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Protein-protein interactions comprise both transport and reaction steps. During the transport step, anisotropy
of proteins and their complexes is important both for hydrodynamic diffusion and accessibility of the binding
site. Using a Brownian dynamics approach and extensive computer simulations, we quantify the effect of
anisotropy on the encounter rate of ellipsoidal particles covered with spherical encounter patches. We show that
the encounter rate k depends on the aspect ratios � mainly through steric effects, while anisotropic diffusion has
only a little effect. Calculating analytically the crossover times from anisotropic to isotropic diffusion in three
dimensions, we find that they are much smaller than typical protein encounter times, in agreement with our
numerical results.
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Protein-protein interactions are at the heart of most mo-
lecular processes in biological systems and are intensively
investigated both by experiment and theory �1�. Conceptu-
ally, protein-protein binding consists of transport and reac-
tion steps. Brownian dynamics simulations have been intro-
duced to study transport toward association of spherical
model particles �2,3�. Isotropy of the diffusion process can
be used to develop computer time efficient methods for
propagating reactive particles in time and space �4�. How-
ever, assuming spherical particles does not address two im-
portant aspects of protein encounter. First, proteins and their
complexes are typically not spherical, but their shape and
diffusional behavior can be highly anisotropic. Second, their
binding sites are strongly localized and thus binding is not
isotropic neither. Both of these issues have been addressed in
Brownian dynamics simulations, e.g., by using approximate
schemes for the mobility tensor of arbitrarily shaped proteins
�5� and by incorporating all-atom force fields �6�. However,
the full role of anisotropy for protein encounter has not been
systematically studied before in a generic model for protein-
protein encounter. Although not suited to answer specific
biological questions, simple models without atomic details
also have the advantage that they can be easily upscaled to
large system sizes.

In order to study theoretically the effect of shape aniso-
tropy on protein-protein encounter, we systematically vary
the aspect ratio �=R� /R� of ellipsoids with a rotational sym-
metry, compare Fig. 1�a�. This is one of the few systems for
which closed analytic expressions of the translational �t� and
rotational �r� friction coefficients ��/�

t/r �R� ,R�� are known
�7,8�. Recently, the diffusional properties of such anisotropic
particles have been investigated in great detail for two di-
mensions �9,10�. Here we study three dimensions, both nu-
merically and analytically. In addition, we not only consider
anisotropy in diffusion but also anisotropy in binding by
placing spherical encounter patches at various positions on
the ellipsoids. This approach allows us to assess in quantita-
tive detail the relative role of hydrodynamic and steric aniso-
tropy for protein-protein encounter.

To quantify the effect of anisotropy on molecular encoun-
ter, we performed Brownian dynamics simulations with a

pair of ellipsoids in a periodic boundary box of edge length
L, which represents the concentration of our system. The
appropriate Langevin equation is evolved in discrete time
steps �t via the Euler algorithm �11�:

X�t + �t� = X�t� + g��t� + O��t2� . �1�

All vectors are six-dimensional generalized coordinates in-
cluding the orientational information. The noise term g��t�
is determined by the Einstein relation �g�=0,
�g��t� ·g†��t��=2kBTaM�t, where Ta is ambient temperature
and M=�−1 is the 6�6 mobility matrix. In the following, all
lengths are given in units of UL=R� and times are scaled by
UT=�r�R� ,R�� / �kBTa�. In the simulations we chose UL
=2 nm and thus UT�50 ns at viscosity of water �
=1 mPa s. As time step we use �t=2�10−5. We do not
consider direct forces between the model particles in this
study; in particular, we neglect electrostatic and two-body
hydrodynamic interactions. Otherwise we implement hard-
core repulsion. An analytic overlap criterion for a pair of
ellipsoids is difficult to derive, but suitable algorithms based
on the solution of the characteristic equation of the two el-
lipsoids have been derived for hard body fluids �12�.

Each of the model particles carries a spherical reactive
patch of radius r on its surface whose location is described
by the angle �, compare Fig. 1�a�. An overlap of these reac-
tive patches is considered as an encounter, compare Fig.
1�b�. We average over all initial conditions by starting 104

simulations at random initial positions and orientations for

FIG. 1. �Color online� �a� Geometry of an ellipsoidal model
particle with a reactive patch on its surface at some angle � with
respect to the symmetry axis e�. �b� Illustration of an encounter
configuration.
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each parameter set. The main quantity of interest is the en-
counter rate k, defined as the inverse first passage time to
encounter. As it is common in Brownian dynamics of pro-
teins, the encounter rate thus emerges from the definition of
an absorbing boundary for the random walk �1�. For the two
model particles in the simulation box we consider three
scenarios of patch locations: �1=�2=0 �G1�; �1=0, �2
=� /2 �G2�; �1=�2=� /2 �G3�.

In a coordinate system spanned by the principal axes, the
friction matrix of an ellipsoid is diagonal. Taking the corre-
sponding values for a sphere of radius R� as a reference
scale, the diffusion coefficients D�/�

t/r only depend on �. The
relative translational mobility of an ellipsoid compared to a
sphere is then given as 	���= (D�

t���+2D�
t ���) /3. According

to the Smoluchowski equation, the encounter rate is expected
to depend linearly on the mobility and the concentration of
the reacting particles. Therefore we normalize the encounter
rates obtained by our simulations by 	��� and by the volume
of our simulation box �here L3=1003�. The corresponding
data is shown in Figs. 2�a�–2�c�. The rates are given in 1 /UT.
In each case, we exclude aspect ratios for which the reaction
patches span the whole ellipsoid. Our simulation results
show that encounter rates can vary up to two orders of mag-
nitude depending on aspect ratio and patch position. While
for patches located at the tips �G1�, encounter efficiency in-
creases with aspect ratio, it decreases for patches located at
the sides �G3�. For the mixed case �G2�, changes in aspect
ratio have only a weak effect.

When interpreting these results, an important systematic
difference between different aspect ratios � has to be noted:
as the geometry of the ellipsoid is changing with �, the ex-
posed volume fraction fV of the reactive patches not covered
by the steric particle is changing. We estimated the steric
effect on the encounter rate by studying the fraction of non-

overlapping ellipsoid configurations with touching reactive
patches fno. A scheme of the setup is shown in Fig. 1�b�.
Particularly, the centers of the patches are placed at the dis-
tance 2r and both ellipsoids are randomly rotated around the
center of their respective patch. The results for fno from
drawing 105 of such random encounter configurations are
shown in Figs. 2�d�–2�f� for the parameters corresponding to
Figs. 2�a�–2�c�. The plots show that the qualitative features
of the encounter rates are well reproduced by the steric con-
straints. This leads to the conclusion that the main reason for
the changes in the encounter rate in the preceding study is
not the altered hydrodynamic behavior of the ellipsoids but
the steric hindering of encounters due to the changing geom-
etry.

To obtain another measure for the effect of hydrodynam-
ics, we compared our simulations with explicit anisotropic
diffusion to simulations, where we do not account for the
anisotropy in the diffusion matrix. Particularly, we use an
isotropic diffusion matrix with the average translational and
rotational diffusion coefficients Davg

t = �D�
t +2D�

t � /3, which is
equal to the isotropic limit, and Davg

r = �D�
r+2D�

r � /3, respec-
tively. We perform the same simulations as in Fig. 2 with this
D. Moreover, we compared to simulations at higher effective
concentration �L=20�. Figure 3�a� shows the relative devia-
tion of the encounter rates �iso=kisotropic /kanisotropic−1. Inter-
estingly, in case G3 there is no significant deviation from the
original results. However, considering G1 the �artificial� iso-
tropic encounter rate is larger for prolates ��
1�. This effect
can also be observed in the mixed case G2, decreased by
roughly a factor 2. This is reasonable as here only one of the
two encountering ellipsoids has its patch at �=0. These find-
ings show that the anisotropic diffusion of elongated ellip-
soids leads to a decrease in the encounter rates. However, the
deviation up to �=5 is moderate ��iso�0.7�, so we conclude

FIG. 2. �Color online� ��a�–�c�� Encounter rates for different patch sizes and locations. ��d�–�f�� Statistical estimate of the fraction of
configuration space available for encounter. The patches are located according to G1 in �a� and �d�, G2 in �b� and �e�, and G3 in �c� and �f�.
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that the impact of anisotropic diffusion on molecular encoun-
ter is rather weak.

Anisotropic diffusion in isotropic environments is only
relevant on small time and length scales. In the following,
we derive the effective translational diffusion properties for a
finite time window �t considering an arbitrary body with
three different translational �Di� and rotational �Di

�� diffusion
coefficients along the principal axis �in the body-fixed coor-
dinate system�. As the rotations due to rotational diffusion
are supposed to be completely independent, the crossover
only affects the effective translational diffusion which is de-
scribed by a 3�3 diffusion matrix: Dij

t =�ijDi, where �ij is
the Kronecker delta. A rotation determined by a vector of
angles �= ��1 ,�2 ,�3�† around the three principal axes can be
described by the rotation matrix S=e−�·J, with J
= �J1 ,J2 ,J3�†. � ·J denotes a formal scalar product and Jk are
matrices defined by Jij

k =
ikj, where 
 is the Levi-Civita sym-
bol. We proceed considering only small rotations occurring
at small times so that we can expand the rotation in orders of
�:

Sij = �ij
2 − �2

2
+ 
ikj�k

6 − �2

6
+

�i� j

2
+ O��4� , �2�

where �2=	i=1
3 �i

2. This rotation is applied to Dt, and we get
Dt=SDtST, where we will only consider terms up to second
order in � in the following. Furthermore we average over all
possible orientations, weighted by the probability density
p��i , t�
exp�−�i

2 / �4Di
�t�� due to rotational diffusion. As we

consider only small � and t�1, it will now also be sufficient
to expand p��i , t� up to second order in t. Hence, the Gauss-
ian probability distribution can be replaced by a uniform
distribution regarding correct integral boundaries. The non-
diagonal entries are odd in �i and thus vanish. The average of
the diagonal entries is the central quantity for the calculation
of the mean-square displacement:

�Dt
ii�t =

1

w1w2w3
�

−w1/2

w1/2

d�1�
−w2/2

w2/2

d�2�
−w3/2

w3/2

d�3D
t
ii, �3�

where wi=�24Di
�t is the width of the uniform distribution

interval. Only terms of even orders of �i will contribute. That
is, the integral in Eq. �3� will only lead to zeroth and second
moments of the angular distribution. By the average action
of the rotational diffusion, Di transforms into an effective
translational diffusion constant �Dt

ii�t over time t in the fixed
laboratory coordinate space. Considering a vector D
= �D1 ,D2 ,D3�, the evolution of the effective, orientation
averaged vector of diffusion coefficients �D��t�
= ��Dt

11�t , �Dt
22�t , �Dt

33�t� can be expressed in a matrix form,
not taking into account nonlinear terms in t:

�D��t� = D · R�t� + O�t2� , �4�

Rij�t� = 2t

ijk
Dk
� + �ij�1 + 2t�Di

� − D̄��� , �5�

where D̄�=	k=1
3 Dk

�. The principal axes of effective motion
are constant since the coupling terms between the transla-
tional degrees of freedom vanish when averaging over all
possible orientations. Because rotational diffusion is inde-
pendent of time and orientation, R keeps its form for all
times. We can also apply R��t� to some diffusion vector
�D��t�. Thus, it is possible to evaluate the effective change in
the diffusion coefficients for large times t in small steps �t
= t /N with only making errors of O�N�t2�:

�D��N�t� = D · �R��t��N + O�N�t2� . �6�

In the limit of large N the error in Eq. �6� vanishes:
O�Nt2 /N2�=O�t2 /N�→0. This basically means that we cal-
culate �D��t� with infinite accuracy. We can now evaluate the
overall, orientation averaged mean-square displacement by
integrating �D��t� with respect to t:

FIG. 3. �Color online� �a� Relative deviation of the encounter rates from the original data �compare Fig. 2� assuming isotropic motion at
all times. Reactive patches have a radius of r=0.5. The dotted line shows the scaling from Fig. 3�c� and the dashed line marks �iso=0. Data
from simulations with L=100 is shown with red filled symbols, and data with L=20 is shown with green hollow symbols. �b� Example of
the time window dependency of the effective principal translational diffusion coefficients for the following choice of parameters �generic
units�: D1=3, D2=2, D3=1, D1

�=0, D2
�=0.005, and D3

�=0.5. The data points have been obtained by simulation �the error bars depict the
standard deviation obtained from 105 individual runs�, the solid lines represent the theoretic prediction and the dashed lines indicate the two
relevant time scales for the crossover as given by Eqs. �7� and �8�. �c� Crossover times and rotational friction coefficients for ellipsoids for
a wide range of aspect ratios as given by Eqs. �7� and �8�.
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�x�t�2� = �2ft + �ad2 − bd3�g− + cd1g+

2ft + �ad1 − bd2�g− + cd2g+

2ft + �ad3 − bd1�g− + cd3g+
� , �7�

with a=D3
�−D1

�, b=D1
�−D2

�, c=�a2+b2+ab, di=3�Di− f�, f
=	i=1

3 Di /3, and

g� =
1 − e−2�D̄�−c�t

6�D̄� − c�c
�

1 − e−2�D̄�+c�t

6�D̄� + c�c
. �8�

This result can be used to obtain effective translational dif-
fusion coefficients via Deff��t�= �x2��t�� /2t, compare Fig.
3�b�. Thus, the crossover from anisotropic to isotropic diffu-
sion in three dimensions occurs on two time scales T1/2

c

=1 / �2D��c� which increasingly deviate with increasing an-
isotropy.

The corresponding crossover times for ellipsoids are T1
c

=1 / �4D�
r���+2D�

r ���� and T2
c =1 / �6D�

r ����. The rotational
friction coefficients and their implication for T1/2

c are shown
in Fig. 3�c�. The asymptotic behavior indicated in the plot
can be derived from the full solution of the friction coeffi-
cients. For ��0 both D�

r and D�
r approach a constant value.

Therefore, regarding rotational diffusion no significant dif-
ferences are expected for oblates, which corresponds well to
the findings from Fig. 3�a�. In contrast, rotational diffusion
particularly around e�, which governs T2

c, is strongly de-
creased for large �. Therefore, the relevant range of aniso-
tropic diffusion grows and the indication of the scaling in

Fig. 3�a� shows that this again corresponds well to the simu-
lation data. Assuming this scaling to govern the impact of
hydrodynamic anisotropy, one might argue that the effect
will be strongest for ��1 and small L, i.e., large concentra-
tions. However, if we require L
2�, so that the particles fit
into the simulation box, encounter times are larger than T2

c

for all values of �. Thus our analytical calculation confirms
that anisotropic diffusion does not have a strong effect on
protein-protein encounter rates. This finding also validates
computational schemes which assume isotropic diffusion for
efficient description of the diffusion steps �4�.

An interesting question that has not been addressed yet is
whether the effect of hydrodynamic anisotropy is stronger
regarding re-encounter. Dynamic dissociation and reassocia-
tion can be easily realized in our model for example by in-
troducing a finite average lifetime for each bond. Recently it
has been shown with a similar Brownian dynamics approach
that productive protein-protein encounter is preceded by
many nonproductive contacts �11�. In a similar vein, disso-
ciation after binding is likely to be followed by additional
encounters. Because prolates have a lower overall rotational
diffusion coefficient, one expects that they are more likely to
return to an encounter. It might well be that for re-encounter,
the aspect ratio plays a more important role for accessibility
of the binding site than found here for protein diffusion to
the first encounter. Similar considerations might be valid for
protein dynamics in the context of protein clusters, where
diffusion might be restricted by the presence of other com-
ponents.
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