constant of MLCP 14µm2 s−1 10. . . 100µm2 s−1 [54]

and MLCP-P
vb Effect. react. vol. of FAs 2.0µm (No value)
I Inhibition parameter 1→ 3 (No value)
Parameters of mechanical model
Fmax Stall force 50 nN (No value)
v0 Maximum motor velocity 1.0µm s−1

≈ 0.1 . . . 1µm s−1 [55]
a Vec-element spacing 1.0µm 1.0µm [38]
k Spring stiffness 45 nNµm−1 45.7 nN a−1 [56]
η Viscosity 45 nN sµm−1

≈ τk = 45.7 nN s a−1 [45, 56]
L Fiber length 50µm ≈ 20. . . 80µm

In the presence of calyculinI > 1 (in absence of the drug:I = 1) which effectively increases
the Michaelis–Menten constantK−3 and thus decreases the rate of MLC dephosphorylation.
Hence, more myosin motors will be activated and cell contractility is stimulated. The induction
of the drug is then modeled by switching instantaneously the inhibition parameter fromI = 1
to I = 3. Thereby, we omit the time delay caused by the internalization of the drug.

The used parameter values for the reaction–diffusion system are based on an extensive
survey of the literature and are summarized in table3. If a range of values is reported in the
literature, we chose an intermediate value for this parameter. If no value could be found in
the literature, we made reasonable assumptions based on similar parameters in other systems.
No attempt was made to fit the parameters to some target function. We first analyze the
properties of this reaction–diffusion system assuming that the boundary force exerted on to the
focal adhesions is held at a constant level. This would be the case if the myosin forces were in
a stationary state and not regulated by the biochemical signals emerging from focal adhesions.
We impose artificial initial conditions that all components (ROCK, MLCP-P andn) are at zero
activation level but set the boundary force to 5 nN, a typical force observed for fibroblast [57].
This mechanical stimulation triggers the accumulation of active ROCK at focal adhesions, see
equation (1), creating a sink for the active form of MLCP. Thus in those boundary regions
MLCK dominates and increases MLC phosphorylation. Closer to the center of the cell MLC
rather remains in its unphosphorylated form. The width of the interfacial region of intermediate
MLC-phosphorylation level is mainly determined by the diffusiveness of the phosphatase.
The faster the diffusion, the wider the intermediate region. On a typical timescale of a few
minutes all components equilibrate to their steady state concentration profile, where MLC is
highly phosphorylated at the boundaries, but is poorly activated at the center of the stress fiber.
In figure4, we show the typical equilibration of the phosphorylated fraction of MLC,n(x, t), as
obtained from a solution of the full system of biochemical reaction–diffusion equations. Below,
we will argue that this phosphorylation profile of MLC implies a spatially varying myosin motor
activation leading to an inhomogeneous stress fiber contraction.
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Figure 4. Spatial dependence of the active myosin fractionn(x, t) at four
different time pointst ∈ {30 s, 60 s, 120 s and 180 s} as well as for the steady
state,nss(x): we solve the biochemical model implying the artificial initial
conditions that all components are at zero activation level, but set the boundary
force to 5 nN. Because of this mechanical trigger at focal adhesions, MLC gets
preferentially activated at the boundaries via the Rho-pathway which leads to
a steady increase of the myosin activation level. Due to diffusible compounds
in the Rho-pathway, the increased activation level is smoothed out towards the
center of the cell.

3. Sarcomeric unit of stress fiber model

A minimal model for stress fibers has to take into account not only the viscoelastic but also the
contractile properties of the fiber due to myosin motor activity. For the mechanical response
of a sarcomeric unit, we take the usual Kelvin–Voigt model for viscoelastic material [58].
It consists of a dashpot with viscosityη and a spring of stiffnessk connected in parallel.
These two modules represent viscous and elastic properties of the material, respectively.
The Kelvin–Voigt model is the simplest viscoelastic model which in the stationary state is
determined by elasticity, in contrast to the Maxwell model, which flows in the stationary limit.
Thus the Kelvin–Voigt model is the appropriate choice for stress fibers, which can carry load
at constant deformation over a long time. In order to cope with the contractile behavior of
stress fibers, we introduce an additional contractile element that represents the activity of motor
proteins. For illustrative reasons, we first derive the governing differential equation for such a
viscoelastic and contractile element (vec-element) before we proceed to the stress fiber model.
This ansatz is similar to the two-spring model which we have introduced before to explain the
physical aspects of rigidity sensing on soft elastic substrates [59].

The considered vec-element is depicted in figure5. The properties of the additional
contractile element is given by the specific force–velocity relation of the molecular motor. For

New Journal of Physics 9 (2007) 425 (http://www.njp.org/)

http://www.njp.org/


14

k

η

Fm

u

F

Figure 5. The viscoelastic and contractile element (vec-element) consists of
a spring of stiffnessk, a contractile module of contraction forceFm and a
dashpot of viscosityη that are all connected in parallel. Spring and dashpot taken
alone are the usual Kelvin–Voigt model of viscoelastic material. The properties
of the contractile module are characterized to first-order by the linearized
force–velocity relation.

simplicity, we use the linearized relationship:

Fm(v) = Fstall

(
1−

v

v0

)
, (5)

where Fm is the actual force exerted by a motor moving with velocityv. v0 is the zero-load
velocity andFstall is the stall force of the motor, that is the maximal force allowing motor
movement. In the following description for the stress fiber, the stall force will depend on the
active fraction of the myosin, compare equation (13), such that myosin contractility may vary
spatially. The sum of all internal forces,F , exerted by the vec-element reads

F = −η
du

dt
− ku− Fm. (6)

The crucial point is that the motor forceFm(v) is related to the contraction velocityv which
relates to the displacementu(t) simply by

v = −
du

dt
. (7)

The minus sign comes from the fact that the directed motor movement causes a relative sliding
of the anti-parallel orientated actin filaments leading to contraction of the element with velocity
v. Thus the displacementu(t) becomes negative upon motor activity. If there are no external
forces, all internal forces have to balance,F = 0, and we arrive at the following differential
equation for the displacementu(t):(

η +
Fstall

v0

)
du

dt
+ ku = −Fstall. (8)
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Figure 6. We model a stress fiber as a string of vec-elements such that the spring
stiffnesskn, the viscosityηn and the motor forceFmn can vary spatially, e.g.
the latter will vary spatially due to different myosin activity at the periphery
compared to the center. The displacement of a certain siten is denoted byun.
The forceFn on to this siten consists of elastic, viscous and motor contributions,
compare equation (10). In the following, we assume fixed boundary conditions,
namelyu(0, t) ≡ 0 andu(L , t) ≡ 0 whereL is the total length of the fiber.

The term originating from the motor activity decomposes into two contributions. Firstly it
increases the viscosity of the damping term (dissipative signature of the motor) and secondly
it contributes a constant force to the inhomogeneous part of the equation (contractility of
the motor). Assuming vanishing initial displacementu(t = 0) = 0, the solution to equation (8)
is given by:

u(t) = −
Fstall

k

(
1− e−t/τ

)
. (9)

Hereτ = ηe/k corresponds to the relaxation time of the Kelvin–Voigt model with an effective
viscosityηe = η + Fstall/v0. Thus, the system appears to be more viscous for stronger and slower
motors and subsequently the motor activity slows down any relaxation due to perturbations of
the system. The steady state deformationu(t → ∞) = −Fstall/k is determined by the ratio of
stall force and spring stiffness.

4. Continuum version of stress fiber model

We model a stress fiber as a string of vec-elements whose viscoelastic and contractile properties
may vary spatially. For example the contractile strength of the vec-elements will vary spatially
because the biochemical signal will cause different myosin activation levels along the fiber.
Starting from a discrete description depicted in figure6, we derive the governing continuum
equation. Similar to the preceding discussion, the forceFn on the siten is the sum of spring
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forces, viscous drag and the forces built up by the motor proteins:

Fn = ηn+1
∂

∂t
(un+1 − un) − ηn

∂

∂t
(un − un−1) + kn+1(un+1 − un) − kn(un − un−1) + Fmn+1 − Fmn.

(10)

Here, we allow that the stiffness of the spring, the viscosity as well as the motor force vary
spatially. In order to deduce a continuum description, we expand the functionsη, k, u and Fm

at x = na assuming that these functions are smooth within the small distancea. Keeping only
leading order terms yields:

F(x, t) = a2

(
∂

∂x
η(x)

∂

∂x

∂

∂t
+

∂

∂x
k(x)

∂

∂x

)
u(x, t) + a

∂Fm(x, t)

∂x
. (11)

Note that the leading differential operator∂x acts onη andu. The same holds for the second
term. If k does not vary spatially, it simplifies tok∂2

x . Like for a single vec-element, we argue
that the motor forceFm depends on the displacementu(x, t). The contraction1n within the
nth element generated by the respective motor is given by1n = −(un − un−1). The contraction
velocity is thereforev(x, t) = 1̇(x, t) ≈ −a∂t∂xu(x, t). The found expression for the velocity
is inserted into the force velocity relation equation (5) leading to:

Fm(x, t) = Fstall(x, t)

(
1 +

a

v0

∂

∂t

∂

∂x
u(x, t)

)
. (12)

In contrast to equation (5), here the stall force is not constant but depends on the phosphorylated
fraction n(x, t) of MLC along the stress fiber. This comes from the fact that along a myosin
minifilament and depending on MLC phosphorylation, a larger or smaller fraction of myosin
heads is able to bind to actin and perform ATP-cycles. The more myosin heads are active the
larger the maximum force that the bundle can exert to the actin filaments. In our model we re-
gard the ensemble of myosins within a cross-section of a stress fiber as one large contractile unit
with an effective stall force that depends linearly on the active fractionn of myosin heads:

Fstall(x, t) = Fmaxn(x, t). (13)

The effective stall force,Fstall(x, t), would reach the maximum forceFmax if all myosins within
this cross-section would be working (n = 1). In the following, we setFmax = 50 nN which will
result in boundary forces exerted by the fiber of about 5 nN which corresponds to typical values
observed in experiments [58]. Equation (11) together with equation (12) and (13) lead to the
final model equation for the stress fiber:(

∂

∂x
ηe(x, t)

∂

∂x

∂

∂t
+

∂

∂x
k(x)

∂

∂x

)
u(x, t) = −

1

a

∂

∂x
Fstall(x, t), (14)

where the effective viscosityηe(x, t) = η(x) + Fstall(x, t)/v0 is similar to the findings in
equation (8), although here the viscosity varies spatially. Interestingly, only the variation of the
motor force appears on the right-hand side of the equation. As a consequence, a homogeneous
motor activity will not contribute to the displacements within the string.

To obtain some intuition for this equation, assume that the spatially varying stall force is
given, e.g. by the steady state solutionnss of the reaction–diffusion system, depicted in figure4,
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such thatFstall(x) = Fmaxnss(x). For this simplifying case where the stall force does not vary in
time, equation (14) can be integrated and the time-dependent solution foru(x, t) is given by:

u(x, t) = u(x0, t) +
∫ x

x0

dx′

(
∂x′u(x′, t0)e

−(t−t0)/τ(x′)
−

Fstall(x′)

ak(x′)

[
1− e−(t−t0)/τ(x′)

]
+

1

aηe(x′)
e−(t−t0)/τ(x′)

∫ t

t0

Fb(t
′)e(t ′−t0)/τ(x′) dt ′

)
. (15)

Here, we have setτ(x) = ηe(x)/k(x), the typical relaxation time with which perturbations
decay at a certain position. For example the initial conditions∂xu(x, t0) can be regarded as
perturbations to the steady state and they decay with exp(−t/τ(x)). The three integration
constants can be identified as the displacement at the left boundary,u(x0, t), the force exerted
to the left boundary,Fb(t), and the initial strain along the fiber,∂xu(x, t0). They are determined
by the boundary and initial conditions. Experiments by Petersonet al [38] are arranged with
cells on stiff substrates to which the ends of the stress fiber are connected by focal adhesions.
Therefore, the appropriate boundary conditions are fixed ends for the fiber, namelyu(x0, t) ≡ 0
andu(xe, t) ≡ 0. From the second condition, one is able to calculate the missing integration
constantFb(t) for any initial condition∂xu(x, t0). The force on the left boundaryFb(t) is given
as solution to an inhomogeneous Volterra equation of the first kind:∫ t

t0

K (t − t ′)Fb(t
′)dt ′

= g(t), (16)

with the kernel

K (t − t ′) =

∫ xe

x0

dx′
1

aηe(x′)
e−(t−t ′)/τ(x′) (17)

and an inhomogeneous partg(t) dependent on the initial condition∂xu(x, t0):

g(t) =

∫ xe

x0

dx′

(
Fstall(x′)

ak(x′)

[
1− e−(t−t0)/τ(x′)

]
− ∂x′u(x′, t0)e

−(t−t0)/τ(x′)

)
. (18)

In order to solve the integral equation (16) for Fb(t), we calculate its time derivative, leading to:

Fb(t) =
ġ(t)

K (0)
−

1

K (0)

∫ t

t0

K̇ (t − t ′)Fb(t
′) dt ′. (19)

This equation yields an explicit expression for the initial forceFb at t = 0:

Fb(t0) =
ġ(t0)

K (0)
6= 0. (20)

By inspection of the kernel in equation (17) and the inhomogeneous part in equation (18), one
finds that the initial force on to the boundary has a finite value, even for the initial condition
∂xu(x, t0) = 0. Equation (19) also yields an iteration rule for the time course ofFb(t), by
applying a quadrature, whereFb(t0) from equation (20) is used as a starting value. The solution
for Fb(t) is shown in figure7. The boundary force is rising from its initial value and then
quickly saturates at about 4.8 nN. The result forFb(t) can then be set into the general solution
(equation (15)) for the displacementu(x, t) along the fiber. Figure8 shows this solution, by
using the steady state activation level for the myosins (Fstall(x) = Fmaxnss(x)) shown in figure4
and assuming the initial condition∂xu(x, t0) = 0 as well as the boundary conditionsu(0, t) ≡ 0
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Figure 7. Time course of boundary forceFb(t). The solution of the Volterra
equation, equation (16), indicated by circles, was calculated by applying an
iteration rule further explained in the main text. The dashed line is the boundary
force deduced from direct numerical solution of equation (14) which we include
for comparison. For the assumed initial condition,∂xu(x, 0) = 0, the boundary
force increases from its non-zero value att = 0, given by equation (20) and
quickly saturates at somehow larger values.

andu(L , t) ≡ 0. Beside the analytical solution, indicated by circles, we also included the direct
numerical solution of equation (14) for comparison. The numerical solution was derived by
using the MATLAB algorithm ‘pdepe’. The sinusoidal shape of the functionu results from
stronger contractile motors close to the boundaries causing the fiber elements to displace into
the direction of the boundaries. Hence the displacementu is positive (negative) along the right
(left) half of the fiber. It is worth noting that the mechanical equilibration of the stress fiber
occurs within seconds in contrast to the biochemical system which equilibrates over minutes.

5. Role of feedback

We already argued that the system of focal adhesions and stress fibers exhibits a closed
biochemical and mechanical positive feedback loop. Despite this fact, the previous results
were derived under the assumption that the mechanically triggered biochemical signals at FAs
originate from a constant force. In order to model the full biological system, the varying
boundary forces have to be fed back into the equation describing the mechanotransduction
equation (1). Since the stress fiber model does not include any cross-links (e.g. intermediate
contacts to the substrate) the tensionγ within the fiber has to be constant and therefore equals
the boundary forces:

Fb(t) = γ (x = 0) = aηe(0, t)∂x∂tu(0, t) + ak(0)∂xu(0, t) + Fstall(0, t). (21)

This relation now connects the biochemical signaling to the mechanical deformation of the
stress fiber. Thus, the coupled system of reaction equations (1)–(4), and the mechanical
equation (14) have to be solved simultaneously. This can be done numerically by using the
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Figure 8. We first analyze the solution of the mechanical equation (14) by
assuming a steady state myosin activation level,nss(x), shown in figure4. For
this simplifying case where the myosin activation level is not time dependent,
equation (14) can be solved both numerically and analytically. It shows the
analytical solution, equation (15), indicated by circles whereas the direct
numerical solution of equation (14) is indicated by dotted lines. The solution
is given at time pointst ∈ {0.1 s, 0.2 s, 0.5 s, 1.0 s and 3.0 s} as well as for
the steady stateuss(x), assuming the initial condition:∂xu(x, 0) ≡ 0 and the
boundary conditions:u(0, t) ≡ 0 andu(L , t) ≡ 0.

MATLAB algorithm ‘pdepe’. The whole system of equations and the used parameter values are
summarized in tables2 and3, respectively.

By doing a steady state analysis we find that this system of equations exhibits two stable
steady states for the used parameter values: the first state is characterized by a generally low
activation levelnss(x) of the myosin motors resulting in marginal boundary forces whereas in the
second state myosin motors are non-uniformly activated and the exerted forces reach a few nN.
This bistability is characteristic for a positive feedback system [3]. The first ‘non-active’ state
would correspond to cells that failed to establish mechanical stress whereas the second ‘active’
state correspond to cells that are well adhered to the substrate. In order to simulate the drug
experiments by Petersonet al [38], we start with the system residing in this ‘active’ state
and then, att = 0, we perturb the system by turning on the stimulation with calyculin. This
is modeled by switching instantaneously the inhibition parameter fromI = 1 to I = 3, thereby
omitting the time delay caused by the internalization of the drug. The stimulation with calyculin
reduces the phosphatase activity and elevates the myosin activation level everywhere leading
to a quick increase in the boundary forces exerted by the stress fiber. The time course of
the force exerted on to the focal adhesions is shown in figure9. Subsequently, the positive
mechanical feedback triggers additional signaling at focal adhesions activating myosin motors
preferentially at the cell periphery. This results in strong spatial gradients in myosin motor
activity, see figure11. The strong peripheral motors then contract the fiber to the cost of the
central regions where the fiber has to elongate. This can be further analyzed by using the
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Figure 9. At t = 0 calyculin is added to the system. Then myosin motors along
the filament get activated and further increase the tension within the fiber. The
time course of the forceFb(t) transduced to the boundaries is shown.
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Figure 10. Steady state solution of the displacementu(x) along the fiber before
(dashed line) and after (solid line) stimulation with calyculin. The stimulation
strongly increases the deformation of the fiber resulting in substantial distortion
of the expected striation pattern (upper line) compared to the striation pattern
of a completely undistorted fiber (lower line). The upper striation pattern was
calculated from the displacement data. The bands close to the boundaries have
been contracted (about 55%) whereas the bands around the center have been
expanded (about 15%), compare also figure12.

New Journal of Physics 9 (2007) 425 (http://www.njp.org/)

http://www.njp.org/


21

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Distance x (µm)

n 
(x

)

With feedback
No feedback

Before stimulation

Figure 11. Steady state profile of the active myosin fraction before stimulation
with the drug (dash-dotted line), after stimulation including the mechanical
feedback (solid line) and after stimulation but neglecting the mechanical
feedback (dashed line). For the latter case, homogeneous induction of the drug
cause an almost uniform elevation of myosin activity. Slight differences between
center and periphery persist but rather marginally extend, whereas the closed
feedback system results in an amplification of the spatial differences of myosin
activation.

numerical solution for the displacementu(x, t). The steady states of the displacementu before
and after stimulation with calyculin are shown in figure10. The stimulation strongly increases
the displacement along the fiber resulting in substantial contraction of the fiber close to the
boundaries but in expansion around the cell center. This finding becomes more apparent in
the shown striation pattern calculated from the displacement after stimulation (upper string)
compared to the striation pattern of a completely undistorted fiber (lower string). The bands
close to the boundaries have been contracted whereas the bands around the center have been
expanded, compare also figure13. We have to stress that the presented stress fiber model is
continuous, thus the model cannot distinguish betweenα-actinin bands or MLC bands. The
color code in figures10 and13 is therefore arbitrary. We also derive the local relative change
of density within the fiber which is given in general as the negative trace of the strain tensor
δρrel = (ρ − ρ0)/ρ0 = −Tr(ui, j ). Since the model is 1D this simplifies toδρrel = −∂xu(x, t),
plotted in figure12. The local relative change of band width at a certain position within the
fiber, is then simply given by:(w(x, t) − w0)/w0 = −δρrel(x, t) = ∂xu(x, t). The figure shows
that the inhomogeneous motor activity causes a contraction of the bands up to about 55% close
to the fiber ends (the relative change in density is positive), whereas the pattern expands up to
15% at the middle of the fiber (the relative change in density is negative).

The experimental time course data for the sarcomer length shown in figure2 is intrinsically
averaged over a certain area in the peripheral and central regions of the cell. In order to compare
the model results with the experimental finding we therefore define central (center±10µm)
and peripheral (edges±10µm) regions of the cell, indicated by vertical lines in figure12.
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Figure 12. Relative change in density along the fiber in the steady state before
stimulation with the drug (dashed-dotted line), after stimulation with the drug
including the feedback (solid line) and after stimulation but neglecting the
mechanical feedback (dashed line). Positive values correspond to a compression
of the fiber, whereas negative values indicate elongation. In case of the closed
feedback (solid line) the fiber strongly contracts close to the boundaries up
to 55% but elongates at the center to about 15%. In order to compare the
model results with the experimental findings, we arbitrarily define central (center
±10µm) and peripheral (edges±10µm) regions of the cell, indicated by
vertical lines.

The expected sarcomer length at a certain position along the fiber is given by

w(x, t) = w0 + u(x +w0, t) − u(x, t) or w(x, t) = w0 (1 +∂xu(x, t)), for w0 � L . (22)

In the following analysis this measure is averaged over the defined central and peripheral
regions, respectively. The deduced time courses for the mean pattern bandwidths in the
distinct regions are shown in figure13. The expected steady state striation patterns are
illustrated as insets. Upon stimulation with calyculin, the peripheral mean bandwidth
shrinks from its initial value of about 0.97µm down to 0.83µm, whereas in the central
regions, the bands elongate from about 1.03µm up to 1.13µm. Interestingly, the initial
mean bandwidth at the center and periphery yet differ in the initial unperturbed steady
state of the cell (1.03µm compared to 0.97µm). This results from the fact that the
unperturbed fiber already exerts moderate forces on to the focal adhesions which results in
slight spatial gradients in myosin activation. These gradients then sharpen upon stimulation
with calyculin, see figures11 and 12. The model results agree qualitatively with the
experimental findings by Petersonet al [38] and the quantitative measurements are within
the same order of magnitude (compare figure2). It is worth mentioning that the amplitude
of contraction or elongation of the fiber scales inversely with the fiber stiffnessk:
the softer the fiber, the stronger the mechanical deformation will be. Thus, a lowerk value
would simply explain the reported higher values for sarcomer contraction of about 30–40%.
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Figure 13. Time courses of the mean bandwidth of the fiber in the center (upper
curve) and in the periphery of the cell (lower curve): the shown values are
averages of the bandwidths at the center±10µm for the central region and
at the edges±10µm for the peripheral region. The defined intervals are also
shown in figure12. The expected steady state striation patterns for the two
distinct regions are shown as insets. These results agree qualitatively with the
experimental findings by Petersonet alshown in figure2.

In our calculation, we usedk = 45 nNµm−1, a value reported by [56]. The experimentally
measured equilibration time of the stress fiber upon stimulation is about 20 min (figure2) which
compares to about 3 min for the model results. These quantitative differences originate from
two model simplifications. Firstly, we lump the focal adhesion associated processes into one
equation thereby we shortcut the activation of ROCK and neglect prior activation steps of
e.g. Rho-Gef or Rho-GTPase. Considering these steps would cause an additional time delay.
Secondly, the stimulation with calyculin happens instantaneously in the model omitting the
time delay caused by the internalization of the drug. Refining the model and eliminating these
simplifications will further decrease the differences in equilibration times.

To highlight the importance of the mechanical feedback, we also include the expected
results for a system neglecting this feedback shown as dashed lines in figures11 and12. Here,
the homogeneous induction of the drug causes an almost uniform elevation of myosin activation
within the cell. Slight differences between cell center and cell periphery would persist but rather
marginally extend (figure11). In fact stimulation here also leads to amplified distortions of the
striation pattern. However, the changes in bandwidths are significantly smaller compared to the
system incorporating the feedback (figure12). Thus the closed biochemical and mechanical
feedback loop is an essential feature required to describe the strong distortions of striation
patterns upon homogenous drug induction.

New Journal of Physics 9 (2007) 425 (http://www.njp.org/)

http://www.njp.org/


24

6. Conclusion

Here, we have presented for the first time a mathematical model for the closed
biochemical–mechanical feedback loop triggering the upregulation of focal adhesions and stress
fibers which is typical for cell culture on stiff substrates. In regard to the biochemical part, we
present for the first time a reaction–diffusion model for Rho-signaling from focal adhesions
towards stress fibers. Our modeling is based on an extensive review of the literature, which
provides the list of diffusion and reaction constants summarized in table3. In regard to the
mechanical part, we introduced a new model for stress fibers which takes into account the
special viscoelastic and contractile properties of the sarcomeric units. For a linear chain of many
such units, we derived a continuum equation which we solved both analytically and numerically.
Combining the two model parts resulted in a complete model for the feedback loop of interest.
We found that this feedback loop leads to bistability between weak and strong adhesion and to
strong spatial gradients in the deformation pattern. In fact, the experimental results can be only
explained by incorporating the feedback loop. Our model shows how coupling of mechanics
and biochemistry can be modeled in general. In the future, it might be also used to address other
issues in the context of cell adhesion, including cell adhesion to soft elastic substrates or to
cyclically stretched substrates.

In our model, spatial variations in the deformation pattern result from inhomogeneous
reaction–diffusion fields. This prediction should be experimentally tested in the future. Indeed, it
has already been reported that MLC-phosphorylation is larger at the periphery than at the center
(both before and after stimulation with calyculin) [38], exactly as predicted by our model. Our
model does not account for inhomogeneities resulting from spatial variations in mechanical
properties (e.g. local accumulation of myosin II, actin orα-actinin), although in principle
the model is capable of describing these. A detailed experimental analysis including detailed
measurements of local actin and myosin accumulation would be needed to disentangle the
relative contributions of biochemical and mechanical factors to the inhomogeneous deformation
pattern.

An intriguing aspect of our model is the way different stress fibers might cooperate inside
a living cell. Conceptually it is easy to generalize our model to describe a system in which many
stress fibers share the signaling input and many focal adhesions share the mechanical output.
However, it remains a challenge to model also the dynamics of the actomyosin system if it is
not completely condensed into stress fibers.
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