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Systematic approach to bicontinuous cubic phases in ternary amphiphilic systems

U. S. Schwarz* and G. Gompper
Max-Planck-Institut fu¨r Kolloid- und Grenzfla¨chenforschung, Kantstrasse 55, 14513 Teltow, Germany

~Received 14 December 1998!

The Fourier approach and theories of space groups and color symmetries are used to systematically generate
and compare bicontinuous cubic structures in the framework of a Ginzburg-Landau model for ternary am-
phiphilic systems. Both single and double structures are investigated; they correspond to systems with one or
two monolayers in a unit cell, respectively. We show how and why single structures can be made to approach
triply periodic minimal surfaces very closely, and give improved nodal approximations forG, D, I-WP, andP
surfaces. We demonstrate that the relative stability of the single structures can be calculated from the geo-
metrical properties of their interfaces only. The single gyroidG turns out to be the most stable bicontinuous
cubic phase since it has the smallest porosity. The representations are used to calculate distributions of the
Gaussian curvature and2H –nuclear-magnetic-resonance band shapes forC(P), C(D), S, C(Y), andF-RD
surfaces.@S1063-651X~99!01005-3#

PACS number~s!: 61.30.Cz, 68.10.2m, 61.50.Ah, 02.40.2k
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I. INTRODUCTION

Amphiphiles are molecules that have both hydroph
and hydrophobic parts. In a ternary mixture of amphiphil
water and oil, their ability to stabilize water-oil interface
leads to structure formation on the nanometer scale@1–3#.
Depending on concentration and temperature, many diffe
phases are found to be stable. One intriguing aspect of
phiphilic polymorphism is the existence of ordered bico
tinuous phases which can be traversed in any direction
both the water and oil regions. Here macroscopic order
been demonstrated by the appearance of Bragg peaks in
fraction patterns@4# and bicontinuity by measuring diffusio
properties with nuclear magnetic resonance@5#. Clearly any
bicontinuous ordered phase has to have a three-dimens
Bravais lattice. In experiments, cubic symmetry is obser
in most cases@6–8#. The amphiphilic monolayers of bicon
tinuous cubic structures, which separate regions with w
from regions with oil, are often modelled by triply period
surfaces of constant mean curvature@9,10#. By changing ex-
perimental parameters like temperature or salt concentra
their preference to bend towards the water or the oil regi
can be made to vanish. Then one can describe them by t
periodic minimal surfaces~TPMS’s!. Similarly, the bilayers
of bicontinuous cubic phases in lipid-water mixtures by sy
metry have no spontaneous curvature, so that their m
surfaces can also be modeled by TPMS@11#. Bicontinuous
cubic phases have gained renewed interest recently, for
ample, as space partitioners in biological systems@12#, as
amphiphilic templates for mesoporous systems@13#, and for
the crystallization of membrane proteins@14#.

In this paper, we report on a systematic theoretical inv
tigation of bicontinuous cubic phases in ternary amphiph
systems with vanishing spontaneous curvature. We res
ourselves to bicontinuous ordered phases with cubic sym
try since these are the ones that are mainly observed in

*Present address: Department of Materials and Interfaces, W
mann Institute of Science, Rehovot 76100, Israel.
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periments. It has been shown recently by Go´źdź and Hołyst
@15# in the framework of real-space minimization that va
ous cubic bicontinuous phases can be generated as
minima of the Ginzburg-Landau model for ternary am
phiphilic systems introduced previously by Gompper a
Schick@16,2#. The position of the interfaces between oil an
water regions then follow as isosurfaces to a scalar fi
F(r ). Our analysis is based on the Fourier ansatz in com
nation with the theories of space groups and color symm
tries; it allows to generate the relevant structures in a v
systematic way and to reduce the representations to a
tively small number of variables. This in turn allows ve
efficient numerics and makes it easy to document and re
the results.

In order to analyze our results, we use an effective int
face Hamiltonian, which is derived from the Ginzbur
Landau theory@17#. Due to the oil-water symmetry of the
Ginzburg-Landau model, the spontaneous curvature v
ishes. Since the elastic energy of interfaces is governed
their bending rigidity, the interfaces of the structures th
have only one amphiphilic monolayer are very close to cu
TPMS. A similar approach, which employs a Ginzbur
Landau model for binary fluid mixtures, has been used
Refs.@18,19#. However, since the elastic energy of interfac
is governed by their tension in this case, the numerical m
mization is much less stable. In fact, our tabulation of t
first few Fourier amplitudes for the four best-known stru
turesG, D, I-WP, andP provides a considerable improve
ment over the widely used nodal approximations for TPM
@20#. Since most of the detailed analysis of the properties
cubic TPMS has been focused on these structures so far
want to use our representations to characterize the struc
C(P), C(D), S, C(Y), andF-RD in more detail.

Our analysis in terms of interfacial properties also allo
us to investigate the relative stability of the various bico
tinuous cubic phases in terms of their geometrical propert
Although the identification of a certain bicontinuous cub
structure is a tedious procedure best accomplished by c
bining several experimental techniques such as neutro
x-ray small angle scattering, transmission electron micr

iz-
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PRE 59 5529SYSTEMATIC APPROACH TO BICONTINUOUS CUBIC . . .
copy and nuclear magnetic resonance, in most cases on
found the stable phases to be either gyroid or diamond st
tures. Here we derive a universal geometrical criterion
their relative stability in the case of vanishing spontane
curvature of the interfaces, which explains these experim
tal findings and is in excellent agreement with our numeri
results.

The paper is organized as follows. We begin by introd
ing the relevant concepts from differential geometry a
crystallography and their applications to amphiphilic syste
in Sec. II. In Sec. III we explain how to construct Fouri
series and nodal approximations for amphiphilic structur
In Sec. IV we systematically generate, evaluate, and com
various single and double structures by using the Ginzbu
Landau theory. In Sec. V we use the representations obta
to comment on the experimental identification of bicontin
ous cubic phases in amphiphilic and mesoporous system

II. GEOMETRY OF BICONTINUOUS PHASES

If we characterize a bicontinuous phase by its interfac
the simplest possible case is that they formone triply peri-
odic surface~TPS!, i.e., a surface with a three-dimension
Bravais lattice. Any TPS divides space into two unconnec
but intertwined labyrinths. In ternary amphiphilic system
the surface is covered with an amphiphilic monolayer a
the two labyrinths are filled with water and oil, respective
Therefore any structure corresponding to a TPS is bicont
ous in water and oil. The TPS is calledbalancedif there
exists a Euclidean transformationa that maps one labyrinth
onto the other. Oil and water have equal volume fractions
this case.

In the mathematical context, triply periodicminimal sur-
faces~TPMS! have been investigated extensively@21,22#. In
order to locally minimize their surface area, minimal su
faces have vanishing mean curvatureH5(1/R111/R2)/2 at
every point on the surface, whereR1 and R2 are the two
principal radii of curvature. Therefore, their Gaussian cur
ture K51/R1R2521/R1

2 is nonpositive and the surface
saddle shaped everywhere. To our knowledge, up to 1
only five TPMS had been known by the 19th-century wo
of Schwarz and his students, withP, D, and C(P) being
cubic. Then Schoen described 12 more@23#, including the
cubic casesG, F-RD, I-WP, O, C-TO, and C(D). Their
existence was proven by Karcher in 1989@24#. More TPMS
have been found by Karcher and Polthier@25#, Fischer and
Koch @26# and others, but all of them seem to be more co
plicated than the ones known to Schoen. For cubic TPM
exact representations are known only forP, D, G, andI-WP.
TheseWeierstrass representationsoriginate from complex
analysis and are explained in Appendix A. With their he
the surface areas of these TPMS can be calculated exac
terms of elliptic functions; the resulting values are given
Table I.

Being balanced and being minimal are two independ
possible properties of a TPS. From the cubic TPMS kno
to Schoen,F-RD, I-WP, andO, C-TO are not balanced an
divide space into two labyrinths with unequal volume fra
tions. On the other hand, the TPS defined by cosx1cosy
1cosz50 is balanced witha being a translation along ha
the body diagonal of the conventional unit cell, but far fro
has
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minimal. If a TPS contains straight lines, it is calledspan-
ning @27#. It was shown by Schwarz that any spanning TPM
is symmetric with respect to a reflection around such a li
Since this operation exchanges the two labyrinths, any sp
ning TPMS is balanced. The only known cubic TPM
which is balanced but not spanning, is the gyroidG, where
the symmetry operation exchanging the two labyrinths is
inversion.

For our purposes it is best to investigate not the lo
concentrations of oil and water separately, but their diff
ence F(r )5rO(r )2rW(r ). Since we assume incompres
ibility, rO(r )1rW(r )51 and the local concentrations of o
and water can be reconstructed fromF(r ). The amphiphilic
monolayers now correspond to theF50 isosurfaces. The
interchange of oil and water amounts toF→2F. For bal-
anced surfaces this is a symmetry operation when comb
with the Euclidean operationa, that is F(ar )52F(r ).
However, it is important to note that this is not a space gro
symmetry—which would only allow for a rigid motion, bu
not for a change of sign. Additional symmetries that ar
when a Euclidean operation is combined with a permutat
are calledcolor symmetries; with only water and oil presen
we have the simplest case of ablack and white symmetry
@28–30#. When water and oil are colored white and blac
respectively, theF50 isosurface obtains differently colore
sides and thus can be considered to be oriented. We ass
the uncolored structure~i.e., the unoriented surface! to have
space groupG. Then all Euclidean operations that do n
interchange the two labyrinths form a subgroupH of G of
index 2. By definitionH is the space group of the colore
structure~i.e., the oriented surface!. The quotient group is
isomorphic to the cyclic group of order 2, that is,G/H>Z2
>$1,a%. In general, any balanced TPS is characterized b
group-subgroup pairG-H of index 2. For example, for the
balanced TPS defined by cosx1cosy1cosz50, we haveH
5Pm3̄m ~No. 221! andG5Im3̄m ~No. 229!.

In order to describe a balanced TPS which does not in
sect itself, certain restrictions apply for the extension fromH
to G ~for example, ifa is a rotation, it has to be twofold!.
This has been used by Fischer and Koch to develop a c
tallographic classification of all cubic TPMS@27,26#. In par-
ticular they showed that only 34 cubic group-subgroup pa
G-H with index 2 can correspond to cubic balanced TPM
Although there is no way to systematically list all balanc
TPMS belonging to a possible group-subgroup pairingG-H,

TABLE I. Properties of the four cubic triply periodic minima
surfacesG, D, I-WP, andP, for which ~exact! Weierstrass repre-
sentations are known.Nd is the number of copies of the fundame
tal domain that are necessary to build up the surface in one con
tional unit cell.x is the Euler characteristic,a the lattice constant,
andA* 5A/a2 the scaled surface area in the conventional unit c
G5(A3/2puxua6)1/2 is the topology index andv the volume frac-
tion of one of the two labyrinths.

Nd x a A* G v

P 12 24 2.1565 2.345 103 0.716 346 0.5
D 48 216 3.3715 3.837 785 0.749 844 0.5
G 24 28 2.6562 3.091 444 0.766 668 0.5
I-WP 48 212 7.9499 3.464 102 0.742 515 0.536
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Fischer and Koch argued that one can completely enume
all cubic spanning TPMS which have straight lines formi
a three-dimensional network whose polygons are span
disklike by the surface. They findP, C(P), D, C(D), S, and
C(Y), with the latter two described by them, to our know
edge, for the first time. In our work we systematically ge
erate these structures together with the only known balan
but nonspanning cubic TPMSG and the nonbalanced one
I-WP andF-RD. Examples for spanning TPMS are shown
Fig. 1.

One also can consider structures withtwo TPS. For ex-
ample, parallel surfaces can be constructed on either sid
any given TPS. Both parallel surfaces are TPS, each
which has two labyrinths, which are topologically equivale
to those of the initial structure. However, with respect to
overall structure, these labyrinths are now filled with the
component and separated by a bilayer which is filled with
other component. One might call this structuretricontinuous,
but we rather prefer to use the termdouble structuresfor
structures oftwo TPS — in contrast tosingle structurescon-
taining oneTPS.

Experimentally, little is known about the exact structu
of bicontinuous cubic phases in ternary amphiphilic syste
One exception is the system DDAB-water-styrene, for wh
five different double structures have been found to be sta
each of which can be regarded as an oil-filled bilayer dra
onto a different TPS@31#. However, with microemulsion
phases being so ubiquitous for these systems, single s
tures can be expected also to be stable, and in fact have
reported in Ref.@32#. In contrast to the situation for~almost
balanced! ternary amphiphilic systems, the structure of b
continuous cubic phases is well established for many bin
amphiphilic systems@6–8#. Here, mostly inverse phases a
found, in which the two labyrinths are filled with water an
the TPS is covered with an amphiphilic bilayer. These str

FIG. 1. Different TPMS with the same space group and
same system of straight lines. Spanning minimal surfaces are
ways balanced, thus they are characterized by a group-subg
pair G-H. For P and C(P) this is Im3̄m ~No. 229!–Pm3̄m ~No.
221! and for D and C(D) this is Pn3̄m ~No. 224!–Fd3̄m ~No.
227!.
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tures can be considered to be double structures of a ter
system where the oil has been removed from the bilay
However, if the thickness of the bilayer is small compared
the lattice constant, it seems more appropriate to model th
by single structures of a ternary system, where the wa
regions on both sides of the bilayer are distinguished ar
cially by labeling them ‘‘water I’’ and ‘‘water II,’’ respec-
tively @33#. Thus our results for single structures can also
applied to bicontinuous cubic phases in amphiphile-wa
mixtures.

III. FOURIER ANSATZ

In order to construct a Fourier ansatz for a given grou
subgroup pairG-H, we need a Fourier ansatz for space gro
H, together with the implementation of a certain black a
white symmetry. In ternary amphiphilic systems, this cor
sponds to a balanced single structure. For nonbalanced s
structures and double structures there is no color symm
and one only needs the Fourier ansatz for a given sp
groupH[G.

It is well known how to choose the Fourier ansatz for
given space groupH @34,35#. In the cubic system the trans
lational properties ofH correspond to one of the three cub
Bravais lattices simple cubic~P!, body centered cubic~I! or
face centered cubic~F!. The Fourier series then reads

F~r !5(
$K %

FKeiK•r, ~1!

where$K% is the reciprocal lattice and theFK are the~com-
plex! Fourier amplitudes. However, not all of them are ind
pendent. Since the density fieldF(r ) has to be real, it fol-
lows from Eq.~1! thatFK5F2K . With FK5AK2 iBK , Eq.
~1! becomes

F~r !5(
$K %

$AK cos~K•r !1BK sin~K•r !%. ~2!

HereAK andBK are real and can be obtained fromF(r ) as

AK5
1

vE dr F~r !cos~K•r !,

BK5
1

vE dr F~r !sin~K•r !, ~3!

where the integration runs over some unit cell of volumev.
Thus, for even or odd functions,BK50 or AK50, respec-
tively.

Further restrictions on the Fourier amplitudesFK arise
when we consider symmetry operationsr→Pr1t, which are
not pure translations. Here,P denotes a rotation, inversion o
rotoinversion, andt a translation which does not belong
the Bravais lattice. Thus,t is nonvanishing for screw axe
and glide planes. It now follows from Eq.~1! that FP21K
5FKeiK•t. Let H be the point group of the given spac
groupH. To each operation inH there corresponds a pa
(P,t) in H. We group all reciprocal lattice vectors, which a
related by an operation ofH, into so-calledFourier stars. All
members of a given star have the same wavelength. On
few stars will have the same wavelength and in most ca
there is only one star with a certain wavelength. Therefo
the stars can be ordered according to decreasing wavele
and numbered with the indexi . For each star we arbitrarily

e
al-
up
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TABLE II. Group-subgroup pairsG-H, the relationH→G between them, and nodal approximations f
the cubic minimal surfaces. They are grouped into three classes: spanning with three-dimension
balanced but nonspanning, and nonbalanced.G andH for balanced single structures differ either in Brava
lattice or in point group~but not in both!. Nonbalanced single structures haveH[G. The Fourier ansatz ha
to be chosen as follows:H with color symmetry~given byH→G) for single structure, andG for double
structure. Nodal approximations only consider the space group information given byG-H. We use the
definitions Epqr5p(hx)q(ky)r ( lz)1p(hy)q(kz)r ( lx)1p(hz)q(kx)r ( ly) and Opqr5p(hx)q(kz)r ( ly)
1p(hy)q(kx)r ( lz)1p(hz)q(ky)r ( lx), wherep, q, andr can be eitherc ~cosine! or s ~sine!.

H G H→G Nodal approximations

P Pm3̄m ~221! Im3̄m ~229! P→I Eccc~100!

C(P) Pm3̄m ~221! Im3̄m ~229! P→I Eccc~100! 1 Eccc~111!

D Fd3̄m ~227! Pn3̄m(224) F→P ~Eccc1 Ecss1 Escs1 Essc!~111!

C(D) Fd3̄m ~227! Pn3̄m ~224! F→P ~Eccc1 Ecss2 Escs2 Essc!~311!

S I 4̄3d ~220! Ia3̄d ~230! 4̄3m→m3̄m ~Ecsc1 Occs!~211!

C(Y) P4332 ~212! I4132 ~214! P→I 2 ~Eccc1 Osss1 Esss1 Occc!~111!
1 6 ~Essc1 Oscc1 Eccs1 Ocss!~210!

G I4132 ~214! Ia3̄d ~230! 432→m3̄m ~Escc1 Ocsc!~110!

I -WP Im3̄m ~229! 2 Eccc~110! 2 Eccc~200!

F-RD Fm3̄m ~225! 4 Eccc~111! 2 3 Eccc~220!
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choose one representativeK i . With FK i
5Ai2 iBi , Eq. ~1!

becomes a sum over Fourier stars,

F~r !5(
i

ni

n
$AiAK i

~r !1BiBK i
~r !%, ~4!

where thegeometric structure factorsare defined by

AK i
~r !5(

H
cos@~P21K i !•r1K i•t#, ~5!

BK i
~r !5(

H
sin@~P21K i !•r1K i•t#. ~6!

Their precise form is obtained by explicitly enumerating
nontranslational symmetry operations of space groupH. The
results of this procedure can be taken from Ref.@34# if they
are corrected by a factor 1/mL , wheremL is the multiplicity
of the Bravais lattice~1, 2, and 4 forP, I, and F, respec-
tively!. In Eq. ~4!, n denotes the order ofH andni the mul-
tiplicity of K i . If H does not contain the inversion, we ca
extend the definition of a Fourier star by usingFK5F2K .
This does not change Eq.~4! except that now we have t
replaceH by the so-calledLaue group, that isH extended by
the inversion. All structures investigated in this work ha
m3̄m with ordern548 either as their point group or as the
Laue group, thus the members of one star are generate
all possible permutations and changes of sign of the com
nents ofK i . With Ai5AK i

andBi5BK i
, every Fourier star

has two variables. This reduces to one whenF is an even or
odd function ofr .

We now address the question how to implement the a
tional black and white symmetry. SinceH has index 2 inG,
it follows from the theorem of Hermann@29# that H has
either the same point group or the same Bravais lattice aG.
If H andG have thesame point group, their Bravais lattices
have to be different. Thus the Euclidean operationa, which
l

by
o-

i-

maps oil regions onto water regions, has to be a translatiota

that transforms one cubic Bravais lattice into another. Th
are only two possibilities: forta5a(x1y1z)/2 a P lattice
becomes anI lattice, and forta5ax/2 anF lattice becomes a
P lattice. The operationF(r1ta)52F(r ) in combination
with Eq. ~1! leads to additional reflection conditions:h1k
1 l 52n11 for P→I , and h,k,l 52n11 for F→P. Note
that these reflection conditions are complementary to
well-known ones forI and F (h1k1 l 52n and h1k,h
1 l ,k1 l 52n, respectively!. Thus in the case of identica
point groups, the form of the Fourier stars in Eq.~4! for
space groupH stays the same, but the sum now runs ove
reduced set of Fourier stars.

If H and G have thesame Bravais lattice, their point
groups have to be different. Thus the Euclidean operatioa
has to be a point group operationPa that extends one cubic
point group into another one. There are five cubic po
groups and six ways to extend one of them into another
somePa . FromF(Par )52F(r ) and Eq.~1! we now find
FP

a
21K52FK exp(iK•ta). Thus, different Fourier stars

merge to form new ones. However, in all cases considere
this work there is no need to consider new Fourier sta
since we only deal with the simple case thatPa is the inver-
sion. Thenta50 and one findsAi50 for all i . The same
result of course follows from Eq.~2!, since nowF is an odd
function of r .

Table II lists the group-subgroup pairsG-H and the nature
of the extensionH→G for the nine single structures invest
gated in this paper@27,26#. Out of the seven balanced case
five have identical point groups and two have identical B
vais lattices withPa being the inversion. In the next sectio
we will discuss our numerical results for Fourier series
functionsF(r ), whoseF50 isosurfaces approximate tripl
periodic minimal surfaces. However, a very simple appro
mation can be obtained by only considering the space gr
information. The use of a single Fourier star leads to
so-callednodal approximation, which does not need an
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Fourier amplitude. For balanced structures, it is essentia
consider the correct black and white symmetry. If one F
rier star is not sufficient to represent the topology correc
one has to consider another one and adjust its Fourier am
tude by visual inspection. In the last column of Table
nodal approximations are given for the nine single structu
investigated. They have been derived in the context of tri
periodic zero potential surfaces of ionic crystals@20# and are
widely used as approximations for TPMS~e.g., in Refs.
@12,36#!. However, it is well known that their properties ca
differ considerably from those of real TPMS@37#. In the next
section we will show that the quality of the nodal appro
mation varies considerably for different structures.

IV. TRIPLY PERIODIC STRUCTURES
IN GINZBURG-LANDAU MODELS

A. Ginzburg-Landau model

The simplest Ginzburg-Landau model@16#, which suc-
cessfully describes the phase behavior and mesoscopic s
ture of ternary amphiphilic systems, contains a single, sc
order parameter fieldF(r ); thus, amphiphilic degrees o
freedom are integrated out. The model is defined by the f
energy functional

F@F#5E dr$~DF!21g~F!~¹F!21 f ~F!%. ~7!

For ternary amphiphilic systems at the phase inversion t
perature, the free-energy functional has to be symmetrica
water and oil, i.e., invariant under the transformationF→
2F. A convenient form for the free-energy density and t
structural parameter of the homogeneous phases are@38#

f ~F!5~F11!2~F21!2~F21 f 0!,

g~F!5g01g2F2. ~8!

Here, the three minima at21, 0, and 1 correspond to exce
water, microemulsion, and excess oil phases, respectiv
and f 0 acts as a chemical potential for amphiphiles. T
behavior of the correlation function̂F(r1)F(r2)& is con-
trolled by the parametersg0 andg2 in the microemulsion and
excess phases, respectively; they are therefore related t
amphiphilic strength and the solubility of the amphiphile@2#.
Strongly structured microemulsions are obtained forg0,0,
while unstructured excess phases require (g21g0) to be
positive and sufficiently large.

The elastic properties of amphiphilic monolayers are
scribed by theCanham-Helfrich Hamiltonian@39,40#

H5E dA$s12k~H2c0!21k̄K%, ~9!

where the integration extends over the surface,H andK are
mean and Gaussian curvature, respectively, and the el
moduli are the surface tensions, the spontaneous curvatur
c0, the bending rigidityk and the saddle-splay modulusk̄. If
the F50 isosurfaces are identified with the location of t
amphiphilic monolayers, the free energy of the Ginzbu
Landau model~7! can be well approximated by a sum of th
curvature energy—calculated from Eq.~9!—and a direct in-
to
-
,
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teraction between the interfaces, which falls off expone
tially with distance@17,38#. Due to the water-oil symmetry
the spontaneous curvaturec0 vanishes. The values of th
other elastic moduli can be calculated numerically from
profile Fs(z), which minimizes the free energy of a plan
water-oil interface@17#.

With f 0 , g0 , andg2, the model has a three-dimension
parameter space. We investigate bicontinuous cubic ph
in the mean-field approximation. Forf 0,0 the excess
phasesW/O are stable, forf 0.0 the microemulsion ME.
Moreover, for sufficiently negativeg0 and not too largeg2, a
~singly periodic! lamellar phaseLa is found to be stable.
Figure 2 shows cuts through the parameter space forg05
23.0 andg0524.5. At each point of parameter space, t
elastic moduli can be determined numerically. In the reg
wheres,0, the system gains free energy by forming inte
faces; the lamellar phase is stabilized by the short-ran
repulsive part of the interaction between them. In the vicin
of thes50-line with s.0, the lamellar phase still exists—
stabilized by the long-range, attractive part of the interact
between interfaces. However, for a giveng0 there is exactly
one point where the phase boundary and thes50-line touch
each other@41#. Here the interaction between lamellae va
ishes and their distance diverges. We call this pointunbind-
ing point since this divergence resembles a continuous
binding transition@42,43#. We will later make use of the fac
that in the vicinity of the unbinding point the free energy
the Ginzburg-Landau model~7! is dominated by its interfa-
cial contributions. To our knowledge, no other phases
stable in the Ginzburg-Landau model. The~doubly periodic!
hexagonal phase as well as the~triply periodic! cubic phases
investigated below are only metastable. If one raisesg0 to
g0522, the lamellar channel vanishes, and microemuls

FIG. 2. Phase diagram for the Ginzburg-Landau model~7!,~8!
for ~a! g0523.0 and~b! g0524.5. Stable phases are the micr
emulsion ME, the lamellar phaseLa, and the water and oil exces
phasesW and O. First and second order transitions are drawn
solid and dashed lines, respectively. Tricritical points are marked
squares and unbinding points by triangles. The dotted line in theLa

stability region is thes50 line. Metastable cubic phases are ca
culated at the points marked by full circles.
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and excess phases coexist forf 050 and largeg2. As g0
approaches zero from below~with g2.0), the lamellar
phase disappears.

B. Generating triply periodic structures

In order to generate the structures described in Sec. I
local minima of the Ginzburg-Landau functional, we co

FIG. 3. Visualization of single and double structures forP, D,
G, andI-WP by their interfaces. The interfaces of the single str
tures appear as middle surfaces to the bilayers of the double s
tures. For the singleD only one-eighth of the unit cell is shown.
as

struct the Fourier series for the corresponding space gr
pair ~listed in Table II!, as described in Sec. III, and term
nate it after N stars. For a given set of paramete
( f 0 ,g0 ,g2), the free-energy functional~7! becomes a func-
tion of the Fourier amplitudesAi andBi (1< i<N), the con-
stant modeA0 and the lattice constanta. Although the inte-
gral in Eq. ~7! could be solved exactly by using th
orthogonality of trigonometric functions, we use Gauss
integration, which is equivalent in efficiency and accura
but easier to implement. For minimization we use conjug
gradients and as initial profile the nodal approximatio
given in Table II. Note that certain structures such asP and
C(P) need the same Fourier ansatz but different initial p
files. In order to obtain initial profiles for the double stru
tures, we transform the nodal approximations of the cor
sponding single structures according toF→2F221 in real
space and then transform these profiles to Fourier spac
using Eq.~3!. In order to test for convergence of the Fouri
series, we increaseN successively and require both the va
ues for the free-energy densityf and the lattice constanta to
level off. With a typical work stationN'100 is feasible, but
N'30 turns out to be sufficient in most cases. If a profile h
converged, the Fourier amplitudes fall off exponentially f
large uK i u.

We have generated the nine single structures discusse
Sec. II and the double structures corresponding to the f
most relevant single structures. In Fig. 3 we visualize sin
and double structures ofP, D, G, andI-WP by drawing their
F50 isosurfaces in a conventional unit cell. The two inte
faces of the double structures form a bilayer wrapped o
the interfaces of the single structures. Forf 050.0, g05
23.0 andg257.01 our numerical results are summarized
Table III. This point is chosen here in order to compare o
results with those of Go´źdź and Hołyst@15#. For each struc-

-
c-
ndau

e
At this
ures.
TABLE III. Properties of cubic bicontinuous phases as calculated numerically from the Ginzburg-La
functional at the pointf 050.0, g0523.0, andg257.01. The lamellar phase is stable at this point withf
520.208 07, the hexagonal phase metastable withf 520.175 52. The nine single~top! and four double
~bottom! cubic structures are ordered with respect to their free-energy densityf . a is the lattice constant,v
the volume fraction of oil. The values for scaled surface areaA* 5A/a2 and Euler characteristicx are given
for the conventional unit cell. From these numbers the topology indexG can be calculated. Note that th
symmetry between water and oil is broken not only for nonbalanced, but also for double structures.
point of the phase diagram, about 50 Fourier modes are sufficient and have been used for all struct

f a v A* x G

G 20.190 96 10.08 0.500 3.091 40 28 0.766 65
S 20.189 62 17.72 0.500 5.414 54 240 0.794 74
D 20.188 70 12.56 0.500 3.837 55 216 0.749 78
I -WP 20.181 12 11.82 0.527 3.463 67 212 0.742 38
P 20.181 09 7.89 0.500 2.345 16 24 0.716 37
C(Y) 20.180 61 14.92 0.500 4.461 08 224 0.767 30
C(D) 20.173 82 28.93 0.500 8.255 78 2144 0.788 62
F-RD 20.163 11 17.36 0.532 4.755 64 240 0.654 17
C(P) 20.162 39 14.13 0.500 3.809 38 216 0.741 54

GG 20.188 50 18.47 0.495 5.337 12 216
DD 20.185 49 11.59 0.502 3.302 39 24
PP 20.177 00 14.98 0.523 4.097 39 28
I -WP2 20.161 93 21.55 0.532 6.292 74 224
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ture, we give the free-energy densityf , the lattice constanta,
and the volume fraction of oilv5(1/V)*dr „F(r )11…/2.
The structures are ordered with respect to their free-ene
densityf ; thus, for the single structures we find the hierarc
G-S-D-I -WP-P, etc. The scaled surface areaA/a2 and the
Euler characteristicx are calculated for the conventional un
cell by triangulating theF50 isosurface with the marchin
cube algorithm. By successively refining the discretizati
we calculate the sumAM over the surface areas of the tr
angles as a function of their numberM , and then extrapolate
to A5A` by fitting AM to a linear 1/M dependence. The
values obtained forP, D, G, and I-WP turn out to be very
close to those for the corresponding minimal surfaces as
culated from the Weierstrass representations and give
Table I. The Euler characteristicx can be calculated asx
5C2E/4 where C is the number of cubes andE is the
number of cube edges cut by the surface. All our numer
results agree very well with those reported by Go´źdź and
Hołyst in Ref.@15# for G, D, P, andI-WP.

In order to evaluate the curvature properties of theF
50 isosurfaces, we make use of the fact that—due to
Fourier ansatz—the fieldF(r ) is known analytically. The
mean and Gaussian curvatures@44,37#

H52 1
2 ¹•n,

K5 1
2 F ~¹•n!22 (

i , j 51

3

] inj] inj G , ~10!

wheren5¹F/u¹Fu is the surface normal vector, can the
be calculated exactly. In Fig. 4 we plot the distribution ofH
andK over theF50 isosurface as histograms for the stru
turesP, D, G, andI-WP in a conventional unit cell. Numeri
cal inaccuracies arise here only from the calculation of
position vectors of theF50 isosurface with the marchin
cube algorithm, and from the triangle areasDAi , which en-
ter as weighting factors ofH andK for each plaquette of the
triangulation. The mean curvature is close to zero eve
where. For the balanced structuresP, D, andG it is distrib-
uted symmetrically aroundH50. We conclude that theF
50 isosurfaces of our numerical solutions are very close,
not identical to the corresponding TPMS. For the Gauss
curvature, we also plot the distribution obtained from t
Weierstrass representation by numerically evaluating
~A3!. This is done by evaluatingK(x1 iy) on a square lat-
tice in x andy, which covers the fundamental domains forP,
D, G, and I-WP as given in the Appendix, and collect th
values in a histogram with weightsdA(x1 iy). The resulting
distributions ofK are scaled to unit lattice constant by usi
the Weierstrass lattice constants given in Table I, and n
malized to*dK p(K)51. For P, D, and G, these distribu-
tions p(K) are identical~apart from the scale! since they are
related to each other by a Bonnet transformation. Figur
shows that the numerical distributions agree very well w
the exact Weierstrass results. The surface area is not
sensitive to the detailed shape of the interfaces in these c
the values for the full solutions and the nodal approximatio
differ only by a few percent. Finally, we can test the proc
dure used here by employing the Gauss-Bonnet theorem
gy
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calculate the Euler characteristic asx5(1/2p)*dA K. We
find an agreement to three relevant digits.

The K distributions of the single structures investigated,
for which no Weierstrass representations are known, are
shown in Fig. 5. These surfaces typically have a more com
plicated structure within the unit cell, which is reflected in
both a larger number of peaks and in a larger extremal valu
of the Gaussian curvature,Kmin .

The Fourier ansatz yields representations of TPMS which
are easy to document and thus straightforward to use in fur
ther investigations. In Table IV, we give improved nodal
approximations that consist of up to six Fourier stars. When
the number of Fourier starsN is increased, the free-energy
densityf decreases monotonically, but the quality of the ap-
proximation for the corresponding TPMS does not necessa
ily improve in the same way. Therefore for each structure we
choose an optimal value ofN. The quality of the approxima-
tion is judged from the distribution ofH and K over the
surface, as described above. In Table V, we compare th

FIG. 4. Distribution of mean curvatureH ~top! and Gaussian
curvatureK ~bottom! in a conventional unit cell, plotted as histo-
grams for the structuresP, D, G, andI-WP, for which Weierstrass
representations are known. Radii of curvature are measured in uni
of the lattice constant. ForK, we also plot as solid lines the distri-
butions calculated from the Weierstrass representations. Due to th
existence of Bonnet transformations betweenP, D, and G, they
have the same shape but different scales in these cases. The para
eters in the Ginzburg-Landau model are the same as in Fig. 2~a! and
the K distributions are normalized to*dKp(K)51. For these
‘‘simple’’ structures, about 30 Fourier modes are sufficient.
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nodal approximations from Table II, the improved nodal a
proximations from Table IV and the exact Weierstrass r
resentations by monitoringHmax, the maximum ofuHu on
the isosurface,A^H2&, the square of the variance ofH on the
isosurface, andKmin , the minimal value ofK on the isosur-
face. For the exact Weierstrass representation, one
Hmax5A^H2&50. For the improved nodal approximation
the values forHmax andA^H2& improve by nearly one orde
of magnitude when compared with the nodal approxim
tions. Also, their distributions ofK are very close to the one
obtained from the Weierstrass representations~the only ex-
ception is G, whose nodal approximation is already qu
good, in particularly for itsK distribution!. Thus by adding
just a few more modes, we can considerably improve on
widely used nodal approximations. Finally, we want to po
out that the values of the amplitudes forP, D, and I-WP
given in Table IV are of the same magnitude as those ca
lated from the representations for TPMS obtained in R
@45#. The different values arise from the different shapes
the order parameter profile through the interface. T
Ginzburg-Landau model gives interfaces with a finite wid
while the calculation based on TPMS assumes sharp in
faces. In fact, the amplitudes of the Ginzburg-Landau mo
should approach the sharp-interface results as the unbin
point is approached. As the interface effectively sharpe
the Fourier amplitudes decay more and more slowly a
function of the wave numberuK u, with a uK u22 behavior in
the limit of steplike interfaces—in agreement with the we
known uK u24 Porod law for the scattering intensity of sha
interfaces@46#. Note that Table IV now provides data forG

FIG. 5. Distribution of Gaussian curvatureK for single struc-
tures, for which no Weierstrass representations are known. The
malization is the same as in Fig. 4. These ‘‘complicated’’ structu
have more pronounced modulation within the unit cell and lar
lattice constants, therefore we use approximately 50–70 Fou
modes for the numerical minimization.
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for the first time, which in fact is the cubic bicontinuou
phase most relevant for amphiphilic systems@6–8#.

C. Hierarchy of structures

In order to investigate the relative stability of the cub
structures in the symmetric Ginzburg-Landau model,
now consider their interfacial properties. For a triply period
cubic structure, the free-energy density within the curvat
model ~9! reads

f curv5
1

a
~sA* !1

1

a3 S 2kE dA H212k̄px D , ~11!

whereA* 5A/a2 is the scaled area per unit cell; the surfa
areaA, the integration ofH2 and the Euler characteristicx
once again refer to the conventional unit cell. Both terms
brackets are scale invariant, i.e., they do not depend on
lattice constanta. If the elastic moduli are calculated for th
points in the phase diagram where we minimize the fu
tional, we finds,0, k.0, andk̄,0. In particular, forf 0
50.0, g0523.0, andg257.01 we obtains520.845 87,
k52.361 97, andk̄520.976 46. This explains why the bi
continuous phases cannot be stable in our model. The n
tive surface tension favors modulated phases, and the b
ing rigidity favors minimal surfaces; however, only th
lamellar phase is not disfavored by the negative saddle-s
modulus. We now also understand why the cubic structu
are stable in the Ginzburg-Landau model with respect t
variation ofa. There is a balance between the negative s
face tension term, which favors small values ofa, and the
positive curvature contributions which favor largea. The
minimization of Eq.~11! with respect toa yields

amin5S 6pk̄x16k*dA H2

usuA*
D 1/2

,

f min52S 4

27D
1/2S ~ usuA* !3

2k̄px12k*dA H2D 1/2

, ~12!

whereA* is assumed to be~approximately! independent of
a. We can now understand why the single structures
found to be so close to minimal surfaces; the minimum
*dA H2 ~the so-calledWillmore problem@47#! in this case is
H50, which in turn minimizesf min . Note that this reason
ing is not rigorous, since the minimization of the free-ener
functional with respect to lattice constant and shape are
independent; the latter step determinesA/a2, which is taken
to be constant in the first step.

We first discuss the single structures without the ‘‘co
plicated’’ phasesC(P), C(D), S, and C(Y)—which have
larger lattice constants, a more pronounced modula
within the unit cell, and stronger interactions between
surfaces. Then we numerically find*dA H2'1023 ~compare
Fig. 4!, so that Eq.~12! becomes

amin5S 6pk̄x

usuA*
D 1/2

, f min52S 4

27D
1/2S usu3

uk̄u
D 1/2

G,

~13!

or-
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TABLE IV. Improved nodal approximations for the four most relevant cubic structuresP, D, G, and
I-WP. In contrast to the nodal approximations given in Table II, the extremal values of the functionsF(r ) are
close to61, since they are calculated from the Ginzburg-Landau model~7!,~8!. Epqr and Opqr, with
p,q,r P$c,s%, are defined in Table II.

Mode Function Amplitude

P ~1 0 0! Eccc1 Occc 0.2260
~1 1 1! Eccc1 Occc 20.0516
~2 1 0! Eccc1 Occc 20.0196
~3 0 0! Eccc1 Occc 20.0027

D ~1 1 1! Eccc1 Ecss1 Escs1 Essc1 Occc1 Ocss
1 Oscs1 Ossc

0.1407

~3 1 1! Eccc1 Ecss2 Escs2 Essc1 Occc1 Ocss
2 Oscs2 Ossc

0.0209

~3 1 3! Eccc2 Ecss1 Escs2 Essc1 Occc2 Ocss
1 Oscs2 Ossc

20.0138

~1 1 5! Eccc1 Ecss1 Escs1 Essc1 Occc1 Ocss
1 Oscs1 Ossc

20.0028

~3 3 3! Eccc1 Ecss1 Escs1 Essc1 Occc1 Ocss
1 Oscs1 Ossc

20.0021

~3 1 5! Eccc1 Ecss2 Escs2 Essc1 Occc1 Ocss
2 Oscs2 Ossc

0.0011

G ~1 1 0! Escc1 Ocsc 0.3435
~0 3 1! Ecsc2 Occs 20.0202
~2 2 2! Esss1 Osss 20.0106
~2 1 3! Ecsc1 Occs 0.0298
~3 0 3! Eccs1 Oscc 0.0016
~1 1 4! Escc1 Ocsc 20.0011

I -WP ~0 0 0! 1 0.0652
~1 1 0! Eccc 0.5739
~2 0 0! Eccc 20.1712
~2 1 1! Eccc 20.1314
~2 2 0! Eccc 0.0184
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whereG5(A* 3/2puxu)1/25(A3/2puxua6)1/2 is the topology
index. Its exact and numerical values for the single structu
investigated is given in Table I and Table III, respective
This geometrical quantity is independent both of lattice c
stant and choice of unit cell. It can be considered to b
measure for the porosity of the structure~the larger its value,
the less porous! as well as for the specific surface area~the
larger its value, the more surface area per volume!. Its rel-
evance for amphiphilic systems is well known@48–50#. In
fact it follows from the isoperimetric relations in three
dimensional space thatA3/uxua6 is the only invariant com-
bination of Minkowski functionals for vanishing integra
mean curvature@51#.
s
.
-
a

A comparison of Eq.~13! with our numerical results from
Table III shows that these formulas systematically predic
lattice constant and a free-energy density, which are too la
and too low by about 20%, respectively. However, the hi
archy of structures as predicted byf min turns out to be ex-
actly the same as given in Table III by the full numeric
results for f : G-D-I -WP-P-F-RD. We therefore conclude
that the gyroid structure is the most stable structure sinc
has the smallest porosity~the largest topology index!. This
corresponds to the fact that topologically the gyroid’s lab
rinths have the smallest connectivity of all structur
considered—G is the only structure with only three line
meeting at one vertex~D and P have four and six, respec
strass

Table
TABLE V. Comparison of nodal approximations, improved nodal approximations, and exact Weier
representations.Hmax is the maximum ofuHu, Kmin the minimum ofK, and^H2&51/A*dA H2 the variance
of H over the surface. The form of nodal and improved nodal approximations is listed in Table II and
IV, respectively.

Nodal Improved nodal Weierstrass

Hmax A^H2& Kmin Hmax A^H2& Kmin Kmin

P 1.282 0.579 239.48 0.157 0.071 216.84 218.51
D 0.384 0.184 239.48 0.048 0.022 246.22 245.24
G 0.208 0.102 229.60 0.078 0.046 229.42 -28.08
I-WP 3.224 1.326 287.34 0.273 0.113 245.47 244.37
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tively!. With the topology index, we have found a univers
geometrical criterion for the relative stability of the vario
single bicontinuous cubic phases, which also resolves
debate about the degeneracy of minimal surfaces in
Canham-Helfrich approach for vanishing spontaneous cu
ture. In order to explain the nondegeneracy observed exp
mentally for binary lipid-water systems, higher-order term
@52# and frustration of chain stretching@9,53# have been con-
sidered. In our description both effects are not necessary
fact, in a ~balanced! ternary system, chain stretching doe
not provide a plausible mechanism for lifting the degener
of the free energies of different TPMS, since the presenc
oil relieves the frustration in the chain conformations. In t
part of the phase diagram, where ordered phases are s
the free-energy density should contain anegativesurface ten-
sion contribution~compare Refs.@56,38#! and the topological
term—which due to the Gauss-Bonnet theorem is often
glected, but in fact prevents the lattice constant from shri
ing to zero @54#. The same reasoning might be applied
binary systems by identifying monolayers with bilayers a
oil and water with water I and water II, respectively. A
though the presence of a negative surface tension is esse
in our argument, we want to emphasize that its magnit
can still be very small.

There are two main reasons why Eq.~13! yields the cor-
rect hierarchy inf min , but does not reproduce the numeric
values very well. First, by focusing on the interfacial pro
erties, we have neglected the contributions to the free-en
density due to direct interactions between the interfaces,
second, the reasoning leading to Eq.~12! is not rigorous. In
order to check whether this is indeed the origin of the n
merical discrepancy, we can make use of the existence o
unbinding point in the phase diagram, Fig. 2. At this poi
both s and the interaction vanish and the structures inve
gated should become exactly minimal surfaces. Howeve
the same point the lattice constant diverges, and both
minimization and the Fourier ansatz become unfeasi
Therefore, we study the approach to the unbinding po
along the path shown in Fig. 2. Numerically we find forP,
D, andG that the deviation of the values forf (a) from Eq.
~12! relative to our numerical results reduces from 14
~20%! through 11%~16%! to 5 ~7%! for the three sets o
parameters considered. This demonstrates the converg
towards minimal surfaces, and verifies our reasoning ab

In contrast to the case of ‘‘simple’’ single structures d
cussed so far, the topology indexG does not predict the
hierarchy found numerically for the more complicated sin
structuresC(P), C(D), S, and C(Y), compare Table III.
This may be due to numerical uncertainties in the value oG,
since no exact results are available for the surface areaA/a2.
However, both the low Ginzburg-Landau free-energy den
and the large topology index of theS surface indicate tha
this structure should be comparable in stability with theG
surface. We believe that double structures are not favore
our model because their interfaces are not minimal surfa
and can be better described as surfaces of constant m
curvature.

One of the intriguing aspects of the Ginzburg-Land
model is that it has a very rugged energy landscape w
many local minima. In fact, we were able to find many mo
interesting structures, including more complicated minim
l
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surfaces and surfaces that contain both saddle-shaped p
and pieces with positive Gaussian curvature. The latter re
is related to the observation that we essentially solve
Willmore problem, which allows for solutions which hav
both regions withK.0 and regions withK,0 –for example,
the Clifford torus@47#.

V. SCATTERING INTENSITIES AND NMR SPECTRA

We expect the nine single and four double structures
vestigated in this paper to include all physically relevant
continuous cubic phases in ternary systems near their ph
inversion temperature. The representations of these ph
can now be used to simulate data for those experime
techniques, which mainly depend on the geometry of
structures. This includes small angle scattering~SAS!, trans-
mission electron microscopy~TEM!, and nuclear magnetic
resonance~NMR!. In particular, our representations can
used to analyze experimental data for mesoporous sys
when bicontinuous cubic phases have been used as temp
@13#.

Since their typical length scales are in the nanome
range, amphiphilic structures can be investigated by x-
and neutron small angle scattering~SAXS and SANS!. The
scattering functionS(k) is obtained from the Fourier trans
form F(k) of the densityF(r ) of scattering lengths as
S(k)5uF(k)u2. For SANS, the scattering contrast can
varied by deuterating the sample. For balanced single st
tures, it is clear from above that with bulk contrast one m
sures space groupH, with film contrast space groupG. Thus,
by varying the contrast in SANS experiments, the spa
group pair of the investigated structure can be determi
@32,55#. With our representations of the cubic structures, i
straightforward to calculate the corresponding scattering
plitudes which are needed to analyze the experimental d

It is quite clear from our results why the program to ide
tify a structure from its scattering intensity alone is rath
difficult. For the single structures, the Fourier amplitud
decay so rapidly with increasing wave vector that the sc
tering intensity is dominated by the first peak, while t
higher peaks are hardly detectable. Even for double st
tures ~or film contrast for single structures in SANS! the
situation hardly improves, since the scattering intensity a
does not feature more than two or three relevant peaks. N
that even if the correct space group were extracted, one
could not be certain about the type of minimal surface;G and
S, for example, have the same space groupIa3̄d ~No. 230!
when measured in film contrast.

It has been pointed out by Anderson@58# that deuterium
NMR is another experimental technique that yields char
teristic fingerprints of bicontinuous cubic phases. Three c
ditions have to be met in this case: first, the amphiphile
to be deuterated and distributed uniformly over the surfa
second, the sample has to be monocrystalline; and finally,
surfactant sheets have to be polymerized in order to supp
diffusion within the surface. Since deuterium has a nucle
with I 51 and a small magnetic moment, the quadrupo
interactions dominate and the dipolar ones can be neglec
The 2H-NMR experiments then essentially measure the d
tribution f (x) of x5(3 cos2 r21)/2, with 2 1

2 <x<1, where
r is the angle between the external magnetic field and
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amphiphilic director, which corresponds to the normal vec
of the interface@57#. In fact, the electrostatic field at th
nucleus does not distinguish betweenx and2x and the band
shape isg(x)5 f (x)1 f (2x), with 21<x<1.

For magnetic fields parallel to the~100! direction, f (x)
can be calculated exactly forP, D, G, and I-WP from their
Weierstrass representations. The calculation forP, D, andG
has been performed by Anderson@58#. We introduce spheri-
cal coordinates (u,w) with the polar axis in the direction o
the magnetic field, so thatr5u. The Weierstrass represent
tion uses the complexv plane~see the Appendix!, which is
parametrized in polar coordinates (r ,w). At every pointv,
the normal vector follows by stereographic projection to
unit sphere. Eq.~A2! then gives the one-to-one correspo
dence

x5
r 424r 211

~11r 2!2
. ~14!

With r 85r (x8) and Eq.~A3!, the distribution becomes

f ~x8!5E
0

`

r dr E
0

2p

dwuR~r ,w!u2~11r 2!2d„x~r !2x8…

5E
0

`

r dr E
0

2p

dwuR~r ,w!u2

3~11r 2!2U]x

]r
~r 8!U21

d~r 2r 8!

5
~11r 82!5

12ur 8221u
E

0

2p

dwuR~r 8,w!u2, ~15!

whereR is the generating function given forP, D, G, and
I-WP in Appendix A. We denote the remaining integral
I (r 8). P, D, andG yield the same result@58#,

I PDG~r !5
32K~k!

r 4A~e121!~e211!
, ~16!

since they are related by a Bonnet transformation. H
K(k) is the complete elliptical integral of the first kind, an

e15
a11a2r 8

r 4
, e25

a21a1r 8

r 4
,

a65
76A48

2
, k25

2~e12e2!

~e121!~e211!
. ~17!

For I-WP, we find from Eq.~15!

I I -WP~r !5
32p

~r 22r 10!2/3
P21/3S 11r 8

12r 8D , ~18!

where Pn(x) is a Legendre function of the first kind. Tw
values ofr correspond to any givenx in Eq. ~14!, 0<r<1
for the southern hemisphere and 1<r<` for the northern
hemisphere. However, for the direction and the structu
considered bothx anddA do not change when the northern
mapped onto the southern hemisphere by a reflection thro
r

e

e,

s

gh

the xy plane~this can be verified by inverting the comple
plane in the unit circle!. It is therefore sufficient to evaluat
Eq. ~15! for 0<r<1. Then the band shapesg(x)5 f (x)
1 f (2x) for bothP, D, G, andI-WP are found to have peak
at x56 1

2 , which are already present in thePake pattern,
f (x)52p/A6x13, of isotropic samples. However, add
tional peaks appear atx50 for P, D, andG and atx561
for I-WP, which correspond to the positions of the flat poin
@~111! for P, D, andG, and~100! for I-WP#.

For the same structures, but other directions, and for o
structures, an exact calculation is not possible. However,
can numerically determine the distributionf (x) for any di-
rection and any structure in the same way used above
calculate the distribution ofH andK over the surface. In fact
with the Fourier ansatz, this can be done with much be
resolution than for a real-space representation@59#. In Fig. 6
we show our results forP and I-WP and the three high
symmetry directions. For the~100! direction, we also show
the exact results following from Eq.~15! with Eq. ~16! and
Eq. ~18! for P and I-WP, respectively; the agreement wit
the numerical results is excellent. In Fig. 7 our results
shown forC(P) andF-RD for which no Weierstrass repre
sentations are known.

VI. SUMMARY

We have presented here a systematic investigation of
continuous cubic phases in ternary amphiphilic systems
these structures the amphiphilic monolayers form triply p
riodic surfaces with cubic symmetry. We distinguish b
tween single and double structures that are characterize
one or two monolayers, respectively. In order to further cl
sify the structures within each of these groups, we used
crystallographic classification of triply periodic minimal su

FIG. 6. 2H band shapes for the structuresP and I-WP and for
the three high-symmetry directions~100!, ~110!, and~111!. Results
from the Weierstrass representations for the~100! direction are
drawn as solid lines.
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faces by Fischer and Koch. Thus for single structures
distinguish between balanced and nonbalanced structu
the first class is further subdivided into spanning and n
spanning structures. Finally we end up with a list of ni
single structures of interest@P, C(P), D, C(D), S, C(Y), G,
I-WP, F-RD#. For each of these there exists a correspond
double structure from which we considered those co
sponding to the simple and physically relevant single str
turesP, D, G, andI-WP.

In the framework of a Ginzburg-Landau model for terna
amphiphilic systems, we generated the nine single and
double structures using the Fourier ansatz and the theorie
space groups and color symmetries. Compared to real-s
minimization, the Fourier approach has the advantage of
ficient numerics and easy documentation. ForP, D, G, and
I-WP, we gave improved nodal approximations which g
much better approximations to triply periodic minimal su
faces than the widely used nodal approximations by v
Schnering and Nesper. We showed that the free-energy
sity of the single structures can be calculated from an ef
tive surface Hamiltonian with negative surface tension, po
tive bending rigidity and negative saddle-splay modul
Due to the water-oil symmetry of the model, the spontane
curvature vanishes and structures with zero mean curva
are favored. A comparison with the exact Weierstrass re
sentations forP, D, G, andI-WP shows that the single struc
tures can be made to closely approach triply periodic m
mal surfaces by appropriately tuning the model paramet
For vanishing mean curvature term, their relative stability
determined by the topology indexG5(A3/2puxua6)1/2. This
explains the hierarchyG-D-I -WP-P. Thus for water-oil
symmetry the single gyroid is the most stable cubic bic
tinuous phase since it has the smallest porosity.

The representations obtained for both single and dou
structures can now be used for further physical investi
tions. We have employed them to calculate the distribut
of the Gaussian curvature forC(P), C(D), S, C(Y), and

FIG. 7. 2H band shapes for the structuresC(P) andF-RD and
for the three high-symmetry directions~100!, ~110!, and~111!.
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F-RD, which were not known before. Furthermore, we ha
determined several quantities which can be measured
SAS- and2H-NMR experiments.

In our Ginzburg-Landau model for balanced ternary s
tems, modulated phases are favored whose interfaces
minimal surfaces. However, only the lamellar phase is sta
since the bicontinuous phases are disfavored by thenegative
saddle-splay modulus. Thus, other energetic contribution
have to be considered to stabilize bicontinuous phases.
can be long-ranged interactions~like the van der Waals or
electrostatic interactions! or higher-order terms in the curva
ture energy. Assuming that these contributions typically ha
a similar effect on all bicontinuous phases, we then exp
the gyroid phaseG to be most prominent. One of the intrigu
ing conclusions of our calculations is the large relative s
bility of the S surface, as indicated by its low free-energ
density in the Ginzburg-Landau model and by its large
pology index. Thus, for single cubic phases in balanced
nary amphiphilic systems, theS surface could be a possibl
alternative to theG surface, whose double version seems
be so ubiquitous in lipid-water mixtures.

We want to emphasize that bicontinuous phases can
course be induced by apositive saddle-splay modulus. How-
ever, in this case the lattice constant should be on the o
of the size of the amphiphilic molecules, and the applicat
of the curvature energy model becomes questionable. T
may indeed be the case in many lipid-water systems, wh
the amphiphile volume fraction in the bicontinuous cub
phases is larger than 50%.
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APPENDIX: WEIERSTRASS REPRESENTATIONS

Exact representations are known for four cubic TPM
@21,22,60,61#. Consider the composite mapping of the su
face into the complex plane, which consists of two par
first, each point of the surface is mapped to a point on
unit sphere that is defined by the normal vector on the s
face, then the unit sphere is mapped into the complex pl
by stereographic projection. TheWeierstrass representatio
formulasinvert this mapping and therefore map certain co
plicated regionsV,C of the complex plane onto a funda
mental piece of the TPMS,

f~x,y!5ReE
0

v

dz R~z!S 12z2

i ~11z2!

2z
D , ~A1!

where v5x1 iy . The replication of this surface segme
with the symmetries of the space groupH of the oriented
surface then gives the whole TPMS. It can be shown t
each meromorphic functionR(v) corresponds to a minima
surface. However, only few meromorphic functions lead
embedded TPMS. For theD surface, one hasR(v)5(v8

214v411)21/2, and V is the common area of the fou
circles with radii A2 around the points (616 i )/A2. The
Bonnet transformationR(v)→eiuR(v) with u5p/2 trans-



g

f

ne

ve
y
n

-

le I
sen-

5540 PRE 59U.S. SCHWARZ AND G. GOMPPER
forms theD-surface piece into one for theP surface, andu
538.015° does the same for theG surface. The generatin
function for I-WP was found only recently to beR(v)
5@v(v411)#2(2/3) @62,63#. HereV is the common area o
the circle with radiusA2 around the point (11 i )/A2 with
the unit circle, the lower half-plane and the lower half-pla
rotated anticlockwise byp/4.

Given a generating functionR(v) for a certain TPMS,
several of its properties can be readily calculated. At a gi
point v5x1 iy5r exp(iw), the normal are determined b
stereographic projection from the complex plane to the u
sphere,

cosu5
r 221

r 211
, ~A2!
g
n

ois
ia

f

tl.

.

s-
n

it

in spherical coordinates (u,w). Gaussian curvature and dif
ferential area element follow as

K~v!5
24

uR~v!u2~11uvu2!4
,

dA~v!5uR~v!u2~11uvu2!2dx dy. ~A3!

Therefore the poles ofR(v) correspond to the~isolated! flat
points of the surface~that is points withK50). SinceK and
dA depend only on the modulus ofR, surfaces related by a
Bonnet transformation have the same distribution ofK and
the same surface area for one fundamental domain. Tab
shows data that are obtained from the Weierstrass repre
tations.
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