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Elastic interactions of active cells with soft materials
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Anchorage-dependent cells collect information on the mechanical properties of the environment through
their contractile machineries and use this information to position and orient themselves. Since the probing
process is anisotropic, cellular force patterns during active mechanosensing can be modeled as anisotropic
force contraction dipoles. Their buildup depends on the mechanical properties of the environment, including
elastic rigidity and prestrain. In a finite sized sample, it also depends on sample geometry and boundary
conditions through image strain fields. We discuss the interactions of active cells with an elastic environment
and compare it to the case of physical force dipoles. Despite marked differences, both cases can be described
in the same theoretical framework. We exactly solve the elastic equations for anisotropic force contraction
dipoles in different geometriedull space, half space, and spheend with different boundary conditions.

These results are then used to predict optimal position and orientation of mechanosensing cells in soft material.
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I. INTRODUCTION collagen fibers. Moreover, they are an integral part of the
wound contraction process. Harris and co-workers also no-

Anchorage-dependent cells like fibroblasts in connectiveiced that cells react to mechanical changes in their environ-
tissue show a remarkable degree of mechanical activity. Theent caused by traction of other cells. Since cells are known
first quantitative measurements of cellular traction were perto align along topographic features in their environment
formed with the elastic substrate method in the early 1980¢contact guidancg they suggested that cells react to
by Harris and co-workers, who found that cells exert muchtraction-induced reorganization of collagen fibers. This
larger forces than previously thougfit,2]. During recent mechanism amounts to a mechanical interaction of cells and
years, the elastic substrate method has been improved cohas been addressed theoretically in coupled transport equa-
siderably[3,4]. In particular, a new variant involving micro- tions for fiber and cell degrees of freedg®10).
patterning has been developed, which allows one to resolve During recent years, the sophisticated use of elastic sub-
individual forces exerted at single focal adhesiffi$]. Fo-  strates has shown that cells also react to purely elastic fea-
cal adhesionsare mature adhesion contacts based on trangures in their environment, including rigidity, rigidity gradi-
membrane proteins from the integrin family. Since they con-ents and prestraifi1-13. It is now generally accepted that
nect the extracellular matrix and the actin cytoskeleton, theyhese effects are related to the special properties of focal
can transmit internal forces to the environment and externaidhesion$14]. In particular, it has been shown that applica-
forces to the cell. Using micropatterned elastic substrates, tion of external force leads to growth of focal adhesions and
was found that fibroblasts typically exert forces of 10 nN attherefore to strong signaling activift5—-17. The same ag-
mature focal adhesiori$,6]. Using a bed of flexible micro- gregation has been found for mature focal adhesions under
needles, similar values were found for smooth muscle cellinternally generated forcs—7], suggesting that focal adhe-
[7]. Since adherent cells can have up to hundreds of focadions act as mechanosensors that convert force into biochem-
adhesions, the overall force exerted by the cell can amount tigtry and vice versa. Therefore the mechanical activity of
microNewton. The forces exerted by cells on their environ-cells is not only related to the physiological function of their
ment result from nonequilibrium processes inside the celtell type, but is also a general way to collect information
and are generated by myosin Il molecular motors interactingibout the mechanical properties of the environn@ative
with the actin cytoskeleton. Since typical forces produced bymechanosensingThere is strong evidence that this mecha-
molecular motors are in the picoNewton randd, there nism is involved in many important physiological situations,
must be up to 1Dmyosin Il molecular motors contributing including tissue maintenance, wound healing, angiogenesis,
to overall cell traction. development, and metastagis8—20.

When Harris and co-workers first discovered these large The dynamics of focal adhesions is a subject of much
forces, they concluded that they are required for the physieurrent researcfi21]. Anchorage-dependent cells constantly
ological function of the specific cell type under consider-assemble and disassemble focal adhesions, thereby probing
ation. For example, fibroblasts are believed to maintain thehe mechanical properties of their environment. Initial focal
integrity of connective tissue by mechanically pulling on theadhesiongfocal complexesare local processes based on in-

tegrin clustering. If initial clustering is stabilized by the
properties of the extracellular environment, focal complexes
*Corresponding author. Email address: Ulrich.Schwarz@mpikgcan mature into focal adhesions. In this case, they connect to
golm.mpg.de the actin cytoskeleton and a contractile force pattern builds
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of the physical and cellular cases discussed here.

In order to sense the mechanical properties of their envi-
ronment, cells can make use of the fact that these properties
modulate the build up of their own force patterns. In this
paper, we focus on the role of stress and strain in the extra-
/@ ®\ cellular material for cellular decision making in regard to

positioning and orienting in a soft environment. In order to

calculate how stress and strain are propagated in the environ-

ment, the extracellular material is modeled using isotropic
(a) (b) © linear elasticity. This is certainly true for synthetic elastic

FIG. 1. Schematic representation of physical and cellular forceSUbStr""t,e$usually ma‘?'e from pqudlmethylanxane or poly-
dipoles.(a) Physical case: an intercalated defect deforms the simpi@crylamide. The typical physiological environment for
cubic host lattice, thus acting as an isotropic force expansion dipolédnchorage-dependent cells are hydrogels, whose mechanical
(b) Cellular case: anchorage-dependent cells probe the mechanidafoperties are more difficult to model, in particular due to
properties of the soft environment through their contractile machiniheir viscoelastic and nonlinear behavior. Yet our calculations
ery. Actin stress fiberglines) are contracted by myosin Il molecular Will show that our model has large predictive power also for
motors and are connected to the environment through focal adhéhis case, possibly because elastic deformations of hydrogels
sions(dots. Even if cell morphology is round or stellate, different become encoded in plastic changes that later can be detected
stress fibers probe different directions of space and compete withy active mechanosensing in a similar way as persistent elas-
each other for stabilization of the corresponding focal adhesiongic deformations. Given the assumption of isotropic linear
Therefore the probing process can be modeled as anisotropic foregasticity, we can calculate how stress and strain follows
contraction dipole(c) Cell morphology becomes elongated in re- from the force dipoles by solving the elastic equations for the
sponse to anisotropic external stimuli, during locomotion or spongeometry and boundary conditions of interest.
taneously during times of strong mechanical activity. Then most The most critical part of our modeling is the way in which
stress fibers run in parallel and the whole cell appears as an anisgnysical or cellular force dipoles react to stress and strain in
tropic force contraction dipole. their environment. This subject has been treated extensively

for the case of atomic defects in traditional condensed matter
up, which is actively generated by myosin Il molecular mo-systems23—-25. Here defects are usually modeled as iso-
tors interacting with the actin cytoskeleton. The minimaltropic force expansion dipoles. The equilibrium configura-
configuration of this machinery is a set of two focal adhe-tion follows by minimizing the sum of the elastic energy of
sions connected by one bundle of actin filame(stsess fi- the strained medium and the direct interaction energy be-
ber), which leads to a pinchlike force pattern. In condensedween force dipole and elastic environment. The first term
matter physics, such an object is known asaaisotropic  represents a restoring force and raises the enérgy its
force contraction dipolg22]. The concept of force dipoles sign is always positive while the second term is a driving
has been applied before mainly for the description of poinforce that reduces the total ener@e., its contribution will
defects in traditional condensed matter systems, includinglways be negatiye The equilibrium configuration will cor-
hydrogen in metafe.g., platinum [23], atoms adsorbed onto respond to the minimum of the total energy as a function of
crystal facege.g., argon on gold 24], or intercalation com- position and orientation of the force dipoles, which results in
pounds(e.g., lithium in graphite[25]. The concept of force an effective, so-calle@lastic interactionbetween the force
dipoles has also been used to model active biological pamdipole and other dipoles, sample boundaries or external
ticles in a fluid environment, e.g., ion pumf@6] and rotary  strain fields. One central result of these studies is that the
motors[27] embedded in fluid membranes, or self-propelleddirect interaction between isotropic force dipoles in an iso-
particles like swimming bacterig28]. Recently, we have tropic elastic material vanishg22] and that they interact
suggested to use the concept of force dipoles to model thihrough a boundary-induce@mage interaction that varies
mechanical activity of cell§29]. Cells in an isotropic envi- on the length scale of the sample si¢eading tomacro-
ronment often show isotropig¢hat is round or stellajemor-  scopic modes[23]. For anisotropic force dipoles, the direct
phologies. However, since the focal adhesion dynamics iglastic interaction does not vanish. Recently, we have pre-
local, even in this case there is an anisotropic probing proelicted that the competition between direct and image inter-
cess, that can be modeled by anisotropic force contractioactions should lead to hierarchical structure formation, with
dipoles. As we will argue below, only an anisotropic probingthe direct interaction leading to structure formation on a
process can react to anisotropies in the environment. Thiength scale set by the elastic constants and similar to that of
anisotropy of focal adhesion dynamics becomes apparemfectric quadrupoleg29]. We suggested that such a behavior
when stress fibers start to orient in one preferential directionshould be expected for artificial or inert cells, that is, for
either spontaneously during a period of large mechanical aghysical particles with a static force contraction dipole, but
tivity, or as a response to some external anisotropy, or duringvithout any internal dynamic or regulatory response.
cell locomotion. In this case, cellular dipoles have been mea- In contrast to this physical case, the effective behavior of
sured to be of the order &~ —10 *1J (this corresponds to active cells usually follows from dynamic and tightly regu-
two forces of 200 nN each, separated by a distance ofated nonequilibrium processes inside the cell. More recently,
60 um) [6,30]. In Fig. 1 we show schematic representationswe have shown that despite this severe complication, it is

o
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still possible to describe the active response of mechanosen®3-25. Consider a force distribution localized around the
ing cells in an elastic material in the same framework as therigin. Then the force multipoles are defined[ag]

physical cas¢31]. In detail, motivated mainly by recent ex-

periments with elastic substratglsl —13, we have suggested P. ‘ ,:f s s fi(8)d3s (1)
that effective cellular behavior can be described as simple EERR ER ’

preference for large effective stiffness in the environment

(including both rigidity and tensile prestrairMoreover, we

L) T ; v=h WE - wheref; is the force density and®s denotes a volume inte-
have shown that this principle is equivalent to minimization

. ) . - ral. The first order term is the vector of overall fofreeand
of the energy which the cells have to invest into straining thetghe second order term is the force dipd¥ , a tensor of
environment in order to build up the force dipole used for '

: . ! . rank two. For both the cellular and physical situation we are
probing the mechanical properties of the environment. On Phy

fhterested in, we can assume local forces. For pointlike de-

likely explanation for the observed active behavior of cells 'Sfects, one can, moreover, assume that the overall force van-

Fhat thg buHc_iup of force_at foca}l adhesions is more emCIenEshes, because due to Newton’s third law, the forces exerted
in a stiff environment. Since this approach allows us to us the defect on the elastic medium and by the elastic me-

derive elastc nteraction laws beween cells and thelr elasigluM o1 the defect have (o balance each otfise same
agrgument applies to point defects in a fluid medi{@6—

environment which are in good agreemen_t with experiment 8]). For cells, the situation is more complicated, because
observations for fibroblasts both on elastic substrates and lfﬁey are at thé same time in contact with the elas,tic matrix

hydrogels. In particular, the direct elastic interaction betweel?jlnd an aqueous medium, thus unbalanced forces might ap-

ceIIIs h?S gﬁ;entpri?i'ﬁted E:O bE;’l']m”ar to that of electric dl'pear in the elastic matrix, which are balanced by viscous
poles, 1eading fo strings of ce ) forces in the aqueous medium. However, viscous processes

e e o s o o e ol 1 mecium cecay ver rapdlyon th tme cae of
: Ic1 ! physi cell movement. Therefore unbalanced forces might occur for

d_|poles.and active cell_s. I_n particular, we consujer Interac'short periods of time, e.g., during back retraction of locomot-
tions with external strain fields, sample boundaries or othe

. : Ing cell, but during most of the time, cells can be expected to
physical force dipoles/cells. Although there are marked conbeg in mechanicalgequilibrium as suggested by exgeriments
ceptual differences between the physical and cellular case y

. . ﬁ1easuring force patterns of both stationary and locomoting
:geyrt;g}:t r?hqewrrgstl?l t?r?Ivzttrtitilés?graoaﬁirl)dnaréi\ﬁzlgecglrl?s b;er ells on elastic substrat¢4,6]. Our model for cellular force
P . 9 ) : ; atterns can be interpreted as one stress fiber connecting two
modeled as anisotropic force dipoles, these calculations al

in general more involved than similar calculations for isotro cal adhesions. Obviously this minimal system obeys me-
'9 . . . chanical equilibrium. Then overall force vanishes and the
pic force dipoles. Moreover, in contrast to earlier calcula-

. : ) ) f ipole is the fi I inth Itipol -
tions for the physical case, we are interested not only in thg?g%egépa)e 's the first relevant term in the multipolar expan

effect of free, but also of clamped boundaries, which are
known to induce mechanical activity of ce[l82]. Our paper
is divided into two parts. In the first part, we discuss the

Force dipoles are classified according to their symmetry
properties into isotropic dipole&enters of contraction or
dilation), anisotropic dipoles without moment and aniso-
r1[ropic force dipoles with momernB3]. Force dilatation and

physical and cellular force dipoles. _In the second part, W‘?cgrce contraction dipoles have only positive and only nega-
apply our model to several cases of interest. Here we pPreseflq eigenvalues, respectively. For example, in three dimen-

exact solutions of the elastic equations for anisotropic forceSions three pairs of juxtaposed forces, one for each coordi-
dipoles in full space, half space, and sphere, and apply the ate direction, form an isotropic forc’e dipole, wheg

both to physical and cellular force dipoles. For example, we_ Ps. . Such a force dipole describes a spherical inclusion
show that cells are attracted and repelled by clamped anﬂ a IsJimpIe cubic lattice, see Fig(d [23]. Applied to two
free sample boundaries, respectively. In the case of physic%l ' :

force dipoles, this behavior is inverted. Our predictions for
cells explain many experimental findings reported in the I't'nondiagonal, but symmetric tensor. For example, for a

erature, can be use_d for rational design of_ tissue equiv_alenthuple of juxtaposed forces with a dipole strengtand an
and show that physical concepts can provide new and impor-" o RN ] )

tant insight into cell biology, provided that they are app"edorlentatlon |nAdA|rect|ori , we can write the force dipole ten-
with adequate modifications. sor asP;;=PI;l;. Such dipoles are used below to describe
the probing force patterns of cells, see Fig&)land Xc)
[29]. An anisotropic force dipole without moment oriented in
the z direction readsP;;=P 6,6, and describes, for ex-
A. Force multipoles ample, an atomic defect intercalated in grapf&|. Finally,

In the following, we model a mechanically active cell as aan.anlsotroplc force dipole with an angular moment de-

localized force distribution in an elastic medium. In order toSCribes a set of two opposing forcBsseparated by a dis-
describe its mechanical action, we use the concept of a fordancel oriented arbitrarily with respect ®, which leads to
multipolar expansion, which has been applied before for thé;; # P;; . In this paper, we only consider force dipoles with-
description of point defects in condensed matter systemeut such moments.

imensions, it describes atomic defects adsorbed onto a sub-
strate[24]. An anisotropic force dipole without moment is a

IIl. MODELING
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B. Interaction between physical dipoles and an elastic medium 1

. . . . . V:—f d3rCiip Ui (F)ug(F)
The elastic medium surrounding a particle can mediate an 2 kIR K

elasticinteraction with other particles, sample boundaries or

exter_nal strgiin fi_elds. It _is important to note _tha'g this eff_ect _f d3rf ({7}, F)u; () — § dSEFIu(F), (5

requires adirect interaction of the particle with its elastic

environment. In traditional condensed matter systems, the ] ) )

direct interaction is usually a quantum effdéetg., Born re- where the_ﬂrst term |s_the strain eQerg)g and the second

pulsion for defects intercalated into a crystal lattice or vanferm the direct interactioly==,Vy(r). The surface force

der Waals attraction for defects adsorbed onto a crystal ladensityf® in the third term acts as a Lagrange multiplier that

tice). The interaction of a single particle localizedrawith ~ enforces the boundary conditions at the sample surace

the elastic medium can be described by an interaction poter=or a fixed defect configuration, the displacemai(ts) are

tial V4(F,d), which not only depends on positiony but  determined froméV,/60=0, which defines mechanical

which also is a functional of the displacement fiéi@”’) of ~ equilibrium

the elastic medium. For a fixed particle positibhnwe can R o

expand the interaction potential with respect to the displace- CijaUi,j(N=—Hi{rLr, rinVv, (6)

ment field and the boundary condition at the surface of the elastic ma-

terial
Vd(F,G)N_J\ fi(l?+§)ui(|7+§)d33, (2)
Ciju U (M)n;(M=fF), F onS, (7)

wheref; = — 6Vq/dUi|y o is the force density exerted by the \yharer is the outward directed surface normal of the surface
defect onto the elastic medium in its undeformed referencelementdS. By combining Eq.(6) and Eq.(4), one finds
state. Here and in the following, summation over repeated/ =1 d%rf,u;= — 1V . Therefore the overall energy,
indices is always implied. The expansion can be terminated-v/,+ Vv = V4= —V, and the overall energy can be written
after the linear term because we assume small deformationgs function of the defect configuration only. In this way, the
or, equivalently, small forces. This linearized interaction po-direct interactions of the particles with the medium can be
tential is W|de|y used in the literature on elastic defects inrigorous|y transformed into amdirect interaction between
traditional condensed matter materig28—23. For later use,  defects. This also allows the calculation of the interaction of
we also note that Eq:2) can be rewritten in terms of the 3 single defect with a boundary-induced strain field or an
force multipoles defined in Eq1), if one makes the assump- external strain field applied at the boundary. The ground-
tion that the interaction of the defect with the medium isstate configuration of elastically interacting defects is ob-
short ranged. Then tained by minimizing total energy, .

() 3) C. Interaction between active cells and an elastic medium
i [l

The forces exerted by mechanically active cells on the
. environment are mainly due to actomyosin contractility.

SThus, in contrast to the interaction of physical force dipol
placement field with respect to position; & du/Jdr;). In this us, in contrast to the interaction of physical force dipoles

way, all the details of the direct interaction between mediu

can study elastic effects in different materials within a com-
mon theoretical framework, as long as the two assumption
of small and localized forces are valid.

The displacements of the elastic medium are controlled b

a compet_ition between the (_jirect i_nteraction between de_fe hould be described by E(R). Motivated by recent experi-
and medium and.the elastic strain energy of the.med'u%ents with elastic substratekl—-13, we have argued before
””d.er the constraints of adequate boundary conditions. Tht%at despite these complications, a similar description as for
strain energy i$34] the physical case can be employed for the cellular [@ié
1 We asked which kind of information a cell can extract from
Ve:if d3rCijq uyj (N u(F), (4 its elastic environment using its contractile machinery and
suggested that an appropriate scalar quantity to characterize
the environment is the work the cell has to perform in order
whereu;;(F) is the strain tensor an@;;y the elastic constant to build up a certain level of force against the elastic envi-
tensor of the medium. Consider now the general case Gfpnment. Experimental observations suggest that active cell
an elastic medium subject to loading with defects with anhehavior amounts to a simple preference for large effective
overall volume force density({r*},r)==,f“(r), wherea  stiffness, which corresponds to a minimization of this energy.
numbers the different defects. Then the total energy of thés a simple analog, consider a linear spring. In order to build
system is up a certain forcd, the energyW=Kx?/2=F?/2K has to

equilibrium processes that are tightly regulated by biochemi-
Zal events inside the cell. Hence, the interactions of cells
with an elastic environment are more complicated than for
hysical defects and there is litthe priori reason why they
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be invested into the spring, whereis displacement ané& homogeneous mediunV” relates the effective stiffness en-
=Kx is force at equilibrium. If there is a choice of different countered by a cell to the elastic constants. Since strain
springs with different spring constant&, the smallest scales inversely with elastic constant¥; decreases if the
amount of energyV to build upF has to be invested into the elastic constants increase. For an elastically anisotropic me-
spring with the largest value fdf. In the case of cells, the dium, W” varies with the direction of force application,
different springs correspond to different directions as probedvhich provides an orientational clue for cell orientation. As
by different stress fibers, and on the long run, the cell willwe will see below, tensile prestrain or boundary-induced ten-
orient in that direction that corresponds to the largest valusile image strain also leads to an increased effective stiffness.
of K, possibly because in this direction, the buildup of forceTherefore minimization ofW” corresponds to the experi-
is most efficient. The example of the linear spring can also benentally observed cellular preference for large effective
used to illustrate the main difference to the physical casestiffness.
when the final configuration is determined by the overall
energyV,=Kx?/2—Fx=—F?%/2K=—W. Thus in contrast
to the case of cellular force dipoles for physical dipoles mini-

We now explain our reasoning in more detail for the casehe applied body force$;(r) are balanced by the internal
of cells in a three-dimensional environment described byestoring forceso;; ;(), where ai; (1) = Cjjq Ui (F) is the
continuum elasticity theory. In order to identify a suitable Stress tensor. In the following, we will consider only isotro-
ana'og to the Spring ConstaKt we introduce the Concept of p|C elastic m?terials, that iS, there are two elastic COhStal’ltS,
local effective stiffnessf the elastic environment. We define €.9., the Lamecoefficientsx and A or Young modulusE
this quantity to be the workV required to build up a unit (elastic rigidity) and Poisson rati@ (that describes the rela-
force in the elastic medium. The deformation wofkre-  tive importance of shear and compression madesr our

. : . TS Sy purpose, it is convenient to define a third pair of elastic con-
g;lred to build up an arbitrary force distributidr) is given stants, A=\ and c=2u+ A= u(2+ A). Therefore Pois-

son ratiov=A/2(A+1) andv=1/2, 1/4, and 0 correspond to

i A—o, A=1, andA=0, respectively. In practicd will be of
WZJ dsffu”Ciijm(F)dUij(F), (8 the order of a few kilopascal, which is a typical value for
0 physiological tissuegsimple scaling shows that for a typical

which in the absence of external prestrain is equivalent to thiPrc€ F =10 nN at focal adhesions, a deformation in the mi-
energy stored in the elastic medium given in E4. Then Crometer range corresponds o= 10 kPa). V_alues for_ the
integration by parts gives Poisson ratiov are close to 1/2incompressible medium

both for synthetic elastic substrates and physiological hydro-

1 gels. However, other values fermight be realized in future
W= — Ef d3ru;(F) Cijiq Ui () applications, e.g., for artificial tissues or on compliant sur-
faces of biosensors. For isotropic elasticity, the elastic con-

D. Isotropic elastic medium

1 o stant tensor of the medium rea@s;y; =\ ; 5y + 2 6 5y
) § dSnCiji Ui (N u;(F). (9 and Eq.(6) is conveniently rewritten using a vector notation
as

Applying the mechanical equilibrium conditions of the elas-

tic medium, Eqgs(6) and(7), yields AGH) + (14 ATV - G(F) = — T Finv, (12

1 1
W= d3ru-rf-r+—3§ds NfS(F). (10
ZJ (DTN +3 uOTm. - (10 which is a linear second order differential equation for the

o . N displacement field and has to be solved with the appropriate
In an infinite medium the boundary condition at the surfaceyoyndary conditions.

yields a vanishing surface integral. Hence for a force distri-  gjnce the differential equation, Eq12), is linear, the
bution centered around the volume integral can be turned gyperposition principle applies and the boundary value

into a local expression by using the definitions of EL: problem is formally solved by determining the Green
1 tensor G;;(f,r’), i.e.,, the kernel for a pointlike body
Wx):_f fi(F+$)u;(F+8)ds force f;(F)=f;8(F—r"'). The elastic fields of more compli-
2 cated force distributions can be obtained by convolution
w of the Green tensor with the force density, i.ey(r)
:1 2 ipl LU - (F). (11) =fGij(F,F’)fj(F’)d3r’. The elastic fields resulting from
25=ont 1o mo e force dipoles are obtained by differentiation Gf,, u;(F)

. . =Gi|'k(l?,l7’)Pk| anduij(ﬂ:Gi|'kj(F,F’)Pk| . In general, the
In particular, for a force monopole and a force dipole onedetermination of Green functions in elasticity theory for a
finds W*=3P,u;"(F) and W*=3P;u;(F), respectively, given geometry and boundary condition is rather difficult,
where G and uﬁ are the displacement and strain tensorsince the second term in E¢L2) couples different compo-
fields caused by the respective force multipole in an infinitenents of the displacement field. By taking the Laplacian of
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Eqg. (12), one arrives at the biharmonic equatidnAtd=0  in a physiological context can be very complicated. In our
for the displacements. Thus, harmonic potential theory is freealculations we will restrict ourselves to two fundamental
quently used, for instance, in the stress functjomethod reference cases, namefyge boundarieswhere the normal
[34] and in the Galerkin-vector approaf86], in addition to  tractions vanish at the boundary, i.&(F)=0, andclamped
other methods like expansion of in terms of a suitable boundarieswhere the displacements vanish at the boundary,

complete basis set of orthonormal functid3$). i.e., u;(r)=0. We will refer to the former as thBeumann
problemand to the latter as thBirichlet problem In both
E. External strain cases, the surface integral in E@.5 vanishes. Thus, the

We now consider how a cell establishes a force pattern irc]:hange in effective stifiness induced by a boundary as en-

i b—1p. P (f '
a prestrained homogeneous medium. The work required tgountered by a force dipole readS\®=3P;;u; (7). In this

generate a force pattern in the presence of an externally inﬁ?sl’e %eyllzuﬁgréeacgmegsgei?sszhggg (;?]Ig ggin%;eseggﬁ di(':i];r?
posed strain tensor fieIuiﬁ(F) is given by ' '

Wl . . G. Elastic interactions of cells
szdgff 10 Cjig Ui (M d g (1) e
0 Strain fields produced by other cells may be large enough
. to be detected as external strain by the cell, which gives rise
_f dSrfu”Cijklukl(F)duij(F):W+AWe (13) to an glastlc interaction of cell_s. Even if qells hgve |n|fually
0 isotropic force patterns, they will sense anisotropic strain and
begin to polarize. The change in stiffness encountered by a

force patternf centered around caused by a second force

3 P | . ) patternf’ centered af’ reads
Avve:f d rCijk|uijuk|(r):§oHPil ,,,,, i iUni (). B
(14) AW”'=f dsfi(F+S)ui(F+$)

with

for Eq. (11). In particular, for a single force dipole one gets =

The derivation of Eq(14) proceeds along the same lines as
f f d3sd®s
AWP=P;; uﬁj(F). Because of contractile cell activitly;; has

negative eigenvaluesP&0). Thus, tensile prestrainuﬁ e 11

>0) decreasedV as does a larger rigiditfE and hence is :n:O mz:o Hﬁpil ----- iniGijvil ----- inj1s e dm

interpreted by the cell as an increase in effective stiffness

(strain stiffening. In contrast, compressive prestrain corre- ><(r*,r*’)Pj’1 _____ e (16

sponds to a decrease in effective stiffness and hence is

avoided by the cell. where the indices,, . .. ,i,, denote derivatives of the Green
function with respect to the unprimed coordinates and

F. Boundary-induced image strain i1, ---.m derivatives with respect to the primed coordi-

. . . . For translationally invarian metries, for instan
We now consider the energy involved to deform an elastites: For tra satoaaﬂy ariant geometries, for instance,

medium in the presence of a sample boundary. In order t§' infinite spaceG;; (r,1")=G;;(F—r") and derivatives for

quantify the effect introduced by the boundary, we spjjt Jk be_come_equiva!ent to derivatives .feﬁk' As a mo_del for .
e N 2 R ; elastically interacting cells, we consider how identical, static
=U;; +Uuj; into a contribution arising in an infinite medium

- . LY . . anisotropic contraction dipoles organize in a soft medium in
u;; and a boundary-induced strain fle\uﬁ} (image strain P P g

..._order to sense maximal effective stiffness in their environ-
that depends on sample geometry and boundary condltlorllnent_ The casa=m=1 in Eq.(16) corresponds to the force
U~ ensures that the force balance is satisfied everywhere i&‘ipolar interaction:
the sample volumeV. However, 0” will not satisfy the
boundary condition a6 that requires one to introduc®. In AWPP =P, u: (F)=P,Gi; (F,F')PL. (17)
order to keep the force balance in the sample, the image S 210l ki
displacements have to be homogeneous solutions oflB.  and will be discussed in more detail below.

Otherwise they can be chosen in such a way that the bound-
ary conditions are satisfied. Now=W~*+ AW®, whereW”
is the energy of the infinite medium andW® is the addi-

tional energy due to the boundary effect. For the latter, we T0 summarize the first part of this paper, both physical
have defects and active cells respond to elastic deformations in

their environment and we suggest that the same mathemati-
O R cal formalism can be used to describe both situations. In fact,
AW :§J drfi(Nui(nN + 35 § dSf(NUi(F), (15 4yl formulas derived in this section for interactions of cells
with external strain, sample boundaries and other cells as
which includes both the effects of fixed boundary strain andjuantified byW describe the corresponding interactions of
fixed boundary forces. In principle, the boundary conditionsphysical dipoles as quantified BY;, with W andV, being

H. Summary modeling section
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related to each other simply by a switch in sign. This result iselastic slab with an uniaxial stregs acting along thez
typical for situations described by energies with quadraticaxis. The other faces are traction free, i.e., the stress
scaling, as explained above for the simple case of a lineaensor has only one nonzero component=p. Then the
spring. For different situations of interest we found the sameorresponding strain tensor has only diagonal components
resultAW=Pj;u;; , whereu;; is the strain tensor evaluated at uﬁ =p/E{(-»,0,0,(0,—,0),(0,0,1} independent of position.
the position of the force dipol®;; . Depending on the situ- Contraction of this external strain tensor with the force-
ation of interest, this strain tensor can correspond to exterdipole tensotP;; according to Eq(14) leads to

nally imposed strain, image strain induced by a sample
boundary or strain due to the traction of other force dipoles.
Our formula shows that cells can sense anisotropies in their

environment only through an anisotropic probing process: if _ _ . _ _ _
the probing process were isotropie;;=P5;, we would Wwheregis the orientation of the dipole relative to the direc-
find W=Pu;; and cells could only sense the scalar quantitytion of externally applied strain. Equatiofi8) applies to

u;; describing the local relative change in volume, but notboth a cell on the top surface of the strained slalastic
any tensorial quantity like the direction of external strain. Substratgor inside a strained infinite elastic materiaydro-

It is important to note that the above equations for activegel). For tensile stressp(>0) the cell senses maximal effec-
cells are not interaction potentials in a strict physical senseive stiffness along the direction of stretek=0, thus cells
Rather these equations try to quantify information that cell®rient preferentially in the direction of stretch in a pre-
can gain by pulling on their environment and show howstrained environmeritOn the other hand, due to lateral con-
external perturbations result in changes in effective stiffnesgraction, cells in a precompressed environmemt-Q) will
The experimental observation that active cells prefer larg@rient perpendicularly to the axis of compression, which is a
effective stiffness in their environment leads to the interaccombined effect of compressive strain avoidance in zhe
tion laws for cells given in Eqs(14)—(16). In this way, we d!rectlon_ and_ maX|ma_\I ten§|le strain detection in the perpen-
can predict cellular self-organization in soft media from andicular directions, which will be most pronounced for incom-
extremum principle in elasticity theory, in excellent agree-Pressible medidy~1/2). In contrast, a physical anisotropic

ment with experimental resulf81]. The structure formation contraction dipole, causing a local contraction of the envi-

for physical dipoles follows simply by inverting the sign of ronment along its axis, is repellegitiracted by tensile
pny ' dip ) Ply Dy 9 gn compressivestrain, because the negative interaction energy
the interaction laws derived for active cells. This case migh

. AR ith the medium is r incr he expansion
also apply to artificial or inert cell§29]. For biomimetic 5 th the medium is reducegincreasesidue to the expansio

iaht think of 9y | hi compression of the environment caused by the external
systems, one might think of vesicles or nanocapsules Whicfle|q “physical anisotropic contraction dipoles therefore ori-

contract on adhesion to an elastic environment. For cellulagn i the opposite way as mechanosensing cells with respect
systems, one might think of cells which are deficient in re-ty external homogeneous strain.

gard to the experimentally observed dynamic response of
normal cells to elastic properties of the environment. B. Dipoles on elastic half space
In regard to modeling of active cells, we assume that they

be their elasti > t th h S OroDi Mechanically active cells adhering to an elastic substrate
probe their elastic environment through an anisotropiC Progay jnteract elastically with each other according to @6).

cess in which force is of central importance, and that thiS e thickness of the substrate is much larger than the elas-
process results in a cellular preference for large effectivgic gisplacements on the top surface, it can be modeled as a
stiffness in the environment. Although the phenomena degem;-infinite elastic spadé]. The Green function for a force
scribed here are closely related to cell morphology and th@pplied to the surface of a semi-infinite space is given by the
dynamics of focal adhesions, these aspects are not the subjggéll-known Boussinesq solutidi34]. Since tangential forces
of the present work. In particular, the magnituBleof the  are expected to be much larger than normal for€gscan
cellular force dipole tensor does not enter our predictions, ilbe restricted to the-y plane. Moreover, the normal displace-
contrast to the positions and orientations represented by th@ient component contributes very little to the elastic interac-
dipole tensorP;; . This reflects the fact that our model fo- tion and we may use the two-dimensioriaD) Green func-
cuses on the extracellular properties that can be sensed by thign, i.e., only thex- and y-components of the Boussinesq
cell. Since we avoid modeling cell morphology and dynam-so|ution
ics of focal adhesions, we are able to describe the active
behavior of cells in the same mathematical framework devel- S iR;
oped before to describe physical defects in a deformable me- Gij (f,f")=a) axd; + = (R’ (19
dium. In particular, both cases require the solution of the
corresponding elastic boundary value problem given in EQSyheref=fF—f’ and
(6) and (7). In the following section, we present exact solu-
tions for different cases of interest. _ AA+2) v(1+w) 2+A 1-vw
M amc(1+ ) wE 0 T B
Ill. EXAMPLES OF CELL ORGANIZATION (20)

AWe=pEP[(1+v)cos7-6)— v], (19

A. Interaction with external strain

As an example for cell organization in a prestrained %in Ref.[31], tensile stress has been defined with an opposite sign,
environment, we consider a homogeneously prestrainecksulting in an opposite sign in Eq. 18
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It is convenient to define the anglgs ¢, and «a via the
scalar products cas=I-f, cos¢'=1"-f, and cosx=I-1". m %
Then the change in effective stiffness encountered by one

(a)

cell due to the traction of the other is given by
| (b) (©)

AWPP :alﬁf(ﬂ,ﬁ',a) (21 FIG. 2. Different structures arising from elastic interactions of
anisotropic force dipoles on top of an elastic half spé@ePhysical
force dipoles for Poisson ratie~1/2 locally form aT configura-

with the angular dependence tion. The resulting structure formation is compact and similar to the

(6,0, a)= 3(co§0+ co20’' —5 colp colp’ — %) one of elect_ric qqadrupolc_eéb)_Physic_aI force dip_oles for_Poiss_,on
ratio v~0 align side by side in a railway tracklike configuration.
—(1—a2)c052a—3(a2—3)005a cosf cosfh’. The crossover betweefa) and (b) occurs atr=1/5. (c) Cellular
22) force dipoles align in strings, similar to electric dipoles and inde-

pendent of the value for.

Since the displacements of a force-dipole scalg™?, the . ]
strain field scales~R~3 with distance, which leads to a (A=2/3), both states have degenerate energies. Figure 2
long-ranged elastic interactio{’? ~R~3) typical for di- schematically shows the different structures predicted by our

polar interactions. The complicated angular dependence iﬁnalyss.
Eq. (22) results in a highly anisotropic interaction. Note that
for the planar geometry, there are only two independent C. Dipoles in elastic full space
angles. Nevertheless here we prefer to write the interaction gyrqin propagation in an elastic 3D infinite medium is
symmetric in the primed and unprimed coordinates, sinC&ascribed by the Thomson Green funct{@d]
this is favorable for numerical implementations.
AWPP' has a pronounced minimum for aligned dipoles o R iR
(6=6'=a=0), independent of. A contractile cell causes a Gij(r,r")=a;) ay g+ = (R’ (24)
local compression of the substrate underneath the cell along
the contraction axis and tensile strain at more distant points.
Hence at distant points maximal strain stiffening occursV!t
along the axis of contraction. A second cell will therefore

upregulate its mechanical activity along the same direction. o= 1+v  A+1 a=(3—4y)= 3+A
This scenario constitutes a positive mechanical feedback “! 87E(1—v») 8mc’ 2=( YTIEAC
loop for cell alignment, since in the aligned configuration the (25

mechanical activity of one cell upregulates the activity of the

other and vice versa. At low cell densities, a common patterThe most important result for physical dipoles is the fact that
for the organization of elastically interacting cells will there- since G*=0, the elastic interaction of isotropic dipoles in
fore be the formation of strings of cells, similar to the case of3p vanisheqg22]. Therefore their interaction is completely
electric dipoles{37]. Strings might close into rings so that getermined by boundary-induced interactions, like for hydro-
each cell is fully activated by its neighbors. gen in metal samples of finite sif23].

The 2D case for physical dipoles has been discussed be- For the elastic interaction of two active cells, we find
fore for the isotropic casg24]. Then

Vi=—P3;G;i (T,F )P’ 8= —PP' Gy ii(F.F’ PP
t li IJ,|k(r r ) kj I],Ij(r r ) AWPP :alﬁf ((9,0 ,a) (26)
(2+A)%PP’
=——. (23
47(1+A)CR with the angular functiorf(6,6',«) given by Eq.(22) by

. . . . L . replacing the constant, anda, with aj anda;, respec-
Thus, for identical dipoles the interaction is isotropic a”dtively. Note that in 3D there are three independent orienta-

rep'ulsive. The case _of anisotropic physical dipoles is degjgnz) degrees of freedom. In Fig. 3 we show a density plot
scribed by the negative of E¢21). Then the ground-state of AWPP for dipoles with relative orientations—0 and

configuration strongly depends on the Poisson rata the a=/2 positioned in thex-z plane for two different values
lar d d f E@R2). For i ibl dia, = ; . ) .
angular depencence o ). For incompressible media of the Poisson ratioy=0 andv=1/2. Like on 2D substrates,

v=1/2 (A—x), dipoles arrange with perpendicular orienta- lls i 3D . ¢ ¢ hanical feedback
tions in a localT configuration. This leads to rather compact cells In a S environment encounter a mecnanical reedbac
loop favoring cell alignment. For two parallel dipoles in

structure formation, with a square lattice pattern at interme--"-" ' .

diate and a herringbone pattern at high dipole densities, simg'reCt'on placed along theaxis, we find

lar to the situation with electric quadrupolgz9]. For highly 5 3

compressible mediay—0 (A—0), dipoles prefer to align AWPP = — (A+2)P (}) 27)
side by side in a railway tracklike configuration. Fer1/5 2mcC z)’
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1 1

cannot be continued in 3D without causing frustration. This

(b) leads to the existence of many metastable states.

z 4

D. Dipoles in elastic half space

The elastic isotropic half space with a clamped surface at
r;=0 constitutes a Dirichlet problem with vanishing dis-
placements at the planar boundary(r)=0 for r;=0,
whereas the free surface leads to a Neumann boundary value
problem with vanishing surface tractions;;(")n;=0 for
r;=0 with Ai=(0,0,1) being the surface normal. The bound-
ary value problem of the semi-infinite space can be solved
using the concept of image singularities. Image approaches
are well known from electrostatics; the simplest example is
the charge in front of a metal plate. Here, the field due to a
chargeQ at r’'=(ry,ry,r3) with the boundary atr;=0
is equivalent to the field of the charge and an image charge
-Q atfi,=(ry,r5,—rg) without a boundary. In analogy,
the displacement field due to a unit forceratclose to a

FIG. 3. Density plots of cellular interaction potentiawP?’  Planar surface of a semi-infinite space is equivalent to the
from Eq.(26) for (a,b parallel andc,d) perpendicular orientations. Superimposed fields of a set of force nuclei placed in a ho-
In (a,0, Poisson ratiov=1/2, and in(b,d), »=0. One dipole ori- Mogeneous infinite substrate, i.e.,
ented along the axis is fixed at the origin, while the other is moved . o = M o
in space. Black denotes areas of attraction and white areas of repul- Gij(r )= Gij (F,F)+ Gij (r,r'), (30)
sion. The interaction potential for physical force dipoles simply
differs in sign, thus black and white exchange meaniag) Inde-  whereG;; is the Green function in an infinite medium, Eq.
pendent of the valug for, tvyo cglls prefer alignmenlack .regior) (24), and G:T specifies its image system, which is a sum of
along z ax_ls). The mter_actlorl in the railway track conflgu_ratlon functions derived fronG:: by differentiation(point images,
(alongx axis) changes sign at=1/4, when the black cone vanishes. . 1 . D .

i.e., forces and force dipolgsr integration(line images, i.e.,

(c,d TheT configuration is the ground state for physical dipoles in "~ - . .
3D independent of the value for (white regions along andx & line of force nuclei Despite its rather simple geometry, the

axes. This is different on an elastic half space, in which case theMmage system of the ela§tlc half spagg IS rat_her cqmpllcatgd
ground state changes from tieto the railway track configuration and consists of up to 15 image nuclei, including point nuclei
for v=1/5. located ar;,=(r;,r5,—r3) and line images running normal

to the surface and extending fromr to infinity. The image
which yields the optimal configuration independent of thesystem of the free half space was calculated by Mindlin us-
value forA (or, equivalently,s). Again this behavior is simi- ing a Boussinesg-Galerkin representati@b]. The Green
lar to the ones of the electric dipol¢37]. For two parallel ~function of the clamped half space has been derived by
dipoles inz direction placed along the axis (railway track ~ Phan-Thien applying a Papkovitch-Neuber ansatz, however

'
—_

0 X 1

configuration, we find without revealing the image system in defd@B]. Quite re-
cently, Walpole[39] used methods of general harmonic po-
A—1)P2/1\3 tential theory and presented the image system for two joined
opr ) 1ap
AW =T 8mc  Ix (28) half spaces, which includes the clamped or free half space as

limiting cases of infinite or vanishing shear rigidity in one of

P’ ] ] the joined spaces. Introducing the harmonic function
Thus AW"" changes sign ad varies through 1(v=1/4).

Finally, in theT configuration, where the first dipole is fixed

in zdirection at the origin and the second dipole is positioned E _ 1 31)
in the x-y plane oriented perpendicular to thexis, we find s |Fp=f|’
m
2 3
AWPP = — (A:i(l) , (29  Wheres the distance from the image point, and
C r

. . . . . bl + ,+ y
which is always positive and yields a globally maximal P=In(rgtrs +s)
AWPP'. Therefore it corresponds to a globally miniméa| B )
=—AWPP" and theT configuration is the ground state of V=(rstr3)@=s, (32)

two physical anisotropic contraction dipoles, independent '
of the value forv. The aggregation of physical dipoles in 3D the image Green tens@;

m
j
is more complicated than in 2D, since tleconfiguration reads[39]:

of the isotropic elastic half space
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Jry(1+v)
4mE(1— )

> )

GIM(F,F")=MG (F,Fi) + Sij3~29j38,i33

4(1-v)5 (1 25(1) )
—a1-v)s | =) —284 =
31s | 13 s B
Jri(1-2v)(1+v) (1
- 27E(1-v) ‘513(5)i
Jri?(1+v) [ (1 1
- 4mE(1-v) g)Yij_25i3(g>’iJ
C(1-2v)(1+v)
—m(‘l’,ij—Z(sjz‘l’,ie,)
B(1+v) B(1+v)
T2qE 0Pt TonE (9T

(33

where the coefficientM, J, C, andB depend on the bound-
ary condition(subscripts: fred, clampedc) and the Poisson
ratio v [39]:

Mf=(3-4v), M°=-1,
J=—1, J°=1/(3—4v),

Cf=2(1-»), C°=0,

Bf=2(1-2v), B°=0. (34

For a fixedj, each line in Eq(33) represents theth compo-
nent of the displacement field of one fundamental strain nu
clei of an infinite medium. For a free surface, five image
singularities contribute to a surface tangential or norma
force component. A tangential forge= 1,2 introduces, in the
order of lines of Eq(33), three point imagesforce, double
force with moment and a doubjednd two line imagesline

of doublets and line of double forces with momef85]. A
normal forcej =3 induces four point imagedorce, double
force, doublet, center of compression/dilali@nd a line of
compression/dilation centef85]. In a clamped half space
the line images disappeaB & C=0) and there are only the

PHYSICAL REVIEW B9, 021911 (2004
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FIG. 4. Image fieldsi® for a contraction dipol®;; positioned at
r"=(0,0d) in front of a clamped surface of a semi-infinite space
for Poisson ratiov=1/2. Dipole orientations arda) 6=0, (b)
0=ml4, and(c) #=mn/2 with respect to the surface normal. At the
clamped surface the image displacemaiftdalance the displace-
mentsid” of an infinite space. Inside the sample, they are homoge-
neous solutions of the elastic equations. The interaction of a dipole
with the clamped surface is equivalent to the interaction of the
dipole with a set of image singularities placedfgi=(0,0,—d).

For a free surface, the normal tractions vanish and all image dis-
placements change sign. Fex1/2, there is an additional contribu-
tion to G° derived from line images. However, the interaction of
force dipoles with the boundary does not change qualitatively as
is varied.

the relative magnitude of the image singularities with respect
to each other, but does not change their tjipe, their sign.
Therefore, strain propagation in the half space is expected to
stay qualitatively similar with varyinge. Changing the
boundary condition from free to clamped, the point images
flip their sign, which indicates that clamped and free bound-
ary will induce qualitatively opposite effects. Indeed, for the
special case of an incompressible medium,1/2, clamped
and free half space induce the same boundary fields but with
opposing signs.

| The image displacement® induced by a force dipole

Pi; atr’ are obtained from Eq33) by differentiation with
respect to the primed coordinates. Note that the planar sur-
face atr;=0 breaks the translational invariance along the
axis, which means that differentiation Glﬂ with respect to

r; andr are not equivalent. Since the strength of the dipolar
singularities inG}rjn is proportional tor 3, taking the deriva-
tive with respect tor; will lead to dipole images of
r;-independent strength that are proportional to the dipole

three or four point images for a tangential or normal forcestrengthP. Therefore, the far field image displacements pro-
component, respectively. Interestingly, the strength of thejuced by a force dipole in front of a planar surface are domi-
higher order point singularities is proportional to the distancenated by image dipole terms 1/s? of strength proportional

r; of the source point from the surface. Hence their relativeilo M and J and additional images derived from the line im-
contribution to the displacement field with respect to the im-age terms. In Fig. 4 we plaii® for three different dipole
age force increases with increasing distance of the souraerientations with respect to the surface normal of a clamped

force from the surface. Note that fof—0, i.e., for a force
acting at a free surface of a semi-infinite space, B3)
yields the Boussinesq Green function from EtP) for tan-
gentially applied forces and the solution of Cerruti for nor-
mally applied forces. The dominant terms to the image dis

half space for Poisson ratip=1/2. In this case, all image
displacements point in the opposite direction for a free sur-
face.

According to Eg.(15), the change in effective stiffness
encountered by a force dipol;; positioned a distance;

placement field far away from the surface arise from the=d away from the surface is proportional to the induced

image force and the line images1/s, followed by the di-
pole type defectgdouble force, compression centerr /s?
and finally the double%r§2/53. The Poisson rati@ changes

image strain at the position of the dipole, iLAWP(F)
=3Py[*GIR(F,F")/dr;or{ 1Pyls ¢ . Because of rotational
symmetry with respect to the surface normal, the surface

021911-10



ELASTIC INTERACTIONS OF ACTIVE CELIS . .. PH/SICAL REVIEW E 69, 021911 (2004

induced change in effective stiffness sensed by a dipole de-
pends only on its distancéd to the surface and the angle
cosf=nh-1 between dipole orientation and surface normal.
We find

2

P
AWP(d, ) = ————
256mEd?

(a,+b,cog6+c,codd), (35

with the coefficients

_(1+ v)[5+2v(6v—1)]

f
4 1-v '
0 w8 /4 3n/8 e /2
c (1+v)[15+32v(v—1)] _ _ ) )
a,=— (1—v)(3—4») ) FIG. 5. Angular dependence of image interaction with the
boundaryAW? from Eq.(35), for a cellular force dipole positioned
(1+ »)[ 22+ 4p(2v—9)] a distanced away from the surface of an elastic half space, plotted
bf = , in units of P?2/Ed® and rescaled by 1/256 Curves above and be-
’ 1-v low the 6 axis correspond to free and clamped boundaries, respec-
tively. Solid and dashed lines correspondite1/2 andv=0, re-
(14 w)(34+32°—720) spectively(all other Poisson ratios yield curves lying in between
v (1-v)(3—4v) ! those shown A clamped(free) surface effectively rigidifiegsoft-
eng the medium towards the surface. Hence, irrespective of the
; (14 v)[13(1—2v) + 1217] vglue of v, cbells'cllose toa clampeq surface prefer to orient perpen-
c,= 1> : dicular (AW® minimal for #=0) while cells close to a free surface

prefer parallel orientationAWP° minimal for 6= /2).
5:_W, (36) dipoles are attracted by free surface, and repelled from
(1-v)(3—4v) clamped surfaces. A clamped surface prevents the defect

. . . . . from displacing its environment to lower its potential energy.
b )
being rational function of the Poisson ratio AW” scales '\ nioh results in a repulsive interaction. In contrast a free

gua_ldratlr(]:ally 'nPO’I bec;]au?e the (ljr_naglge strain scale_shllnearly Nsurface favors displacements close to the surface since at a
, In other words, the force dipole Interacts with ItS OWN peq g rface there exist no internal restoring forces acting

images. The interaction of the forc_e d'DOI? with t_he surface 'Shormal to the surface. This results in an attractive interaction
a long-ranged effect and scales like a dipole-dipole iNteracy iha defect with the surface Sind&~ P2, the sign ofP

I 1 I ~ _3 . . . . . .
tion potgr!nal, that is-d . For fr_e_e and clampe_d surfaces, does not matter, i.e., dilation and contraction dipole interact
all coefficients in Eq(36) are positive and negative, respec- ;. 1o came way with the surface

tively, irrespective ofv. Therefore, the preferred cell orien-
tation close to the surface , i.e., the configurations of minimal
AWP, are parallel =/2) and perpendiculat§=0) orienta-
tion for free and clamped boundaries, respectively. In Fig. 5 As an example for a finite sized sample, we consider the
we plot the angular dependencefV® for »=1/2 andv=0. elastic sphere with radilR. For the elastic sphere, no image
Since| AWP|~1/d® increases ifd decreases, the overall system has been constructed that solves the elastic boundary
mechanical activity of a cell increases towards a clampedalue problem and it is not clear whether such an image
surface AW<0), but decreases towards a free surfacesystem exists. Nevertheless, the elastic equations for the elas-
(AW=>0). Thus we predict that cells preferentially locomotetic sphere can be solved analytically by applying an expan-
towards a clamped boundary, but tend to migrate away fronsion in terms of vector spherical harmonics. This approach
a free boundary. In general, free and clamped boundaridsas been used by Hirsekorn and Sief86] to solve the
have always opposite effects. One may think of a clampedNeumann problem of an anisotropic force dipole in an elastic
(free) surface as the interface between the medium and asphere with a free boundary. We will follow this approach
imaginary medium of infinit§vanishing rigidity, which ef-  also in order to solve the Dirichlet problem of a force dipole
fectively rigidifies (softeng the medium towards the bound- in a clamped sphere. Both results are then used to calculate
ary. Thus for clampedfree) boundary conditions, the cell the change in effective stiffness encountered by a force di-
senses maximal stiffness towar@svay) from the boundary. pole in clamped and free spheres, respectively.
For clamped boundaries, mechanical activity of cells is fa- Analytical solutions to differential equations for scalar
vored and cells can amplify this effect by adjusting orienta-fields in spherical coordinates can be obtained by an expan-
tion. For free boundaries, mechanical activity of cells is dis-sion in terms of spherical harmonics, which form a complete
favored and the orientation response is an aversion responsgthonormal basis set on the unit sphere. In a similar way, the
For the interaction of a physical dipole with the surface,general solution to the equilibrium condition E42) for the
we simply have to switch sign in E¢35). Hence, physical vector fieldl(r) can be expressed as a sum over so-called

E. Dipoles in elastic sphere
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vector spherical harmonic8/SH) I =1 1]
Blamﬁ(Q): mcmfaﬁmfcwrﬁYlm*aJr,B(Q)

a(r,m=|2 Fin(DY ] 1m( Q)+ Gim(D Y 1n(Q)
" X2B(r, Q)= —(31+1+IA)C 1 11 AcB()r!

+ ()Y () 37 + I+ 1)1+ M) L (BrE(Q)r!

\ector spherical harmonicé )) form a complete ortho- 1ha _
normal tr))asis set on the unJitL“sAéhgre P AT (N2 - 1)~ 2+ D).
(42)

j YJL'V'(Q)Yj’L’M’(Q)dQ:‘SJJ’5LL’5'\’”\"’' (38) Sums over repeated indices are always implied except for

Clebsch-Gordon coefficient®’? is the force dipole tensor

They are the eigenfunctions of the angular momentum opin the spherical basis set given by H89). The reciprocal

eratorJ of a vector field as Spherical hal’monl‘efﬁn are the basis vectors aret = e;t:(_ 1)ae_a and the metric tensor is

eigenfunctions of thgorbital) angular momenturi of a 9.s=(—1)#5, 4. Spherical coordinates transform via the

scalar field.J is the vector surd=L +S of the orbital mo-  nitary operatot) ;= (e, - ) into cartesian coordinates, i.e.,
mentumL and the intrinsic spis. The eigenvectors db are

the spherical basis vectoes : P, = Uainﬁpﬁ- (43)
1 In order to satisfy force balance inside the sphere volume
— + = ’

€1 \/E(ex_ey), =& (39 the boundary induced field® must be a homogenous solu-

tion to Eq.(12). Thus, inserting Eq(37) into Eq.(12), one
and represent a spid=1 system. Sincd is an example of obtains a set of differential equations for the radial functions
angular momentum addition, one can construct the VSH witH (1), gim(r), andh,,(r) of the boundary induced field
the help of Clebsch-Gordon coefficier@s, _, ", [40] [36]

(I+21)(1+2)

2 Im

2
Yam(@)=2 Chy_ Y- o(Q)e,. (40 O=[3I+2+(I+1)A]< = Fi =
a r

This implies that for a gived there are only three classes of 21—1
VSH, namely] =J,J* 1, which in retrospective justifies our =i+ 1)(1+A)< Oim—————%Im’
ansatz Eq(37). r
In order to solve the boundary value problem, we split (I=1)(1+1)
again into a contribution in an infinite substrai& and a +—9|m), (44)
boundary induced field®. G* is the solution to the inhomo- r2
geneous differential equation E@.2) with a body force den-
sity and thus ensures force balance everywhere inside the
sample. For a force dipolB’ located at”’ the VSH expan-  0=(3I+1+1A)
sion of the displacement field” (") reads forr’ <r [36]:

[(1—1) )

Oim+ Fglm'_r—zglm

T ,  (21+3) [(1+2)
e s Yieam( g b — I+ D)+ A)| f+ fim + =5 fim
TN=5 & (21+1)r2 im (7 )Pe ' r
1w Yioim(©) 49
—2Y s+ 2+ (14 1)A]
Cim (20+1)r? , 2 [(1+1)
O: |m+Fh|m/_r—2h|m. (46)
XCry oo A o) PP
1 Yi (Q) The general solution to Eq$44)—(46) with a G® which is
— ”m—2(2+A) analytic at the sphere origin [86]
C m r
3l+1+1A
| 11 papB "L 1=l B _ I+1
Xcm—aamAl—lm(Q )77 ]Pa ) (41) fIm(r) alm(1+A)(2|+3)r !

wheren'=r'/r<1 and

/ Im(H)=amz I+ r' " (r?=R?) +byzr' 7,
ABQ)= I+]'C|+1 11 v Q)
"’ Arammep e N (1) = Cp, (a7)
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whereR is the radius of the sphere and the remaining con-
stantsa,, bj,, andc,,, must be determined by the bound-

ary conditions at the sphere surface.
The Dirichlet problem of a clamped sphere yields

@°(R,0Q)=—0"(R,Q), (48)
i.e., the expansion coefficients,, etc. of the boundary in-
duced field can be found by matching® and G° at the
sphere surface:

=~ S LG Xi(p' QP2
cR® (21+1)(31+1+IA)R! y

C

|m_CR3
><C|—l 11 A?/_ﬁzm(QI)P,(si

m—yym

-1
P o1
o)

i3|+2+(|+1)A(p’)|_2

21+1 R

AV Q)P
(49

m—yym

1
c _
C|m—ﬁ(2+A)

wherep’=r'/R is the ratio of the distance’ of P’ to the
sphere center and the sphere radtud-or a sphere with a

FIG. 6. Deformation of an elastic spherB€1, A=2, c=1)
with a free surface by a contraction dipole oriented in ztdirec-
tion. In (a) the dipole is placed at the origin=(0,0,0). In(b) the
dipole is placed off-center @t=(R/4,0,0). The pictures show a cut
through thex-z plane, but it has rotational symmetry only (ia).

We furthermore see that for a dipole close to the surface the
convergence properties of the series expansion are rather
poor and moré terms need to be considered to approximate
the displacement field near the surface. Again clamped and
free boundary induce opposing boundary fields as indicated
by the opposite signs of the expansion coefficients: a
clamped surface decreaseo zero at the boundary whereas
a free boundary enhances the displacements at the boundary.
In Fig. 6 we plot two examples for a deformed elastic sphere
with free boundaries under the action of a contraction dipole.
In order to calculate the change in effective stiffness

free surface normal stress has to vanish and the correspongkensed by a contraction dipolefdtin an elastic sphere, we

ing Neumann boundary condition reads

b X RS
gii|l — =—0ji| — .
ij i\ r

r=R r=R

r (50

To determinea/ ,, etc. one first has to calculate the stress
tensoroi"‘; and then balance the normal stress with the corre-

sponding boundary induced stras% atr=R. The final re-
sult for the expansion coefficients in a free spherg38

1 2(1+A)(21+3)(1+2)

Im= 5 1 O\p'd
al =— (o )P
" cR® 21+ 1)M(DR' im(p )
b =—i2(|2+|+1)+(2|2+1)A - p_' -
n= TR (-D@+n  omorvmR

XA (Q)P12,

.1 (1+2)(2+A)

p_l)ll

Im™— .R3 -1 R
XCh L A (P2, (51)
with
M(D)=2(12+1+1)+(212+ 4l +3)A. (52)

need to contract the gradient-displacement tensor of the
boundary induced field with the dipole tensor. This is most
conveniently done using the spherical representation, i.e.,

AWP(F) =3P guP , (T 1", ") = 3P y(e)- V) (e, T).
(53)

Starting from the ansatz E437) for G, u,?(F,f’) can be
derived by applying the gradient formula for spherical har-
monics[40]

[+1/d |
VO(r)Yn(Q)=— Vo771 ___)(D(r)YIH—lm(Q)
|
A

dr r
and furthermore the symmetry relationships of Clebsch-
Gordon coefficient$40]

o . [2js+1 ;. .
Jid2 13 —(_q\iatmy l2 I3 1
lemzms (=) 2j1+1C*m2m3m1’

d I+1
ot T)q’(f)Yu—lm(Q),

(54

For both boundary conditions the image displacements scale

~ 1/R? with the sphere radius and the VSH expansiorni'df
converges as-12(pp’)'. Thus, highet moments dominate if

the dipole is close to the surfa¢e’ —1). These are localized

1d2 i3 —(_qy\ittio—iscis 2 s
lemzms (=1) C_ml_mz_m3'

(59

near the surface and decay rapidly towards the sphere cent&¥e finally find
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20 reducing system size. For the interaction of a physical dipole
AWb d with the surface embedded in an elastic sphere, we once
more obtain the opposite results. Dipoles are attratted
10 = pelled and orient towardgsaway from a free(clamped sur-
face.
So far we have considered the interaction of a force dipole
0 with the boundary. One may extend our model of cell-cell
0 e T interactions to cells embedded in finite geometries and study
- - how their boundaries alter the interaction between cells. In
| _ an elastic sphere containing many cells, we can separate the
K contributions to the effective stiffness into a contribution
B \ . from the boundary induced field, i.e., a cell-surface interac-
10 A R PR W tion as discussed above, and a contribution from the elastic
0 0.25 05 075 1 fields of other cells embedded in the sphere, i.e., a cell-cell
R interaction term. This contribution is modified with respect

to the interaction term in infinite medium, E7), by a

FIG. 7. Image interactiod W® from Eq.(57) between the sur-  houndary mediated interaction term. The indirect interaction
face and a cellular force dipole embedded in an elastic sphere Qbrm is given by contracting the dipole tensor of the first
distancer/R to the sphere surface and rescaled by 15/8. Curveshe most important result here is that the image term varies
above and below the axis correspond to free and clamped bound-on the macroscopic scaR For physical dipoles, elastic in-
ary conditions, respectively. Solid and dashed lines correspond g, ions in finite sized geometries have been studied exten-
orientationsg=m/2 and =0 with respect to the surface normal. As sively, in particular forisotropic dipoles, which do not inter-
for the half space, optimal cell orientation yields-0 (clamped act in’ infinite medium and where th’e interaction between
and 6=l (free), respectively. dipoles is mediated solely via the bound@®g]. By setting
P, A= dqp OUr results specialize to the interaction of isotro-

uP AP, P = R'%X* ‘ﬂﬁ( ,Q) —(21+3)r'a*¢8(q)  pic dipoles in an elastic sphere
Im

r
R

b b rry— b rry— lprl ’
x( 'EZmCInTlalalntszCHlmCImﬂalalr;l)_ AWP(F, )= =VO(F, )= 2 Mir't" 'Y (Q)Yim(Q)
(58)

(56)

Note that them sums overb,,, andc, run in the intervals Wit

[—1—=2]+2]and][ —1—1]+1], respectively. The boundary

induced change in stiffness sensed by a force dipole in an . PP 2(2143)(1+1)(1+2)
elastic sphere is then found by inserting the appropriate ex- M=
pansion coefficients,,,, etc. given in Eqs(50) and(51) and

contractingu,, # with P* g=P'“ 5. We may rewriteA WP to

indicate the important scaling laws of the interaction of the pp’ 21+3

dipole with the sphere surface by M{=— R 1D (AT (60

, 59
CcR® 2(12+1+1)+A(212+41+3) 9

P2 [r

b_
AW ERS f”( R’e)’ 7 for free and clamped boundaries, respectively. These results
can be shown to be identical with the ones for isotropic di-
wherer is the distance to the sphere center ahds the poles previously reported in R€23]. Note that the interac-
dipole orientation with respect to the surface normal. Thetion of physical isotropic defects is always attractivepul-
function f, contains the sum over all angular momenta andsive) for isotropic dipoles in a freéclamped sphere. Due to
does not vary qualitatively as (or, equivalently,A) is var-  the macroscopic interaction range of isotropic physical di-
ied. With regard to cell orientation, we find the same resultgoles the indirect interactions lead to structure formation on
as for the elastic half space: cells will orient parallgdrpen- the macroscopic scale(lmacroscopic modes e.g., in
diculan to a free(clamped surface, respectively. As shown hydrogen-metal alloy$23]. For anisotropic dipoles the im-
in Fig. 7, we also find a similar result for the effect of dis- age interaction introduces corrections to the direct interaction
tance to the surface; for frdelamped boundary conditions, term, which vary on the macroscopic scale. In Fig. 8 we plot
a small(large) distance to the sphere center is more favor-the interaction of two anisotropic dipoles in infinite medium
able, since the surface favadisfavorg mechanical activity. and the modified interactions in clamped and free spheres,
The new aspect here is the role of the sphere radil&ince respectively. For example, the image correction in a free
|AW| increases wherR decreases, one can effectively ri- sphere for two paralle dipoles (one placed at the sphere
gidify (soften a material with a clampedfree) surface by centej along thex axis reads
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2 2

[ (0)

1
N

AW in reduced units
[

FIG. 8. Cellular dipole-dipole interactiomsW=AW”+ AWP in an elastic sphereA=2) in units of PP’/cR® for clamped(dashed gray
and free(full gray) boundary conditions. & dipole is fixed at'=(R/4,0,0). Ax dipole (a,b,9, y dipole (d,e,f), andz dipole (g,h,)) is moved
along the coordinate axes. The boundary condition introduces corrections to the interaction in infinite éalrting that vary on the
macroscopic scale. The boundary term dominates close to the surface and in some cases introduces new maxima or minima in the interaction
landscape.

X 2
PP’ (112+352/\+370A2+135A3)—12(7+4A)(2+5A+3A3)(§) }

AWP(x)= . 61
) 4(2+3A)(14+19A) mcR3 (61

For A—~ (v=1/2), this becomes

AWP(x) = L[%— 48( —) 2} (62
 76muR '

"

For a clamped sphere, we find

2
PP’ —(686+280A+24A2)+45(1+A)(7+4A)(%) }

AWP(x) = : 63
) 1207+ 2A)mcR? (63
|
which for v=1/2 becomes distancey the direct interaction dominates. For macroscopic
cell separations, the boundary term introduces significant
PP’ x\2 contributions that dominate over the direct term close to the
Aw'g(x):—[—2+ 15(— } (64)  surface. For some cases, the boundary can induce new
20muR® R maxima or minima in the dipole-dipole interaction land-

scape. Note that for a full treatment, the dipole-surface inter-
Again we find that clamped and free surface result in oppoactions have to be included. In conclusion, in contrast to
site effects. On the microscopic scéie., for small cell-cell  isotropic dipoles, structure formation of anisotropic dipoles
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is dominated by effects on cellular and elastic scales, whiclmtroduced the concept of force dipoles into the physics of
result from direct interactions. Since they compete withcells[29]. From a technical point of view, this allowed us to
boundary induced effects on a macroscopic scale, in generaiake contact to a large body of results on physical force

we expect hierarchical structures. dipoles in deformable media. Our theory reproduces known
results for physical force dipoles, in particular, the elastic
F. Summary example section image interaction of isotropic force dipoles in an free elastic

phere[23]. The corresponding calculation for anisotropic
ipoles has been done before by Hirsekorn and Sig6k
ut only for the free surface. Here we extended this calcula-
ion to the clamped case. Moreover, in order to predict single
ell effects, we also calculated the interaction between dipole
. ) . ) . and surface for both types of boundary condition. In contrast
amplg, PhyS'C"’?' anisotropic force d'PO'eS on top of th'tho the elastic sphere for the elastic half space an image sys-
elastic films or in infinite elastic material locally prefer the tem for the effect of force monopoles is knofi6]. Here we

configuration(for Poisson ratia’=1/2), while cellular aniso- used the solution given by Walpo[89] and adapted it for
tropic force dipoles align in stringgndependent of the value the case of force dipoles.

for »). The predicted structure formation for physical force  aq renorted earlier, our predictions for cell organization in

dipoles and active cells is similar to the ones of electric duagoft media are in excellent agreement with experimental ob-

drupoles and dipoles, respectively. We also found that in geNse .y ationg31]. Our theory not only contributes to a better
eral, free and clamped boundaries will have opposite effects,, jerstanding of physiological processes involving mechani-
For example, cellular anisotropic force dipoles are repelled., activity of cells(including tissue maintenance, wound
and attracted by free and clamped boundaries, respectivelpﬁ:_.‘,:l”ng angiogenesis, development, and meta$.tei,ai$he

In the vicinity of these boundaries, they will align in parallel ¢ e it also might be used to predict cell behavior in artifi-
and perpe_ndicular, respectively. In gengral, all the int_eractior&ial tissues, close to implants and on compliant biosensors.
laws derived here show the universal scalifd/ — yioreover, the orientation response of regulated cells as de-
~(PY/EI)f,(6;), wherefis a nontrivial function of POiSSON - eripeq here might be used to distinguish between healthy
ratio » and the different angles;, which has to be calcu- 4nq giseased conditions. It is important to note that the main
lated for each situation of interest. Except for the case 0f,ccess of our model results from the fact that we focus on
external strain, the cellular force pattern interacts with itselfthe role of stress and strain in the environment, which allows
(case of boundarigsor with another cellular force pattern ;s 1o use the concepts of linear elasticity theory and to make
(cas.e of elasng |_ntera(_:t|on of celjstherefpreW~P - The " minimal assumptions about cellular regulation. In the future,
scaling W~1/" is typically for force dipoles. Here the oy theory might be complemented by models for cell mor-
lengthl can either be distande.qg., betwe_en _ceII and bou_nd- phology and the dynamics of focal adhesions. Moreover, un-
ary or between two cellsor sample size(in the elastic | now we did not address in detail the issue of structure
spher¢. Finally, W~1/E. Although W decreases with in-  formation within large communities of cells, although this
creasing Young modulug, that is, elastic effects become might be of much importance for development, when large

smaller, at the same time mechanical activity of cells usuall;@roupS of mechanical active cells are known to move in con-
increases. For this reason, we expect that there exists a rangg,;.

of optimal values fork for which the elastic effects in cell

In the second part of this paper, we applied the gener
formalism from the first part to different situations of inter- b
est. In general, we found that physical and cellular forc
dipoles interact in opposite ways with each other, extern
strain field or sample boundaries, becauWige —W. For ex-

adhesion described here sh_ould_be most pronoufpmisi— ACKNOWLEDGMENTS
bly aroundE=kPa, the physiological order of magnitude for
cell and tissue stiffness I.B.B. thanks Thomas Pfeifer for helpful discussions.
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