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Systematic approach to bicontinuous cubic phases in ternary amphiphilic systems
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The Fourier approach and theories of space groups and color symmetries are used to systematically generate
and compare bicontinuous cubic structures in the framework of a Ginzburg-Landau model for ternary am-
phiphilic systems. Both single and double structures are investigated; they correspond to systems with one or
two monolayers in a unit cell, respectively. We show how and why single structures can be made to approach
triply periodic minimal surfaces very closely, and give improved nodal approximatiorG, by I-WP, andP
surfaces. We demonstrate that the relative stability of the single structures can be calculated from the geo-
metrical properties of their interfaces only. The single gymGidurns out to be the most stable bicontinuous
cubic phase since it has the smallest porosity. The representations are used to calculate distributions of the
Gaussian curvature antH—nuclear-magnetic-resonance band shape€{#t), C(D), S, C(Y), andF-RD
surfaces[S1063-651X%99)01005-3

PACS numbsgs): 61.30.Cz, 68.16-m, 61.50.Ah, 02.40-k

[. INTRODUCTION periments. It has been shown recently byz@oand Hotyst
[15] in the framework of real-space minimization that vari-
Amphiphiles are molecules that have both hydrophilicous cubic bicontinuous phases can be generated as local
and hydrophobic parts. In a ternary mixture of amphiphilesminima of the Ginzburg-Landau model for ternary am-
water and oil, their ability to stabilize water-oil interfaces phiphilic systems introduced previously by Gompper and
leads to structure formation on the nanometer s¢hle3].  Schick[16,2]. The position of the interfaces between oil and
Depending on concentration and temperature, many differenwater regions then follow as isosurfaces to a scalar field
phases are found to be stable. One intriguing aspect of an#b (r). Our analysis is based on the Fourier ansatz in combi-
phiphilic polymorphism is the existence of ordered bicon-nation with the theories of space groups and color symme-
tinuous phases which can be traversed in any direction itries; it allows to generate the relevant structures in a very
both the water and oil regions. Here macroscopic order hasystematic way and to reduce the representations to a rela-
been demonstrated by the appearance of Bragg peaks in difvely small number of variables. This in turn allows very
fraction pattern$4] and bicontinuity by measuring diffusion efficient numerics and makes it easy to document and reuse
properties with nuclear magnetic resonafk Clearly any the results.
bicontinuous ordered phase has to have a three-dimensional In order to analyze our results, we use an effective inter-
Bravais lattice. In experiments, cubic symmetry is observedace Hamiltonian, which is derived from the Ginzburg-
in most case$6—8]. The amphiphilic monolayers of bicon- Landau theony17]. Due to the oil-water symmetry of the
tinuous cubic structures, which separate regions with wateGinzburg-Landau model, the spontaneous curvature van-
from regions with oil, are often modelled by triply periodic ishes. Since the elastic energy of interfaces is governed by
surfaces of constant mean curvat{®¢l0]. By changing ex- their bending rigidity, the interfaces of the structures that
perimental parameters like temperature or salt concentratiomave only one amphiphilic monolayer are very close to cubic
their preference to bend towards the water or the oil region§PMS. A similar approach, which employs a Ginzburg-
can be made to vanish. Then one can describe them by triplyandau model for binary fluid mixtures, has been used in
periodic minimal surface§STPMS’s). Similarly, the bilayers Refs.[18,19. However, since the elastic energy of interfaces
of bicontinuous cubic phases in lipid-water mixtures by sym-is governed by their tension in this case, the numerical mini-
metry have no spontaneous curvature, so that their midmization is much less stable. In fact, our tabulation of the
surfaces can also be modeled by TPMS3]. Bicontinuous first few Fourier amplitudes for the four best-known struc-
cubic phases have gained renewed interest recently, for exdresG, D, |-WP, andP provides a considerable improve-
ample, as space partitioners in biological systdit®, as  ment over the widely used nodal approximations for TPMS
amphiphilic templates for mesoporous systdi3], and for  [20]. Since most of the detailed analysis of the properties of
the crystallization of membrane proteiffs4]. cubic TPMS has been focused on these structures so far, we
In this paper, we report on a systematic theoretical inveswant to use our representations to characterize the structures
tigation of bicontinuous cubic phases in ternary amphiphilicC(P), C(D), S, C(Y), andF-RD in more detail.
systems with vanishing spontaneous curvature. We restrict Our analysis in terms of interfacial properties also allows
ourselves to bicontinuous ordered phases with cubic symmeiss to investigate the relative stability of the various bicon-
try since these are the ones that are mainly observed in exinuous cubic phases in terms of their geometrical properties.
Although the identification of a certain bicontinuous cubic
structure is a tedious procedure best accomplished by com-
*Present address: Department of Materials and Interfaces, Weibining several experimental techniques such as neutron or
mann Institute of Science, Rehovot 76100, Israel. x-ray small angle scattering, transmission electron micros-

1063-651X/99/56)/552814)/$15.00 PRE 59 5528 ©1999 The American Physical Society



PRE 59 SYSTEMATIC APPROACH TO BICONTINUOUS CURT . .. 5529

copy and nuclear magnetic resonance, in most cases one hasTABLE I. Properties of the four cubic triply periodic minimal

found the stable phases to be either gyroid or diamond strusurfacesG, D, I-WP, andP, for which (exac) Weierstrass repre-

tures. Here we derive a universal geometrical criterion forsentations are knowmy is the number of copies of the fundamen-

their relative stability in the case of vanishing spontaneougal domain that are necessary to build up the surface in one conven-

curvature of the interfaces, which explains these experimerﬂoneﬂ unit cell. x is the Euler character_istia the Iattic&_a constant,

tal findings and is in excellent agreement with our numericafnNdA* =Ala? the scaled surface area in the conventional unit cell.

results. I'=(A%27|x|a®)*? is the topology index and the volume frac-
The paper is organized as follows. We begin by introduc-o" of one of the two labyrinths.

ing the relevant concepts from differential geometry and

crystallography and their applications to amphiphilic systems Na X a A r v

in Sec. Il. In Sec. Ill we explain how to construct Fourier p 12 —4 21565 2.345103 0.716 346 05
series and nodal approximations for amphiphilic structuresp 48 —16 3.3715 3.837785 0.749844 05
In Sec. IV we systematically generate, evaluate, and comparg 24 -8 26562 3.091444 0.766668 0.5

various single and double structures by using the Ginzburgrywp 48 —12 7.9499 3464102 0742515 0536
Landau theory. In Sec. V we use the representations obtained
to comment on the experimental identification of bicontinu-
ous cubic phases in amphiphilic and mesoporous systems.minimal. If a TPS contains straight lines, it is calledan-
ning[27]. It was shown by Schwarz that any spanning TPMS
is symmetric with respect to a reflection around such a line.
Since this operation exchanges the two labyrinths, any span-
If we characterize a bicontinuous phase by its interfaces)ing TPMS is balanced. The only known cubic TPMS,
the simplest possible case is that they favnetriply peri- ~ Which is balanced but not spanning, is the gyrGidwhere
odic surface(TPS, i.e., a surface with a three-dimensional the symmetry operation exchanging the two labyrinths is the
Bravais lattice. Any TPS divides space into two unconnectednversion.
but intertwined labyrinths. In ternary amphiphilic systems, For our purposes it is best to investigate not the local
the surface is covered with an amphiphilic monolayer andconcentrations of oil and water separately, but their differ-
the two labyrinths are filled with water and oil, respectively. ence ®(r)=po(r) —pw(r). Since we assume incompress-
Therefore any structure corresponding to a TPS is bicontinuiility, po(r)+pw(r)=1 and the local concentrations of oil
ous in water and oil. The TPS is calldzhlancedif there ~ and water can be reconstructed frdnfr). The amphiphilic
exists a Euclidean transformati@nthat maps one labyrinth monolayers now correspond to tlie=0 isosurfaces. The
onto the other. Oil and water have equal volume fractions irinterchange of oil and water amounts do— —®. For bal-
this case. anced surfaces this is a symmetry operation when combined
In the mathematical context, triply periodisinimal sur- ~ with the Euclidean operatiom, that is ®(ar)=—®(r).
faces(TPMS) have been investigated extensivEM ,22. In However, it is important to note that this is not a space group
order to locally minimize their surface area, minimal sur-symmetry—which would only allow for a rigid motion, but
faces have vanishing mean curvatiite- (1/R; + 1/R,)/2 at  not for a change of sign. Additional symmetries that arise
every point on the surface, wheR, and R, are the two When a Euclidean operation is combined with a permutation
principal radii of curvature. Therefore, their Gaussian curva-are calledcolor symmetrigswith only water and oil present
ture K=1/R;R,=—1/R? is nonpositive and the surface is We have the simplest case oftéack and white symmetry
Sadd|e Shaped everywhere_ To our know'edge, up to 197@8—3(] When water and oil are colored white and blaCk,
only five TPMS had been known by the 19th-century workrespectively, theb =0 isosurface obtains dif_ferently colored
of Schwarz and his students, wify D, and C(P) being sides and thus can be considered to be oriented. We assume
cubic. Then Schoen described 12 m§28], including the the uncolored structur@.e., the unoriented surfacé have
cubic cases, F-RD, I-WP, O, C-TO, and C(D). Their  SPace groupy. Then all Euclidean operations that do not
existence was proven by Karcher in 19881]. More TPMS  interchange the two labyrinths form a subgrotpof G of
have been found by Karcher and Polthj@b], Fischer and index 2. By definition is the space group of the colored
Koch [26] and others, but all of them seem to be more com-tructure(i.e., the oriented surfageThe quotient group is
plicated than the ones known to Schoen. For cubic TPMSisomorphic to the cyclic group of order 2, that &/H=7,
exact representations are known only RyD, G, andl-WP.  ={1,a}. In general, any balanced TPS is characterized by a
TheseWeierstrass representatioraiginate from complex —group-subgroup paig-H of index 2. For example, for the
analysis and are explained in Appendix A. With their helpbalanced TPS defined by coscosy+cosz=0, we haveH
the surface areas of these TPMS can be calculated exactly mPm3m (No. 221 andG=I1m3m (No. 229.
terms of elliptic functions; the resulting values are given in  In order to describe a balanced TPS which does not inter-
Table I. sect itself, certain restrictions apply for the extension ffem
Being balanced and being minimal are two independento G (for example, ife is a rotation, it has to be twofold
possible properties of a TPS. From the cubic TPMS knowrThis has been used by Fischer and Koch to develop a crys-
to SchoenfF-RD, I-WP, andO, C-TO are not balanced and tallographic classification of all cubic TPM&7,26. In par-
divide space into two labyrinths with unequal volume frac-ticular they showed that only 34 cubic group-subgroup pairs
tions. On the other hand, the TPS defined by>cbsosy  G-H with index 2 can correspond to cubic balanced TPMS.
+cosz=0 is balanced withw being a translation along half Although there is no way to systematically list all balanced
the body diagonal of the conventional unit cell, but far from TPMS belonging to a possible group-subgroup paigagt,

Il. GEOMETRY OF BICONTINUOUS PHASES
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tures can be considered to be double structures of a ternary
system where the oil has been removed from the bilayer.
However, if the thickness of the bilayer is small compared to
the lattice constant, it seems more appropriate to model them
by single structures of a ternary system, where the water
regions on both sides of the bilayer are distinguished artifi-
cially by labeling them “water I and “water I1,” respec-
tively [33]. Thus our results for single structures can also be
applied to bicontinuous cubic phases in amphiphile-water
mixtures.

lll. FOURIER ANSATZ

In order to construct a Fourier ansatz for a given group-
subgroup paig-H, we need a Fourier ansatz for space group
'H, together with the implementation of a certain black and
white symmetry. In ternary amphiphilic systems, this corre-
sponds to a balanced single structure. For nonbalanced single
structures and double structures there is no color symmetry

D C(D) and one only needs the Fourier ansatz for a given space
group H=g.

FIG. 1. Different TPMS with the same space group and the It is well known how to choose the Fourier ansatz for a
same system of straight lines. Spanning minimal surfaces are afjiven space grouf{ [34,35. In the cubic system the trans-
ways balanced, thus they are characterized by a group-subgrodational properties of{ correspond to one of the three cubic
pair G-H. For P and C(P) this is Im3m (No. 229—Pm3m (No. Bravais lattices simple cubi@), body centered cubid) or
221) and for D and C(D) this is Pn3m (No. 224—Fd3m (No.  face centered cubitF). The Fourier series then reads
227).

. D(r)=2>, bye', &
Fischer and Koch argued that one can completely enumerate K}

all cubic spanning TPMS which have straight lines forming here{K} is the reciprocal lattice and thk, are the(com-
a three-dimensional network whose polygons are spanne\g K

o ) ex) Fourier amplitudes. However, not all of them are inde-
disklike by the surface. They finlé, C(P), D, C(D), S and  pengent. Since tF;]e density fieddl(r) has to be real, it fol-
C(Y), with the. Iattgr two described by them, to our knowl- lows from Eq.(1) that®g=® . With d,=A, —iBy, Eq.
edge, for the first time. In our work we systematically 9en-(1) hecomes
erate these structures together with the only known balancec}
but nonspanning cubic TPM& and the nonbalanced ones .

[-WP andF-RD. Examples for spanning TPMS are shown in ®(r)= {EK} {Ak codK 1)+ By sin(K-r)}. @
Fig. 1.

gOne also can consider structures witho TPS. For ex- HereAi andBy are real and can be obtained frab(r) as
ample, parallel surfaces can be constructed on either side of 1
any given TPS. Both parallel surfaces are TPS, each of AKz—f dr ®&(r)cogK-r),
which has two labyrinths, which are topologically equivalent v
to those of the initial structure. However, with respect to the 1
overall structure, these labyrinths are now filled with the same BK:—J dr ®(r)sin(K-r), 3
component and separated by a bilayer which is filled with the v
other component. One might call this structtiieontinuous  where the integration runs over some unit cell of volume
but we rather prefer to use the temouble structurefor  Thys, for even or odd function®, =0 or Ac=0, respec-
structures ofwo TPS — in contrast taingle structuregon- tively.
tainingone TPS. Further restrictions on the Fourier amplitud®s arise

Experimentally, little is known about the exact structurewhen we consider symmetry operatians Pr +t, which are
of bicontinuous cubic phases in ternary amphiphilic systemsnot pure translations. HerB,denotes a rotation, inversion or
One exception is the system DDAB-water-styrene, for whichrotoinversion, and a translation which does not belong to
five different double structures have been found to be stabléhe Bravais lattice. Thug, is nonvanishing for screw axes
each of which can be regarded as an oil-filled bilayer drape@nd glide planes. It now follows from Edql) that ®p-1
onto a different TPY31]. However, with microemulsion =®xe'X'. Let H be the point group of the given space
phases being so ubiquitous for these systems, single strugroup . To each operation it there corresponds a pair
tures can be expected also to be stable, and in fact have be€,t) in H. We group all reciprocal lattice vectors, which are
reported in Ref[32]. In contrast to the situation fqgalmost  related by an operation &f, into so-called=ourier stars All
balancedl ternary amphiphilic systems, the structure of bi- members of a given star have the same wavelength. Only a
continuous cubic phases is well established for many binarfew stars will have the same wavelength and in most cases
amphiphilic system§6—8]. Here, mostly inverse phases are there is only one star with a certain wavelength. Therefore,
found, in which the two labyrinths are filled with water and the stars can be ordered according to decreasing wavelength
the TPS is covered with an amphiphilic bilayer. These strucand numbered with the index For each star we arbitrarily
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TABLE Il. Group-subgroup pairg-H, the relationH— G between them, and nodal approximations for
the cubic minimal surfaces. They are grouped into three classes: spanning with three-dimensional nets,
balanced but nonspanning, and nonbalangeaind H for balanced single structures differ either in Bravais
lattice or in point groudbut not in both. Nonbalanced single structures haie=G. The Fourier ansatz has
to be chosen as follows: with color symmetry(given by H—@G) for single structure, and for double
structure. Nodal approximations only consider the space group information givei My We use the
definitions Epqr=p(hx)q(ky)r(1z) + p(hy)q(k2)r (Ix) +p(h2)g(kx)r(ly) and Opqr=p(hx)q(k2)r(ly)
+p(hy)q(kx)r(lz) +p(hz)g(ky)r(Ix), wherep, g, andr can be eithec (cosing or s (sine.

H g H—G Nodal approximations
P Pm3m (22)  Im3m (229 Pl Eccd100
C(P) Pm3m (221  Im3m (229 Pl Eccd100 + Eccd111)
D Fd3m (227  Pn3m(224) F—P (Eccc + Ecss+ Escs+ Essg(111)
C(D) Fd3m (227 Pn3m (224) F—P (Eccc + Ecss— Escs— Esso(311)
S 143d (220 la3d (230  43m—m3m (Ecsc+ Occs(211)
C(Y) P4,32 (212 14,32 (214) P—Il — (Eccc+ Osss+ Esss+ Occo(111)

+ 6 (Essc+ Oscc+ Eccs+ Ocss(210

G 14,32 (2149 1a3d (230  432-m3m (Escc+ Ocsg(110
I-WP Im3m (229 2 Eccd110) — Eccd200)
F-RD Fm3m (225 4 Eccdl1]) — 3 Eccd220)

choose one representatie. With CDKizAi—iBi , Eq. (D) maps oil regions onto water regions, has to be a translgion
becomes a sum over Fourier stars, that transforms one cubic Bravais lattice into another. There
are only two possibilities: fot,=a(x+y+2z)/2 aP lattice
becomes an lattice, and foit ,= ax/2 anF lattice becomes a
P lattice. The operatiomb (r +t,)=—®(r) in combination
with Eq. (1) leads to additional reflection conditionis:+k
where thegeometric structure factorare defined by +1=2n+1 for P—l, andh,k,|=2n+1 for F—P. Note
that these reflection conditions are complementary to the
A (1= cog (P~ 1K) -r+K,-t], 5y  Wwell-known ones forl and F (h+k+I1=2n and h+k,h
: H +1,k+1=2n, respectively. Thus in the case of identical
point groups, the form of the Fourier stars in Hg) for
_ . -1 space groug stays the same, but the sum now runs over a
BKi(r)_; SIL(PKG) T K-, © reduced set of Fourier stars.
If H and G have thesame Bravais latticetheir point
Their precise form is obtained by explicitly enumerating all groups have to be different. Thus the Euclidean operation
nontranslational symmetry operations of space griuffhe  has to be a point group operati®, that extends one cubic
results of this procedure can be taken from R&4] if they  point group into another one. There are five cubic point
are corrected by a factorr/ , wherem, is the multiplicity  groups and six ways to extend one of them into another by
of the Bravais latticg(1, 2, and 4 forP, I, andF, respec-  someP,. From®(P,r)=—®(r) and Eq.(1) we now find

tively). In Eq. (4), n denotes the order dfl andn; the mul- @ -1, = — b, exp(K-t,). Thus, different Fourier stars
tiplicity of K;. If H does not contain the inversion, we can ___¢

extend the definition of a Fourier star by usidg=® _ .
This does not change E4) except that now we have to
replaceH by the so-called.aue group that isH extended by sion. Thent.=0 and one findsA.=0 for all i. The same
the inversion. All structures investigated in this work have ¢ i of couarse follows from qu') since now® is an odd
m3m with ordern=48 either as their point group or as their fynction ofr. '
Laue group, thus the members of one star are generated by Tapje || lists the group-subgroup pagsH and the nature
all possible permutations and changes of sign of the compgsf the extensiort{— ¢ for the nine single structures investi-
nents ofK;. With Aj=Ay; andB; =B, every Fourier star gated in this papei27,26. Out of the seven balanced cases,
has two variables. This reduces to one wildetis an even or five have identical point groups and two have identical Bra-
odd function ofr. vais lattices withP , being the inversion. In the next section,
We now address the question how to implement the addiwe will discuss our numerical results for Fourier series of
tional black and white symmetry. SinG¢ has index 2 inG,  functions®(r), whose® =0 isosurfaces approximate triply
it follows from the theorem of HermanfR9] that # has  periodic minimal surfaces. However, a very simple approxi-
either the same point group or the same Bravais lattigg as mation can be obtained by only considering the space group
If H andG have thesame point grouptheir Bravais lattices information. The use of a single Fourier star leads to the
have to be different. Thus the Euclidean operatigrwhich  so-callednodal approximation which does not need any

N
®(r) =2 T{AA (1) +BiBg (N}, (4)

merge to form new ones. However, in all cases considered in
this work there is no need to consider new Fourier stars,
since we only deal with the simple case tRatis the inver-
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Fourier amplitude. For balanced structures, it is essential to g,
consider the correct black and white symmetry. If one Fou- 12
rier star is not sufficient to represent the topology correctly,
one has to consider another one and adjust its Fourier ampli- 8
tude by visual inspection. In the last column of Table I,
nodal approximations are given for the nine single structures 4
investigated. They have been derived in the context of triply
periodic zero potential surfaces of ionic crystdl§] and are 0
widely used as approximations for TPM@.g., in Refs.
[12,36)). However, it is well known that their properties can 20
differ considerably from those of real TPMS37]. In the next g,
section we will show that the quality of the nodal approxi- 15
mation varies considerably for different structures.
10
IV. TRIPLY PERIODIC STRUCTURES
IN GINZBURG-LANDAU MODELS 5
A. Ginzburg-Landau model 0
2 0 2 i 4

The simplest Ginzburg-Landau modgl6], which suc-
cessfully describes the phase behavior and mesoscopic struc-g;; 2. phase diagram for the Ginzburg-Landau md@g(8)

ture of ternary amphiphilic systems, con_tair_1_s a single, scalag, (8) go=—3.0 and(b) gy=—4.5. Stable phases are the micro-
order parameter fieldb(r); thus, amphiphilic degrees of emyision ME, the lamellar phade,, and the water and oil excess
freedom are integrated out. The model is defined by the fregshasesw and O. First and second order transitions are drawn by
energy functional solid and dashed lines, respectively. Tricritical points are marked by
squares and unbinding points by triangles. The dotted line ih the
stability region is theo=0 line. Metastable cubic phases are cal-
culated at the points marked by full circles.

)= [ dria@+ g @) (TR @) (D

For ternary amphiphilic systems at the phase inversion te"."[éraction between the interfaces, which falls off exponen-
perature, the free-energy functional has to be symmetrical "ﬂally with distance[17,38. Due to the water-oil symmetry
water and oil, i.e., invariant under the transformatibr- '

—o A iont f for the f densit d th the spontaneous curvatumgy vanishes. The values of the
- A convenient form Tor In€ free-energy density and the gy, o a|astic moduli can be calculated numerically from the
structural parameter of the homogeneous phaseg38fe

profile ®4(z), which minimizes the free energy of a planar
water-oil interfacg17].

With fg, g9, andg,, the model has a three-dimensional
g(®)=go+g,d2. (8 ~ Parameter space. We investigate bicontinuous cubic phases

in the mean-field approximation. Fofy<O the excess

Here, the three minima at1, 0, and 1 correspond to excess phasesW/O are stable, forf;>0 the microemulsion ME.
water, microemulsion, and excess oil phases, respectiveljfloreover, for sufficiently negativg, and not too largg,, a
and f, acts as a chemical potential for amphiphiles. The(singly periodig lamellar phase., is found to be stable.
behavior of the correlation functio®(r,)®(r,)) is con-  Figure 2 shows cuts through the parameter spaceyfer
trolled by the parameterg, andg, in the microemulsion and —3.0 andgo=—4.5. At each point of parameter space, the
excess phases, respectively; they are therefore related to tekstic moduli can be determined numerically. In the region
amphiphilic strength and the solubility of the amphipti?g.  whereo <0, the system gains free energy by forming inter-
Strongly structured microemulsions are obtaineddgr0, faces; the lamellar phase is stabilized by the short-range,
while unstructured excess phases requigg+g,) to be repulsive part of the interaction between them. In the vicinity
positive and sufficiently large. of the o=0-line with ¢>0, the lamellar phase still exists—

The elastic properties of amphiphilic monolayers are destabilized by the long-range, attractive part of the interaction
scribed by theCanham-Helfrich Hamiltonian39,40 between interfaces. However, for a givgpthere is exactly
one point where the phase boundary anddhke0-line touch
each othef41]. Here the interaction between lamellae van-
ishes and their distance diverges. We call this paimtind-
ing point since this divergence resembles a continuous un-
where the integration extends over the surfat@ndK are  pinding transitiorf42,43. We will later make use of the fact
mean and Gaussian curvature, respectively, and the elastigat in the vicinity of the unbinding point the free energy of
moduli are the surface tensian the spontaneous curvature the Ginzburg-Landau modé¥) is dominated by its interfa-
Co, the bending rigidityx and the saddle-splay modulksIf  cial contributions. To our knowledge, no other phases are
the ®=0 isosurfaces are identified with the location of the stable in the Ginzburg-Landau model. Ttawubly periodig¢
amphiphilic monolayers, the free energy of the Ginzburg-hexagonal phase as well as ftieply periodic) cubic phases
Landau mode(7) can be well approximated by a sum of the investigated below are only metastable. If one raiggdo
curvature energy—calculated from E§)—and a direct in- go=—2, the lamellar channel vanishes, and microemulsion

f(D)=(D+1)%(D—1)%(D2+1,),

H=f dA{o+2k(H—cg)2+ kK1, (9)
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FIG. 3. Visualization of single and double structures RyrD,

G, andI-WP by their interfaces. The interfaces of the single struc-

struct the Fourier series for the corresponding space group
pair (listed in Table 1), as described in Sec. lll, and termi-
nate it after N stars. For a given set of parameters
(f0,90,95), the free-energy functiondl’) becomes a func-
tion of the Fourier amplitude&; andB; (1<i=<N), the con-
stant modeA, and the lattice constamt. Although the inte-
gral in Eqg. (7) could be solved exactly by using the
orthogonality of trigonometric functions, we use Gaussian
integration, which is equivalent in efficiency and accuracy,
but easier to implement. For minimization we use conjugate
gradients and as initial profile the nodal approximations
given in Table Il. Note that certain structures suchPasnd
C(P) need the same Fourier ansatz but different initial pro-
files. In order to obtain initial profiles for the double struc-
tures, we transform the nodal approximations of the corre-
sponding single structures accordingde—2d2?—1 in real
space and then transform these profiles to Fourier space by
using Eq.(3). In order to test for convergence of the Fourier
series, we increasd successively and require both the val-
ues for the free-energy densitynd the lattice constamtto
level off. With a typical work statiotN~ 100 is feasible, but
N~ 30 turns out to be sufficient in most cases. If a profile has

tures appear as middle surfaces to the bilayers of the double stru§onverged, the Fourier amplitudes fall off exponentially for
tures. For the singl® only one-eighth of the unit cell is shown.

and excess phases coexist figi=0 and largeg,. As gq
approaches zero from belowith g,>0), the lamellar

phase disappears.

B. Generating triply periodic structures

large|K;|.

We have generated the nine single structures discussed in
Sec. Il and the double structures corresponding to the four
most relevant single structures. In Fig. 3 we visualize single
and double structures &f, D, G, andl-WP by drawing their
® =0 isosurfaces in a conventional unit cell. The two inter-
faces of the double structures form a bilayer wrapped onto
the interfaces of the single structures. Hgr=0.0, go=
—3.0 andg,="7.01 our numerical results are summarized in

In order to generate the structures described in Sec. Il afable Ill. This point is chosen here in order to compare our
local minima of the Ginzburg-Landau functional, we con-results with those of Galz and Hotyst[15]. For each struc-

TABLE Ill. Properties of cubic bicontinuous phases as calculated numerically from the Ginzburg-Landau
functional at the poinfy,=0.0, go=—3.0, andg,=7.01. The lamellar phase is stable at this point with
=—0.208 07, the hexagonal phase metastable #ith-0.17552. The nine singléop) and four double
(bottom) cubic structures are ordered with respect to their free-energy ddnsatys the lattice constan
the volume fraction of oil. The values for scaled surface dea A/a? and Euler characteristig are given
for the conventional unit cell. From these numbers the topology iddesan be calculated. Note that the
symmetry between water and oil is broken not only for nonbalanced, but also for double structures. At this
point of the phase diagram, about 50 Fourier modes are sufficient and have been used for all structures.

f a v A* X r

G —0.190 96 10.08 0.500 3.09140 -8 0.766 65
S —0.18962 17.72 0.500 5.41454 —40 0.794 74
D —0.188 70 12.56 0.500 3.83755 —-16 0.74978
I-WP —0.18112 11.82 0.527 3.463 67 —-12 0.742 38
P —0.18109 7.89 0.500 2.34516 -4 0.716 37
C(Y) —0.18061 14.92 0.500 4.46108 —24 0.767 30
C(D) —-0.17382 28.93 0.500 8.25578 —144 0.78862
F-RD —-0.16311 17.36 0.532 4.755 64 —-40 0.654 17
C(P) —-0.162 39 14.13 0.500 3.809 38 —-16 0.74154
GG —0.188 50 18.47 0.495 5.33712 —-16

DD —0.18549 11.59 0.502 3.30239 -4

PP —0.177 00 14.98 0.523 4.097 39 -8

[-WP2 —0.16193 21.55 0.532 6.292 74 —24
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ture, we give the free-energy densftythe lattice constard, :
and the volume fraction of oib=(1NV)/dr(®(r)+1)/2.

The structures are ordered with respect to their free-energ

densityf; thus, for the single structures we find the hierarchy 8
G-S-D-1-WP-P, etc. The scaled surface ardéa® and the 4 —’-l-m_l_m
Euler characteristig are calculated for the conventional unit : H
cell by triangulating theb =0 isosurface with the marching  -0.15 01 005 0 005 04 015  -0.06-0.04-0.02 0 002 0.04 0.06
cube algorithm. By successively refining the discretization 2°

we calculate the sum, over the surface areas of the tri- 16 G WP
angles as a function of their numbir, and then extrapolate 12
to A=A, by fitting Ay to a linear 1M dependence. The
values obtained foP, D, G, andI-WP turn out to be very .
close to those for the corresponding minimal surfaces as ca i .
culated from the Weierstrass representations and given i ® oss 00t o oosom N oz 01 o o1 oz oM
Table I. The Euler characteristig can be calculated ag 0.16
=C—E/4 whereC is the number of cubes and is the P 0.06 D
number of cube edges cut by the surface. All our numerica 012
results agree very well with those reported byz@oand 0.08 0.04
Holyst in Ref.[15] for G, D, P, andI-WP. ~ 0.02
In order to evaluate the curvature properties of the 0.04 rﬂﬂ
=0 isosurfaces, we make use of the fact that—due to thi o K o K
Fourier ansatz—the field®(r) is known analytically. The 25 2 5 -0 50 S0 40 B0 20 -10 0
mean and Gaussian curvatufég,37] 01 0.16
0.08 G iz I-WP
H=-3V-n, 0.06 '
0.08
0.04
3 0.02 ey 0.04
K=3|(V-n)?= X anjan;|, (10) 0 K o llll]lllllll”” |
hi=1 30 25 20 -15 -10 -5 O 50 -40 30 20 -10 0 K

) FIG. 4. Distribution of mean curvaturl (top) and Gaussian
wheren=V®/|V®| is the surface normal vector, can then ¢yryaturek (bottom) in a conventional unit cell, plotted as histo-

be calculated exactly. In Fig. 4 we plot the distributiontbf  grams for the structureB, D, G, andI-WP, for which Weierstrass
andK over the® =0 isosurface as histograms for the struc- representations are known. Radii of curvature are measured in units
turesP, D, G, andI-WP in a conventional unit cell. Numeri- of the lattice constant. Fdf, we also plot as solid lines the distri-
cal inaccuracies arise here only from the calculation of thebutions calculated from the Weierstrass representations. Due to the
position vectors of theb =0 isosurface with the marching existence of Bonnet transformations betwe@nD, and G, they
cube algorithm, and from the triangle are®4;, which en-  have the same shape but different scales in these cases. The param-
ter as weighting factors dfl andK for each plaquette of the eters in the Ginzburg-Landau model are the same as in fpa2d
triangulation. The mean curvature is close to zero everythe K distributions are normalized tgdKp(K)=1. For these
where. For the balanced structufesD, andG it is distrib- “simple” structures, about 30 Fourier modes are sufficient.

uted symmetrically arounti =0. We conclude that thé

=0 isosurfaces of our numerical solutions are very close, butalculate the Euler characteristic gs=(1/27) [dA K. We

not identical to the corresponding TPMS. For the Gaussiarfind an agreement to three relevant digits.

curvature, we also plot the distribution obtained from the The K distributions of the single structures investigated,
Weierstrass representation by numerically evaluating Edfor which no Weierstrass representations are known, are
(A3). This is done by evaluating(x+iy) on a square lat- shown in Fig. 5. These surfaces typically have a more com-
tice inx andy, which covers the fundamental domainsRyr  plicated structure within the unit cell, which is reflected in
D, G, andI-WP as given in the Appendix, and collect the both a larger number of peaks and in a larger extremal value
values in a histogram with weightsA(x+iy). The resulting  of the Gaussian curvaturé,;,,.

distributions ofK are scaled to unit lattice constant by using  The Fourier ansatz yields representations of TPMS which
the Weierstrass lattice constants given in Table |, and norare easy to document and thus straightforward to use in fur-
malized tofdK p(K)=1. ForP, D, and G, these distribu- ther investigations. In Table IV, we give improved nodal
tions p(K) are identicalapart from the scajesince they are approximations that consist of up to six Fourier stars. When
related to each other by a Bonnet transformation. Figure 4he number of Fourier stad is increased, the free-energy
shows that the numerical distributions agree very well withdensityf decreases monotonically, but the quality of the ap-
the exact Weierstrass results. The surface area is not veproximation for the corresponding TPMS does not necessar-
sensitive to the detailed shape of the interfaces in these casély;improve in the same way. Therefore for each structure we
the values for the full solutions and the nodal approximations£hoose an optimal value &f. The quality of the approxima-
differ only by a few percent. Finally, we can test the proce-tion is judged from the distribution oH and K over the
dure used here by employing the Gauss-Bonnet theorem turface, as described above. In Table V, we compare the
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0.012

for the first time, which in fact is the cubic bicontinuous

phase most relevant for amphiphilic systeffis-8].
0.008

C. Hierarchy of structures
0.004

In order to investigate the relative stability of the cubic
structures in the symmetric Ginzburg-Landau model, we
now consider their interfacial properties. For a triply periodic
cubic structure, the free-energy density within the curvature
model (9) reads

0.000 t—=
-300 -200 -100 0

0.018

0.012

1 1 _
fcum=g(aA*)+ ;< 2Kf dA H?+ zmx), (11)

0.006

whereA* = A/a? is the scaled area per unit cell; the surface
areaA, the integration oH? and the Euler characteristjg
once again refer to the conventional unit cell. Both terms in
brackets are scale invariant, i.e., they do not depend on the
lattice constana. If the elastic moduli are calculated for the
points in the phase diagram where we minimize the func-

tional, we findo<0, k>0, and«<0. In particular, forf,
=0.0, go=—3.0, andg,=7.01 we obtaino=—0.84587,
k=2.36197, anck=—0.976 46. This explains why the bi-
FIG. 5. Distribution of Gaussian curvatuke for single struc- qontlnuous phas_es cannot be stable in our model. The nega-
tures, for which no Weierstrass representations are known. The noP—Ve s_urface tension fgv_ors modulated phases, and the bend-
malization is the same as in Fig. 4. These “complicated” structuredNd rigidity favors minimal surfaces; however, only the
have more pronounced modulation within the unit cell and larged@mellar phase is not disfavored by the negative saddle-splay
lattice constants, therefore we use approximately 50-70 Fourighodulus. We now also understand why the cubic structures
modes for the numerical minimization. are stable in the Ginzburg-Landau model with respect to a
variation ofa. There is a balance between the negative sur-

dal imati ¢ Table I the i d nodal face tension term, which favors small valuesagfand the
noda ap_prom;na IO‘T'SbIrOTV a de h, € |mp\;\</)v_e noda ap'positive curvature contributions which favor large The
proximations from Table IV and the exact Weierstrass rep;inimization of Eq.(11) with respect toa yields

resentations by monitoringi,,,.x, the maximum of|[H| on
the isosurface,/(H?), the square of the variance Efon the ( 6y +6ifdA H?
Amin=

1/2

isosurface, an&,;,, the minimal value oK on the isosur-
face. For the exact Weierstrass representation, one has
Hmax= V(H?)=0. For the improved nodal approximations,
the values foH ,,, and (H?) improve by nearly one order . ( 4 )1’2( (|o|A*)3

of magnitude when compared with the nodal approxima- min™ 7| 57 — 2
tions. glso, their distributiopns af are very close to t[r)lz ones 21 2imxt2kJdAH
obtained from the Weierstrass representatithe only ex-

’

|| A*

112
: (12)

e Lo . whereA* is assumed to bépproximately independent of
ception isG, whose nodal approximation is already quite a. We can now understand why the single structures are

good, in particularly for itsK distributipr). Thus by adding  ¢5ng 1o be so close to minimal surfaces; the minimum of
Ju.St a few more modes, we can cons_|derably improve On.th?dA H? (the so-calledWillmore problen{47)) in this case is
widely used nodal approxmatlon.s. Finally, we want to poth —0, which in turn minimizes ... Note that this reason-
out that the values of the amplitudes fB D, and I-WP ing is not rigorous, since the minimization of the free-energy

given in Table IV are of the same magnitude as those caICL\c ional with |atti h
lated from the representations for TPMS obtained in Refgtunctlona with respect to lattice constant and shape are not

. X . ndependent; the latter step determidga?, which is taken
[45]. The different values arise from the different shapes o 0 be constant in the first step.

the order parameter profile through the interface. The We first discuss the single structures without the “com-

Ginzburg-Landau model gives interfaces with a finite width, _,. " i
while the calculation based on TPMS assumes sharp inte licated” phasesC(P), C(D), S and C(Y)—which have

. : ) rger lattice constants, a more pronounced modulation
faces. In fact, the amplltude_s of the Ginzburg-Landau m.Od.evr:ithin the unit cell, and stronger interactions between the
should approach the sharp-interface results as the unblndmsgJ . : 2 _3

o - . rfaces. Then we numerically fifdl A H°~ 10" ° (compare
point is approached. As the interface effectively sharpensF.

; ; ig. 4), so that Eq(12) becomes

the Fourier amplitudes decay more and more slowly as a
function of the wave numbdkK |, with a |K| 2 behavior in 6y | 12 422 | 5[3) 12
the limit of steplike interfaces—in agreement with the well- ~ ,  _[ 27%X o =_(_> lal” r
known |K|~* Porod law for the scattering intensity of sharp M ol A me27) |«
interfaceq 46]. Note that Table IV now provides data f& (13
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TABLE 1IV. Improved nodal approximations for the four most relevant cubic structBrd3, G, and
I-WP. In contrast to the nodal approximations given in Table I, the extremal values of the furib{iohare
close to*+1, since they are calculated from the Ginzburg-Landau m¢del8). Epgr and Opqr, with
p.q,r e{c,s}, are defined in Table II.

Mode Function Amplitude
P 100 Eccc + Occc 0.2260
a1y Eccc + Occc —0.0516
210 Eccc+ Occc —0.0196
(300 Eccc+ Occc —0.0027
D a1y Eccc+ Ecss+ Escs+ Essc+ Occc+ Ocss 0.1407
+ Oscs+ Ossc
31) Eccc+ Ecss— Escs— Essc+ Occc+ Ocss 0.0209
— Oscs— Ossc
313 Eccc — Ecss+ Escs— Essc+ Occc— Ocss —0.0138
+ Oscs— Ossc
119 Eccc+ Ecss+ Escs+ Essc+ Occc+ Ocss —0.0028
+ Oscs+ Ossc
333 Eccc+ Ecss+ Escs+ Essc+ Occc+ Ocss —0.0021
+ Oscs+ Ossc
315H Eccc+ Ecss— Escs— Essc+ Occc+ Ocss 0.0011
— Oscs— Ossc
G 110 Escc+ Ocsc 0.3435
031 Ecsc— Occs —0.0202
222 Esss+ Osss —0.0106
213 Ecsc+ Occs 0.0298
303 Eccs+ Oscc 0.0016
119 Escc+ Ocsc —0.0011
I-WP (000 1 0.0652
110 Eccc 0.5739
200 Eccc -0.1712
211 Eccc -0.1314
220 Eccc 0.0184

whereT = (A*3/27| x|)Y?= (A%/27| x|a®)*? is the topology

A comparison of Eq(13) with our numerical results from

index Its exact and numerical values for the single structureJable Il shows that these formulas systematically predict a
investigated is given in Table | and Table I, respectively. lattice constant and a free-energy density, which are too large
This geometrical quantity is independent both of lattice con-and too low by about 20%, respectively. However, the hier-

stant and choice of unit cell. It can be considered to be archy of structures as predicted by, turns out to be ex-

measure for the porosity of the structytiee larger its value,
the less poroysas well as for the specific surface anghae
larger its value, the more surface area per volunts rel-
evance for amphiphilic systems is well knoy#8-50. In

actly the same as given in Table Ill by the full numerical
results forf: G-D-1-WP-P-F-RD. We therefore conclude
that the gyroid structure is the most stable structure since it
has the smallest porositghe largest topology index This

fact it follows from the isoperimetric relations in three- corresponds to the fact that topologically the gyroid's laby-

dimensional space th#®/|x|a® is the only invariant com-

rinths have the smallest connectivity of all structures

bination of Minkowski functionals for vanishing integral considered-G is the only structure with only three lines
meeting at one verteD and P have four and six, respec-

mean curvaturg¢51].

TABLE V. Comparison of nodal approximations, improved nodal approximations, and exact Weierstrass
representations . is the maximum ofH|, K.,;, the minimum ofk, and(H?)=1/AfdA H? the variance
of H over the surface. The form of nodal and improved nodal approximations is listed in Table Il and Table

IV, respectively.

Nodal Improved nodal Weierstrass
Hmax \/<H > Kmin Hmax \/<H > Kmin Kmin
P 1.282 0.579 —39.48 0.157 0.071 —16.84 —18.51
D 0.384 0.184 —39.48 0.048 0.022 —46.22 —45.24
G 0.208 0.102 —29.60 0.078 0.046 —29.42 -28.08
I-WP 3.224 1.326 —87.34 0.273 0.113 —45.47 —44.37
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tively). With the topology index, we have found a universal surfaces and surfaces that contain both saddle-shaped pieces
geometrical criterion for the relative stability of the various and pieces with positive Gaussian curvature. The latter result
single bicontinuous cubic phases, which also resolves this related to the observation that we essentially solve the
debate about the degeneracy of minimal surfaces in th#illmore problem, which allows for solutions which have
Canham-Helfrich approach for vanishing spontaneous curvaoth regions wittK >0 and regions withK <0—for example,
ture. In order to explain the nondegeneracy observed experibe Clifford torus[47].
mentally for binary lipid-water systems, higher-order terms
[52] and frustration of chain stretchiri§,53] have been con- V. SCATTERING INTENSITIES AND NMR SPECTRA
sidered. In our description both effects are not necessary. In
fact, in a(balanced ternary system, chain stretching does ~ We expect the nine single and four double structures in-
not provide a plausible mechanism for lifting the degeneracyestigated in this paper to include all physically relevant bi-
of the free energies of different TPMS, since the presence gfontinuous cubic phases in ternary systems near their phase-
oil relieves the frustration in the chain conformations. In theinversion temperature. The representations of these phases
part of the phase diagram, where ordered phases are stabf&n now be used to simulate data for those experimental
the free-energy density should containegativesurface ten-  techniques, which mainly depend on the geometry of the
sion contributioncompare Refd56,38) and the topological ~ Structures. This includes small angle scatteli8gS), trans-
term—which due to the Gauss-Bonnet theorem is often neMission electron microscopyTEM), and nuclear magnetic
glected, but in fact prevents the lattice constant from shrinkfésonancéNMR). In particular, our representations can be
ing to zero[54]. The same reasoning might be applied toused to analyze experimental data for mesoporous systems
binary systems by identifying monolayers with bilayers andwhen bicontinuous cubic phases have been used as templates
oil and water with water | and water II, respectively. Al- [13].
though the presence of a negative surface tension is essential Since their typical length scales are in the nanometer
in our argument, we want to emphasize that its magnitudéange, amphiphilic structures can be investigated by x-ray
can still be very small. and neutron small angle scatteriAXS and SAN$ The
There are two main reasons why H@?3) yields the cor-  scattering functior5(k) is obtained from the Fourier trans-
rect hierarchy inf ,;,, but does not reproduce the numerical form ®(k) of the density®(r) of scattering lengths as
values very well. First, by focusing on the interfacial prop- S(k)=|®(k)|?. For SANS, the scattering contrast can be
erties, we have neglected the contributions to the free-energyaried by deuterating the sample. For balanced single struc-
density due to direct interactions between the interfaces, arfdres, it is clear from above that with bulk contrast one mea-
second, the reasoning leading to Efp) is not rigorous. In  sures space grould, with film contrast space group Thus,
order to check whether this is indeed the origin of the nuby varying the contrast in SANS experiments, the space
merical discrepancy, we can make use of the existence of th@roup pair of the investigated structure can be determined
unbinding point in the phase diagram, Fig. 2. At this point,[32,55. With our representations of the cubic structures, it is
both o and the interaction vanish and the structures investistraightforward to calculate the corresponding scattering am-
gated should become exactly minimal surfaces. However, dtlitudes which are needed to analyze the experimental data.
the same point the lattice constant diverges, and both the Itis quite clear from our results why the program to iden-
minimization and the Fourier ansatz become unfeasiblelify a structure from its scattering intensity alone is rather
Therefore, we study the approach to the unbinding poinglifficult. For the single structures, the Fourier amplitudes
along the path shown in Fig. 2. Numerically we find 8y ~ decay so rapidly with increasing wave vector that the scat-
D, andG that the deviation of the values fé(a) from Eq.  tering intensity is dominated by the first peak, while the
(12) relative to our numerical results reduces from 14%higher peaks are hardly detectable. Even for double struc-
(20%) through 11%(16%) to 5 (7%) for the three sets of tures(or film contrast for single structures in SAN$he
parameters considered. This demonstrates the convergergjguation hardly improves, since the scattering intensity also
towards minimal surfaces, and verifies our reasoning abovéloes not feature more than two or three relevant peaks. Note
In contrast to the case of “simple” single structures dis- that even if the correct space group were extracted, one still
cussed so far, the topology inddx does not predict the could not be certain about the type of minimal surfa@end
hierarchy found numerically for the more complicated singleS for example, have the same space gréapd (No. 230
structuresC(P), C(D), S, and C(Y), compare Table Ill. when measured in film contrast.
This may be due to numerical uncertainties in the valug,of It has been pointed out by Anders@B8] that deuterium
since no exact results are available for the surface Afea NMR is another experimental technique that yields charac-
However, both the low Ginzburg-Landau free-energy densityeristic fingerprints of bicontinuous cubic phases. Three con-
and the large topology index of the surface indicate that ditions have to be met in this case: first, the amphiphile has
this structure should be comparable in stability with e to be deuterated and distributed uniformly over the surface;
surface. We believe that double structures are not favored igecond, the sample has to be monocrystalline; and finally, the
our model because their interfaces are not minimal surfacesyurfactant sheets have to be polymerized in order to suppress
and can be better described as surfaces of constant medliifusion within the surface. Since deuterium has a nucleus
curvature. with 1=1 and a small magnetic moment, the quadrupolar
One of the intriguing aspects of the Ginzburg-Landauinteractions dominate and the dipolar ones can be neglected.
model is that it has a very rugged energy landscape witf'he 2H-NMR experiments then essentially measure the dis-
many local minima. In fact, we were able to find many moretribution f(x) of x=(3 co€ p—1)/2, with — 3 <x<1, where
interesting structures, including more complicated minimalp is the angle between the external magnetic field and the
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amphiphilic director, which corresponds to the normal vector
of the interface[57]. In fact, the electrostatic field at the

nucleus does not distinguish betweeand — x and the band
shape ig(x)=f(x)+f(—x), with —1<x<1.

For magnetic fields parallel to th@d00) direction, f(x)
can be calculated exactly fét, D, G, andI-WP from their
Weierstrass representations. The calculatiorP{oD, andG
has been performed by Anders@8]. We introduce spheri-
cal coordinates , ¢) with the polar axis in the direction of

the magnetic field, so that= 6. The Weierstrass representa-

tion uses the complew plane(see the Appendjx which is
parametrized in polar coordinates, ¢). At every pointw,

the normal vector follows by stereographic projection to the
unit sphere. Eq(A2) then gives the one-to-one correspon-

dence

Cri—4ri+1
X—W. (14)

With r'=r(x") and Eq.(A3), the distribution becomes

o0 2
f(x’)zf0 rdrf0 de|R(r,@)|2(1+1%)28(x(r)—x")

© 2
=f rdrf delR(r, )2
0 0

IX -1
X(1+r2)2|—(r")| &(r—r")
ar
D 2 R ) (15)
= r, 1
12r'2—1|Jo ¢ v

whereR is the generating function given fd&®, D, G, and

FIG. 6. H band shapes for the structur@sandI-WP and for
the three high-symmetry directioi$00), (110), and(111). Results
from the Weierstrass representations for {1€0) direction are
drawn as solid lines.

the xy plane (this can be verified by inverting the complex
plane in the unit circlg It is therefore sufficient to evaluate
Eqg. (15 for O<r=<1. Then the band shapegx)=f(x)
+f(—x) for bothP, D, G, andI-WP are found to have peaks
at x=+ 1, which are already present in thiRake patterp
f(x)=2m/6x+3, of isotropic samples. However, addi-
tional peaks appear at=0 for P, D, andG and atx==*1

I-WP in Appendix A. We denote the remaining integral by for I-WP, which correspond to the positions of the flat points

I(r"). P, D, andG yield the same resu[&8],

32K (k)

o e DD

(16)

[(11) for P, D, andG, and (100 for I-WP].

For the same structures, but other directions, and for other
structures, an exact calculation is not possible. However, we
can numerically determine the distributidx) for any di-
rection and any structure in the same way used above to

since they are related by a Bonnet transformation. Heregalculate the distribution dfl andK over the surface. In fact,
K(Kk) is the complete elliptical integral of the first kind, and with the Fourier ansatz, this can be done with much better

a,+a_r® a_+a,r8
61:—41 62:—41

r r

7= V48 . 2(e1—€y)

L= Koo @9

For I-WP, we find from Eq(15)

1+r8
1-r8

327

I'-WF’(r):(rz_—rm)z/sPﬂB : (18)

whereP,(x) is a Legendre function of the first kind. Two
values ofr correspond to any giver in Eq. (14), 0sr=<1
for the southern hemisphere ang<i=<o for the northern

resolution than for a real-space representaftt&]. In Fig. 6

we show our results foP and I-WP and the three high-
symmetry directions. For th€l00) direction, we also show
the exact results following from Eq15) with Eq. (16) and

Eq. (18) for P and I-WP, respectively; the agreement with
the numerical results is excellent. In Fig. 7 our results are
shown forC(P) andF-RD for which no Weierstrass repre-
sentations are known.

VI. SUMMARY

We have presented here a systematic investigation of bi-
continuous cubic phases in ternary amphiphilic systems. In
these structures the amphiphilic monolayers form triply pe-
riodic surfaces with cubic symmetry. We distinguish be-
tween single and double structures that are characterized by

hemisphere. However, for the direction and the structuresne or two monolayers, respectively. In order to further clas-
considered botlk andd A do not change when the northern is sify the structures within each of these groups, we used the
mapped onto the southern hemisphere by a reflection througtrystallographic classification of triply periodic minimal sur-



PRE 59 SYSTEMATIC APPROACH TO BICONTINUOUS CURT . .. 5539

4 4 F-RD, which were not known before. Furthermore, we have

. cP | F-RD determined several quantities which can be measured in
(100) (100) SAS- and?H-NMR experiments.

2 2 In our Ginzburg-Landau model for balanced ternary sys-

tems, modulated phases are favored whose interfaces are
minimal surfaces. However, only the lamellar phase is stable,
since the bicontinuous phases are disfavored byhduative
saddle-splay modulusThus, other energetic contributions
have to be considered to stabilize bicontinuous phases. This
can be long-ranged interactiofiske the van der Waals or
electrostatic interaction®r higher-order terms in the curva-
ture energy. Assuming that these contributions typically have
a similar effect on all bicontinuous phases, we then expect
the gyroid phas& to be most prominent. One of the intrigu-
ing conclusions of our calculations is the large relative sta-
bility of the S surface as indicated by its low free-energy
density in the Ginzburg-Landau model and by its large to-
pology index. Thus, for single cubic phases in balanced ter-
nary amphiphilic systems, th& surface could be a possible
alternative to thes surface, whose double version seems to
be so ubiquitous in lipid-water mixtures.

We want to emphasize that bicontinuous phases can of
course be induced byositive saddle-splay moduludow-
ever, in this case the lattice constant should be on the order

faces by Fischer and Koch. Thus for single structures wef the size of the amphiphilic molecules, and the application

distinguish between balanced and nonbalanced structureQf the curvature energy model becomes questionable. This

the first class is further subdivided into spanning and nonMay indeed be the case in many lipid-water systems, where

spanning structures. Finally we end up with a list of ninethe amphiphile volume fraction in the bicontinuous cubic
single structures of intere®, C(P), D, C(D), S, C(Y), G,  Phases is larger than 50%.
I-WP, F-RD]. For each of these there exists a corresponding
double structure from which we considered those corre- ACKNOWLEDGMENTS
sponding to the simple and physically relevant single struc-
turesP, D, G, andl-WP.

In the framework of a Ginzburg-Landau model for ternary
amphiphilic systems, we generated the nine single and four
double structures using the Fourier ansatz and the theories of APPENDIX: WEIERSTRASS REPRESENTATIONS

space groups and color symmetries. Compared to real-space gygct representations are known for four cubic TPMS
r_ni_nimization,_the Fourier approach has_ the advantage of et‘21,22,60,6]. Consider the composite mapping of the sur-
ficient numerics and easy documentation. PoD, G, and ~ face into the complex plane, which consists of two parts;
I-WP, we gave improved nodal approximations which givefirst each point of the surface is mapped to a point on the
much better approximations to triply periodic minimal sur- ynjt sphere that is defined by the normal vector on the sur-
faces than the widely used nodal approximations by VORace, then the unit sphere is mapped into the complex plane
Schnering and Nesper. We showed that the free-energy degy stereographic projection. Th/eierstrass representation
sity of the single structures can be calculated from an effecggrmulasinvert this mapping and therefore map certain com-
tive surface Hamiltonian with negative surface tension, pOSi'pIicated regions) C C of the complex plane onto a funda-
tive bending rigidity and negative saddle-splay modulusmenta| piece of the TPMS,

Due to the water-oil symmetry of the model, the spontaneous

1.6

1.2

0.8

0.4

FIG. 7. ?H band shapes for the structur@$P) andF-RD and
for the three high-symmetry directior§$00), (110, and(112).

We thank W. Gadz and C. Burger for many helpful dis-
cussions.

curvature vanishes and structures with zero mean curvature 1—72

are favored. A comparison with the exact Weierstrass repre- @ . 2

sentations foP, D, G, andI-WP shows that the single struc- fx,y)= Rejo dzRz)| 1(1+29) |, (A1)
tures can be made to closely approach triply periodic mini- 2z

mal surfaces by appropriately tuning the model parameters.

For vanishing mean curvature term, their relative stability iswhere w=x+iy. The replication of this surface segment

determined by the topology inddx= (A%/27| x|a)2 This  with the symmetries of the space gro@p of the oriented

explains the hierarchyG-D-I1-WP-P. Thus for water-oil surface then gives the whole TPMS. It can be shown that

symmetry the single gyroid is the most stable cubic biconeach meromorphic functioR(w) corresponds to a minimal

tinuous phase since it has the smallest porosity. surface. However, only few meromorphic functions lead to
The representations obtained for both single and doublémbedded TPMS. For thB surface, one haR(w)=(w®

structures can now be used for further physical investiga— 14w*+1) %2 and Q is the common area of the four

tions. We have employed them to calculate the distributiorcircles with radii 2 around the points X1+i)/\2. The

of the Gaussian curvature f@(P), C(D), S C(Y), and  Bonnet transformatioiR(w) — €' ’R(w) with §=7/2 trans-
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forms theD-surface piece into one for tHe surface, andd  in spherical coordinatesf(¢). Gaussian curvature and dif-
=38.015° does the same for tli&surface. The generating ferential area element follow as
function for I-WP was found only recently to b&(w)

=[w(w*+1)]"?? [62,63. HereQ is the common area of —4

the circle with radiusy2 around the point (%i)/y2 with K(w)= R(w)|2(1+ 0]

the unit circle, the lower half-plane and the lower half-plane

rotated anticlockwise byr/4. dA(w)=|R(w)|2(1+|w|?)2dx dy. (A3)

Given a generating functioR(w) for a certain TPMS,

several of its properties can be readily calculated. At a give':\'herefore the poles dR(w) correspond to thésolated flat

point w=x+iy=r exp(¢), the normal are determined by ..y of the surfacéhat is points withk =0). SinceK and
stereographic projection from the complex plane to the uni A depend only on the modulus &, surfaces related by a

sphere, Bonnet transformation have the same distributiorKofnd
(21 the same surface area fqr one fundamentz_‘;\I domain. Table |
cosf= , (A2)  shows data that are obtained from the Weierstrass represen-
r’+1 tations.
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