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Cells sense the geometry and stiffness of their adhesive environment by active contractility. For strong adhesion
to flat substrates, two-dimensional contractile network models can be used to understand how force is distributed
throughout the cell. Here we compare the shape and force distribution for different variants of such network
models. In contrast to Hookean networks, cable networks reflect the asymmetric response of biopolymers to
tension versus compression. For passive networks, contractility is modeled by a reduced resting length of the
mechanical links. In actively contracting networks, a constant force couple is introduced into each link in order
to model contraction by molecular motors. If combined with fixed adhesion sites, all network models lead to
invaginated cell shapes, but only actively contracting cable networks lead to the circular arc morphology typical
for strongly adhering cells. In this case, shape and force distribution are determined by local rather than global
determinants and thus are suited to endow the cell with a robust sense of its environment. We also discuss
nonlinear and adaptive linker mechanics as well as the relation to tissue shape.
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I. INTRODUCTION

During the last decade, it has been increasingly realized that
adherent cells actively explore and respond to the geometry
and stiffness of their adhesive environment, with dramatic
consequences for fundamental cellular processes such as
survival, proliferation, differentiation, and migration [1,2].
Using chemical inhibitors for both myosin motors and actin
filaments, it has been shown that active contractility of the actin
cytoskeleton is an indispensable requirement for the observed
cellular response to the physical properties of the environment.
Although more and more details are revealed regarding the
molecular mechanisms underlying these sensing processes
[3–5], what is still missing is a systems-level understanding of
how cells integrate the way force is generated, distributed, and
sensed over the whole cell. Therefore theoretical models are
required which describe how force is propagated through the
actin cytoskeleton as a function of environmental geometry
and stiffness. Because the actin cytoskeleton is an integral
part of the sensing capabilities of cells, one expects that its
mechanical properties have evolved to support these important
cellular functions.

Although it is a standard procedure in experiments to block
force generation and propagation with chemical inhibitors
or by RNA interference, it is very difficult to measure how
force is distributed inside cells and between cells and their
environment. Different experimental approaches have been
developed to meet this challenge. Traction force microscopy
allows the measurement of the forces transmitted to the
substrate [6–10]. Recently this technique has been extended
in such a way that also cell-cell forces can be estimated from
cell-matrix forces [11,12]. However, it is important to note that
many forces balance inside the cell and are not transmitted
to the substrate, so the forces existing inside cells might be
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much higher than appreciated from traction force microscopy
[13]. Laser cutting allows the estimation of forces from the
mechanical relaxation after cutting load-carrying elements
such as microtubules in the mitotic spindle [14,15] or stress
fibers in the actin cytoskeleton [16–19]. Laser ablation can be
used for subcellular analysis of cortical tension [20]. However,
these experiments only probe local relaxation events of
prominent cytoskeletal structures and therefore might miss the
global effects of more distributed and less visible structures.
Micromanipulation can be used to distort the mechanical
balance of the cell globally [21–24], but the resulting changes
in force distribution can only be estimated indirectly from
its effects, e.g., growth of focal adhesions. To achieve a more
systematic understanding, these experimental approaches have
to be complemented by theoretical approaches.

Because the mechanical properties of cells, extracellular
matrix, and tissue are strongly determined by filamentous
networks of proteins such as actin, tubulin, lamin, spectrin,
or collagen, mechanical networks are widely used theoretical
models for cell and tissue mechanics [25,26]. One of the best
studied cases is the red blood cell, whose shape and mechanics
have been studied with network approaches in very large
detail [27–35]. Modern computer power permits the simulation
of each of the roughly 105 spectrin links separately and
with molecular detail—for example, using the appropriately
parametrized force-extension curve of a semiflexible polymer
[33]. In the limit of small extensions, these models usually
reduce to Hookean networks.

For adherent cells, the main structural determinant is
the actin cytoskeleton, whose mechanics differs in several
important aspects from the one of the spectrin network of
red blood cells. In general, the molecular structure of the actin
network is much less defined. Its most prominent feature in
adhesion is strong contractility due to activity of myosin II
motors. This observation implies that the mechanical links
between the nodes of the network cannot be simple actin
filaments, but have to be bundles of actin filaments cross-linked
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and tensed by myosin II motors. The simplest model for
prestress in a mechanical network is the introduction of a finite
resting length which is smaller than the typical extension of
each link. Indeed, one- and two-dimensional spring networks
with prestress are widely used for modeling cell migration
[36–39].

Network models are conceptually very appealing due to
their multiscale nature: By changing the microscopic rules
for the mechanics of the links, one can explore how the
macroscopic behavior of the whole network changes. In
particular, important biological effects such as viscoelasticity
of the links or coupling to diffusion fields can be incorporated
[33–39]. Spring networks offer the additional advantage that
homogenization techniques can be used to arrive at continuum
models. Recently, the interplay between force generation and
the geometrical and adhesive properties of the environment
have been addressed using the powerful framework of finite
element models (FEM) [40,41], which can be considered as
the continuum limit of appropriate network models. Most
FEM models use constitutive equations which correspond to
Hookean networks.

Although conceptually very appealing, modeling cell me-
chanics with Hookean networks does not reflect the fact
that the actin cytoskeleton does not provide much resistance
to compression. This is especially true for two-dimensional
networks for cell adhesion and migration, because in this
case the network might contract laterally, while the cytosol
flows into the third dimension. In this situation, the network
links do not behave as springs, but rather as cables, which
are characterized by an asymmetric force-extension relation.
There are several microscopic reasons for this effective
behavior: Not only do thin actin bundles easily buckle under
load; they also tend to telescope in due to filament sliding
and even to depolymerize once tensile stress is relieved.
Cable networks have been successfully used to model the
prestress-dependent mechanical response of adherent cells to
local mechanical perturbations [42]. The same model has also
been used to describe how mechanical stress is propagated
from the nuclear region through the cytoskeleton toward focal
adhesions, where changes in load lead to changes in adhesion
size [22].

One striking feature of strongly adhering cells is the fact that
retracted contours often take the shape of circular arcs [43–46].
Although for cable networks the resulting shapes are strongly
invaginated, it has been shown that the circular invaginations
observed for cells pinned at discrete sites of adhesions can only
be explained if an additional contractile force is introduced for
each mechanical link [46]. This additional force in an actively
contracting cable network does not vanish at the resting length
and represents the fact that contractility arises mainly from
myosin II motors, which in steady state operate close to a
nonvanishing stall force.

In this paper, we systematically compare the different
network models introduced before for adherent cells (spring
models, cable networks, and actively contracting networks) in
regard to the predicted shapes and force distributions. Our main
conclusion is that actively contracting cable networks share
many crucial features with adherent cells. Due to their linear
nature, actively contracting spring networks are equivalent to
passive spring networks with a reduced resting length. Passive

networks (both from springs and cables) have a well-defined
reference state even in the absence of adhesion constraints
and in general give similar results regarding shape and force
distribution, which is determined mainly by global inputs such
as the spatial distribution of the adhesion points. In contrast,
actively contracting cable networks do not have a well-defined
reference state because without adhesion constraints, they
contract onto a point. In this case, we find that shape and force
distributions are determined mainly by the local distribution of
adhesion sites. The internal force distribution is constant in the
bulk and strongly localizes to the contour, where forces jump
by orders of magnitude. This motivates a detailed study of two
contour models, which allow us to derive analytical predictions
which we then compare with the results from the computer
simulations. We also discuss how actively contracting cable
networks can be extended to model nonlinear or adaptive linker
mechanics, and comment on the relation of our network models
to tissue mechanics.

II. NETWORK MODELS

A. Link mechanics

Tissue cells adhering to discrete adhesion points on a flat
substrate usually become very flat and therefore effectively
two dimensional. Only the nucleus, which rises in the middle,
makes them fully three dimensional; see the sketches in
Figs. 1(a) and 1(b). However, here we focus on lateral
contraction and contour effects and thus the nucleus is expected
to play a minor role. In the following we therefore restrict
ourselves to two dimensions and model the cytoskeletal
network as a two-dimensional mesh of mechanical links joined
at N discrete nodes. Nodes are labeled with indices, e.g., i and
j . Microscopically links and nodes may represent filament
bundles and local accumulation of cross-linkers, respectively,
but in a more general sense, these mechanical elements are
simple representatives of an unknown network architecture
which we model in a statistical sense. The network is subject
to internal forces originating from molecular motor activity,
�Factive, and the mechanical resistance of filaments to strain,
�Fmech; compare Fig. 1(c).

We introduce three fundamentally different kinds of me-
chanical models for the network links. The simplest case is
a Hookean spring network (HSN) composed of links with
resting length L0, which represent linear springs with spring
constant EA/L0, where E is the Young’s modulus of the link
and A its cross-section. The restoring force acting on a node i

due to elastic strain in the link ij then reads

�Fij,mech = EAuij �eij , (1)

where �eij = ( �Rj − �Ri)/Lij is the dimensionless unit vector
along the link ij . Here, �Ri and �Rj specify the node positions,
Lij is the length of the link, and uij = (Lij − L0)/L0 is the
strain in the link. The linear force-extension curve of a single
link in a HSN is shown in Fig. 1(d) as a dashed line with short
dashes.

The mechanical properties of the cytoskeleton are attributed
mainly to the actin part. Actin is a semiflexible filament prone
to buckling under compression and thus behaves like a cable,
which can be stretched but not compressed. The Hookean
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FIG. 1. (Color online) Sketch of the system. (a) Side view of
an adherent tissue cell. (b) Top view. The cell is assumed to be
adherent at four discrete dots. Its contour shows an invaginated shape
resulting from a balance between bulk forces directed toward the
cell center and boundary forces directed along the cell periphery. (c)
The actin cytoskeleton is tensed by myosin II minifilaments, which
actively contract the network with forces �Factive. If the network links
are strained, restoring forces �Fmech appear. (d) Force-extension curve
Fij (Lij ) of a link ij in a simple Hookean network, a passive cable
network, and an active cable network (in order of increasing dash
lengths). (k = spring constant, T = motor stall force per length, L0 =
initial link length, Lc = critical length).

assumption of a symmetric elastic response is therefore not
valid. The mechanical properties of actin networks on a coarse-
grained scale are more accurately described by assuming a
finite resistance of filaments to tension, but no resistance
to compression. The mechanical restoring forces originating
from a link connecting two nodes i and j in the passive cable
network (PCN) are therefore given by

�Fij,mech = EAuij �eij , L0 < Lij , (2)

�Fij,mech = 0, Lij � L0. (3)

We show the asymmetric force-extension relation of the PCN
links in Fig. 1(d) as a dashed line with long dashes.

Let us assume that molecular motors are homogeneously
distributed in the network. Because they are arranged in a
parallel fashion, their individual forces add up. We therefore
assume that a link contracts with a force T L0 proportional
to its initial length, where T is force density per length. For
computational simplicity, here we assume that this force does
not change as the filament contracts, although in practice, it
might well be that the line density rather than the total number
of active motors is constant. For a link ij we therefore have

�Fij,active = T L0�eij , (4)

where T > 0 is the tensile force per initial length applied by
the motors. The finite force at zero length is unphysical and

we avoid it by introducing an additional rule such that force
is diminished if two neighboring nodes come closer to each
other than some small distance Lc � L0:

�Fij,active = T L0
Lij

Lc

�eij , Lij < Lc. (5)

Combining PCN and active contraction, we obtain what we
call the active cable network (ACN), compare the solid line in
Fig. 1(d),

�Fij = (
T L0 + EAuij

) �eij , L0 < Lij , (6)

�Fij = T L0�eij , Lc � Lij � L0, (7)

�Fij = T L0
Lij

Lc

�eij , Lij < Lc. (8)

Neither the detailed choice of Lc nor the assumption of a linear
force reduction below Lc are crucial for our results.

Active contraction can also be combined with the HSN.
However, this simply shifts the straight dashed line in Fig. 1(d);
i.e., this reduces the resting length L0 to

L′
0 = L0

(
1 − T L0

EA

)
(9)

as long as T L0 � EA. Therefore active contraction does
not change the basic definition of the HSN and therefore in
the following the actively contracting HSN is not discussed
further.

B. Mechanical equilibrium

For nodes within the network, the total force exerted on a
node i is the sum of all forces applied by neighboring nodes
j :

�Fi =
∑

j

�Fij . (10)

In mechanical equilibrium, the force on each nonadherent
node has to vanish, �Fi = 0. The existence of adhesion sites
is modeled by fixing the positions of the adherent nodes. Thus
the adhesion site geometry will enter through the boundary
conditions.

To reduce the number of parameters, we scale all lengths
with respect to L0, e.g., � = L/L0. All forces are scaled as
f = F/EA. We define the ratio of active to elastic forces as

τ = T L0

EA
. (11)

For an ACN we therefore may rewrite the forces acting on a
node in the nondimensionalized form as

�fij = (uij + τ )�eij , 1 < �ij , (12)

�fij = τ �eij , �c � �ij � 1, (13)

�fij = τ
�ij

�c

�eij , �ij < �c. (14)

In the computer simulations we use �c = 10−3.
Mechanical equilibrium requires the forces on each nonad-

herent node to vanish:∑
j

�fij = 0, ∀ nonadherent nodes i, (15)
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with the summation j over all neighbors. For a two-
dimensional network of N ′ nonadherent nodes, the system of
equations (15) consists of 2N ′ coupled nonlinear equations.
If the left-hand side of system (15) consisted of arbitrary
functions of the �ri , the method of choice to solve it would be the
Newton-Raphson method [47]. However, since the left-hand
side of system (15) is a force which has a potential, it is also
a 2N ′-dimensional gradient vector. Therefore we solve the
minimization problem for the potential with the conjugated
gradient method [48]. We stop iterating as soon as the force on
every node (except the periphery nodes) is smaller by at least
two orders of magnitude than the smallest link force.

C. Parametrization

Due to its dynamic and multiscale organization and the
known limitations of microscopy, a detailed model of the actin
cytoskeleton is currently out of bounds. In the face of these
uncertainties, our model is not meant to represent the details
of the organization of the actin cytoskeleton. Nevertheless, for
practical purposes it is helpful to parametrize our model using
some benchmark values for the actin cytoskeleton.

The elastic modulus of an actin filament, which has cross-
section area Afil = 18.8 nm2, was experimentally found to be
Efil = 2.8 GPa [49], while typical values for stress fibers are
a radius around 100 nm (corresponding to Afib = 31 416 nm2)
and an effective modulus of Efib = 1.45 MPa [50]. Hence, the
Young’s modulus of stress fibers is three orders of magnitude
smaller than the one of single actin filaments. This suggests
that cross-linkers such as α-actinin and myosin II are the
main contributors to elasticity and not the actin filaments
themselves. However, the values for the one-dimensional
modulus, EfilAfil = 52.6 nN and EfibAfib = 45.6 nN, are
effectively very similar, so the one-dimensional modulus is
expected to be of the order of 50 nN.

The mesh size of the cytoskeleton is expected to be
typically around L0 = 100 nm. This is an intermediate value
introduced in Ref. [42] based on experimental observations
of the actin cytoskeleton in adherent endothelial [51] and
fibroblast cells [52]. For the active force, we estimate that
around 1.000 myosin II motors are active in one effective
link. With a stall force of 2 pN per motor head [53], we have
T = 2 × 10−2 nN/nm for the motor force per length. Using
Eq. (11) and EA = 50 nN, we estimate τ = 0.04 for the active
tension in the network.

III. RESULTS

A. Equilibrium shapes

In the following we analyze how the different types of
networks act under tension for given adhesion constraints.
We first discuss passive networks. In order to understand the
role of geometry, as tension-free reference states we use both a
square and a triangle as shown in Fig. 2. If the corners are fixed
and the network is set under tension by reducing rest length,
invaginated shapes appear as shown in Fig. 3 for Hookean
spring networks (HSN) and passive cable networks (PCN).
Contraction is quantified by τH = (� − �0)/�. In Fig. 3, the
results for HSN and PCN are the same for the square shape,
Figs. 3(a) and 3(c), because these two kinds of networks behave

(a) d = 10 (b ) d = 10

FIG. 2. Tension-free reference states. (a) Square network with
link length � = 1 and side length d = 10�. (b) Triangular network
with the same � and d .

identically as long as all links are tensed. However, the results
are different for the triangle shape, Figs. 3(b) and 3(d). In this
case, the PCN gives a significantly flatter contour due to the
missing response to compression in the thin extensions leading
to the adhesion points. The most prominent examples for com-
pressed links in Figs. 3(b) and 3(d) are indicated by arrows.

In order to understand our numerical results in more detail,
we first note that the HSN with triangular network topology
has a well-defined continuum limit, in which it corresponds
to a two-dimensional sheet with isotropic linear elasticity
[26,27]. The two corresponding elastic constant are a Young’s
modulus of 2k/

√
3 and a Poisson’s ratio of 1/3, where

k = EA/L0 is the spring constant of the links. The HSN with
simple cubic topology does not have such a rigorous limit,

(a) (b)

(c) (d)

0 0.1 0.2 0.3

f

FIG. 3. (Color online) Tensed Hookean spring (HSN) and passive
cable networks (PCN) with τH = 0.2. The color bar gives the dimen-
sionless force f . (a) Contraction of a HSN in the square reference
state. (b) Equilibrium shape of a HSN in triangular reference state.
(c) PCN in square geometry. (d) PCN in triangular geometry. For the
triangular reference shape, HSN (b) and PCN (d) differ in the amount
of compression in the thin extensions (marked by arrows).
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(a)

(b )

FIG. 4. (Color online) (a) Boundary line of the HSN or PCN for
the square shape for network tension τH = 0.2 (lower set) and τH =
0.6 (upper set). The straight line shows the unconstrained reference
shape, while the three curved lines represent different initial link
lengths, namely � = 1, 0.1, 0.02 (from bottom to top within one
set). (b) Boundary line of the active cable network (ACN) for the
square shape for τ = 10−3 (lower set) and τ = 10−2 (upper set). In
this case, no unconstrained reference shape exists. The three lines
again represent the initial link lengths � = 1, 0.1, 0.02 (from top to
bottom).

but in our context it works in a similar way as the triangular
lattice. Therefore similar results as obtained here for the HSN
are also obtained with continuum elasticity theory applied
to two-dimensional cell shapes [40]. Without any adhesion
constraint, the HSN contracts isotropically to a finite size; i.e.,
the network is uniformly scaled and has a new side length
d ′ = 10�0. This shape we call the unconstrained reference
shape and it is key to understand the results for HSN. The same
shape as shown in Fig. 3(a) results if the network contracts
away from its initial state under adhesion constraints or if
the network starts from its unconstrained reference state and
its corners are dragged to the desired adhesion points. This
explains the main feature of the force distribution shown by
the color coding in Fig. 3(a), namely the strong localization of
stresses and strains to the regions around the adhesion points.
With the amount of tension used here, the network can attain its
unconstrained reference state away from the adhesion points
and therefore its contour is essentially flat in the middle parts.

In Fig. 4(a) we directly compare the calculated network
shapes for the HSN for the square geometry to the uncon-
strained reference shape. In addition, we demonstrate the role
of the link length �. As explained above, in this case the
PCN gives the same results. For the small value of tension,
τH = 0.2 (lower set), the contracting network can reach the
unconstrained reference shape over a large region where it
is therefore essentially flat. The smaller �, the faster this
contour is reached due to an increased force density along
the contour. For the large value of tension, τH = 0.6 (upper
set), the unconstrained reference shape is not reached by the

(a) (b)

(c ) (d)

(e) (f)

f

0.001 0.01 0.1 1

FIG. 5. (Color online) Contraction of an active cable network
(ACN) with square shape. (a) and (b) Contraction of the network
leads to arc formation. (c) With increasing tension tubes form near
the adhesion points. Note the bundling of filaments at the edge. (d) For
very large τ , the network collapses onto the center tree. (e) The same
situation as in (a) but with � = 0.5. The contour is equal to that in
(a) and the boundary forces are the same. (f) Square Voronoi network
with 212 nodes and 316 links. Note the regular contour and the strong
stress localization in the periphery. Tension values are [from (a) to
(f)] τ = 10−3, 10−2, 10−1, 1, 10−3, 10−3.

contracted network and it stays nonflat along its whole contour
even for rather small values of �.

Next we turn to actively contracting networks. Figures 5(a)–
5(d) show the equilibrium shapes of an active cable network
(ACN) with reference state from Fig. 2(a) and increasing
tension τ . As tension increases, the shape becomes more
and more invaginated, until it collapses onto the zero-area
network in Fig. 5(d). This network basically consists of a
centrally contracted region which is connected to the adhesion
points by long extensions. We therefore call this network
the center tree (CT). Note that this network still retains
aspects of the two-dimensional network, because an effectively
one-dimensional structure would collapse onto the so-called
Steiner tree of minimal length, which for a square shape is not
fourfold symmetric [54].

In contrast to the passive networks, where tension ceases as
the unconstrained reference state is reached, for the ACN no
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such unconstrained reference shape exists and without adhe-
sion constraints the shape would collapse onto a single point.
This explains why flat parts are not observed in the contours
of the networks shown in Figs. 5(a)–5(d). This is also demon-
strated in Fig. 4(b), where we show contour shapes for τ =
10−3 (lower set) and τ = 10−2 (upper set). Like for the HSN in
Fig. 4(a), increasing lattice constant � increases the force den-
sity along the contour and therefore leads to stronger invagi-
nation. However, in marked contrast to the HSN, no flat parts
appear in the contour as no unconstrained reference state exists.

Figures 5(a)–5(d) also show that the formation of inward
directed arcs now corresponds to a much more inhomogeneous
density distribution of filaments: In the bulk of the network the
distance between nodes and thus the filament density remains
unchanged, while at the edges filaments start to bundle strongly
along the edge. The color code in Fig. 5 shows that stress is
strongly localized at the periphery. In the interior, the only
forces acting are the motor forces τ which balance each other
at every node. At the periphery, the force jumps up from τ

to much higher values τ + EA��j/�; compare Fig. 5(a). The
forces are largest close to the adhesion points and decrease
toward the center of the boundary. For large tension (τ >

10−2), tubes are formed near the adhesion points and the stress
distribution along the contour becomes more inhomogeneous.

Figure 5(e) shows the effect of changed discretization for
the same tension value as Fig. 5(a) for the complete network.
Figure 5(f) demonstrates that for ACNs, shape and force
values do not depend significantly on network topology. As an
instructive example here we use a disordered network topology
obtained by a Voronoi construction. Even the presence of
relatively large elements in the discretization does not change
the invaginated shape feature of the contracted network. We
conclude from Figs. 5(e) and 5(f) that ACNs are surprisingly
robust in regard to the details of the network topology. In
general, similar results as obtained in Fig. 5 for the square
shape are also obtained for other initial cell shapes.

In Fig. 6, we investigate another striking property of the
ACN, namely its robustness in regard to addition of new
adhesion points. In Figs. 6(a) and 6(b) we show the equilibrium
shapes of the HSN from Fig. 3(a) and the ACN from Fig. 5(b)
with one adhesion point added in the middle of the bottom
line. In the case of the ACN model, this change at the bottom
of the network has little influence on the positions of nodes not
directly connected to the bottom line. In contrast, for the HSN
the additional adhesion point affects the shape of the opposite
arc, becoming more curved in the center. In Fig. 6(c) we plot
by which distance δ the nodes in the vertical middle line are
pulled down in the negative y direction upon addition of the
new adhesion point. The plot of log δ versus y is not smooth
for numerical reasons, but clearly shows that the effect decays
much more rapidly for the ACN versus the HSN. In addition to
square and triangular network topologies, here we also show
results for rotated square (diamond) and hexagonal networks.
Intriguingly, stress in the contour behaves very differently;
compare the color coding of Figs. 6(a) and 6(b). While in the
HSN stress in the bottom line stays approximately the same,
in the ACN it decreases to half its value, indicating a strong
effect on contour forces.

In summary, ACNs behave very differently from HSNs (and
therefore also from the mostly equivalent PCNs). Roughly

(a) 0.1 0.2 0.3 (b) 0.01 0.03 0.05 0.07
muuhh

(c)
0 2

10
3

10
2

10
1

δ

y

f f

−

−

−

4 86

FIG. 6. (Color online) Contraction of networks with square shape
with an additional adhesion point in the middle of the bottom line.
(a) HSN or PCN model with τH = 0.2. (b) ACN with τ = 10−2.
(c) Relative displacement δ of nodes with x = 5 (vertical middle
line) with and without the additional adhesion point at the bottom.
y is the node’s y coordinate in the initial network. The four top
lines correspond to the HSN while the four bottom lines represent
the ACN. Different symbols show different topologies (square=�,
diamond=♦, triangular=�, hexagonal=©).

speaking, they respond more locally than globally. They are
more robust in regard to network topology and adhesion
geometry and show strong localization of the stress to the
periphery. Addition of new adhesion points leads to little global
change, but to a strong change in local stress distribution.
Because for ACN shape and contour stress seem to be mainly
determined by the local adhesion geometry, they will now be
analyzed in more detail.

B. Contour shape and tension-elasticity model

In contrast to HSNs, the contour of ACNs appears to be
more circular. Indeed, a circular arc morphology has been
noted before for the shapes of cells adhering to micropatterned
substrates and therefore this shape feature is an important
motivation to study ACNs [46]. We now investigate this
important aspect in more detail. In Figs. 7(a) and 7(b) we
show contours of the HSN and ACN from Figs. 3 and 5,
respectively, together with fits to straight lines or circular arcs.
As we increase tension, we observe more invaginated shapes;
compare Fig. 4. For the HSN in Fig. 7(a), small tension allows
the network to reach the unconstrained reference shape and
therefore the best fit to the middle part of the contour is a
straight line. For larger tension, the unconstrained reference
shape cannot be reached anymore and circular shapes become
better fits. This crossover is in marked contrast to the ACN from
Fig. 7(b), where circular arcs fit very well for all values of τ . For
large τ , the overall contour starts to deviate from the perfect arc
shape because the networks starts to collapse into tubes near
the adhesion points. However, locally (in between the tubes)
the contour stays circular. Another difference between the two
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FIG. 7. (Color online) Arc fits. (a) Arc analysis for a tensed HSN
or PCN. From bottom to top: τH = 0.1 (+), 0.2 (∗), 0.4 (×), 0.6 (©),
0.8 (�), 1 (♦). Symbols: Contour. Lines: Straight fits of the linear
contour parts (the three bottom lines), least-squares fits of round
contour parts to arcs with constant curvature (the three top lines). ∗
corresponds to the bottom line from the networks shown in Figs. 3(a)
and 3(c). (b) Contour analysis for the bottom line of an ACN with
τ = 10−3 (×), 10−2 (+), 2.5 × 10−2 (∗), 10−1 (©), 2.5 × 10−1 (�),
5 × 10−1 (�) from bottom to top. Symbols denote node positions of
the network arcs while the lines are least-squares fits of the contours
to arcs of constant curvature. ×, +, ©, and dashed line correspond
to the bottom lines from Figs. 5(a)–5(d).

network types lies in the observation that for HSNs, network
shape strongly depends on lattice constant �, while for ACNs,
the equilibrium contour is relatively independent of �.

It has been argued before that the circular arc shape feature
of the ACNs can be explained by an analytical theory, the
tension-elasticity model (TEM) [46]. For clarity, here we
repeat this analysis and compare it in detail with our network
simulations. Because ACNs do not propagate compression
and the motor forces represent a constant pull in the network,
in the TEM the bulk contractility is modeled by a structureless
surface tension σ . However, elasticity is crucial to understand
how the contour reacts to the internal pull. Therefore the
elastic nature of the mechanical network is represented by
an elastic line tension λ, which prevents the contour from
collapsing under the inward pull of the bulk network. This
line tension is written as

λ = EA
L − L0

L0
, (16)

where L is the contour length and L0 is its resting length. Note
that we use the same value EA as for the single links because
the elastic line tension will be dominated by the contribution
from the most peripheral line of links. We further assume L0 =

(a) (b)

d
L

r

n(s)

t(s)λ (

F(s)T(s)t(s)σF=

T=
φ

FIG. 8. Schematic representation of the two contour models.
(a) In the tension-elasticity model (TEM), an isotropic surface
tension σ pulls the contour in along the normal direction, while the
counteracting line tension λ acts along the tangential direction. r is
arc radius, L is contour length, and d is spanning distance. (b) In
the elastic catenary model, the inward pull is vertical and thus leads
to an inhomogeneous line density of force along the elastic contour.
φ denotes the tangential angle.

αd, where d is the initial (spanning) distance d between two
neighboring adhesion points (which in the simulations above
has been chosen to be 10) and α is a dimensionless resting
length parameter [compare Fig. 8(a) for a schematics]. In the
following we restrict ourselves to α = 1; that is, we assume that
a completely relaxed contour is straight, but without internal
tension. This implies that we neglect the contribution of the
active contractility in the periphery to the line tension.

The relation between surface tension σ and network tension
τ , which depends on network topology and discretization, can
be obtained numerically. For this purpose, we simulate the
pulling of a rectangular sheet of network. Surface tension σ

then follows as total force on the pulling boundary divided
by its width. Due to this normalization, the result does not
depend much on link length �; thus we use � = 1 for the
simulations. For all considered network geometries, we find a
linear relation:

σsquare = 0.9907 τsquare, (17)

σtriangular = 1.6892 τtriangular, (18)

σdiamond = 1.0867 τdiamond, (19)

σhexagonal = 0.5517 τhexagonal. (20)

The constant for the square lattice is close to 1 because here
all links pull essentially perpendicular to the boundary.

Given the forces assumed by the TEM, one can derive the
shape of the contour from the force balance. While the surface
tension σ acts in the direction of the normal �n, resulting in a
pulling force �F = σ �n, the line tension λ acts in the tangential
direction �t [compare Fig. 8(a)]. Because the elastic line tension
is a global quantity, it does not vary with the contour length
s and therefore the contour tension is �T (s) = λ�t(s). Then the
force balance reads

�F = σ �n = d �T
ds

= λ
d�t
ds

= λ

r
�n, (21)
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where for the second part we have used the geometrical relation
d�t/ds = �n/r with r being the radius of curvature. We thus
conclude that the TEM predicts circular arcs with a radius

r = λ

σ
. (22)

Although this result looks like a simple Laplace law in two
dimensions, it is more complicated, because the arc radius r

will depend on global properties such as spanning distance d

through the elastic line tension λ from Eq. (16).
In order to arrive at an expression for arc radius r as a

function of adhesion geometry and network tension, we use
the trigonometric relation

sin

(
L

2r

)
= d

2r
(23)

to replace contour length L by spanning distance d; compare
Fig. 8(a). In combination with Eq. (16) (in dimensionless form)
and Eq. (22), this gives

r = 1

σ

[
2r

d
arcsin

(
d

2r

)
− 1

]
. (24)

Since this equation cannot be solved analytically for r , it
has to be solved numerically for given values of d and σ .
For geometrical reasons, r must always be larger than d/2.
Therefore, a critical σc exists above which Eq. (24) cannot
be solved anymore. For small values of σ , the invagination is
small and one can expand the geometrical relation in d/r � 1.
This leads to the analytical result

r = 24−1/3d2/3σ−1/3. (25)

In Fig. 9 we compare the results from computer simulations
for r over a large range of network tension τ to the results of
the TEM with the corresponding range of surface tension σ ,
both for the numerical solution of Eq. (24) and the analytical
solution Eq. (25). We note that the predicted power-law
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σ
FIG. 9. (Color online) Relation of arc radii to internal tension

of ACN for different dot distances and comparison to the tension-
elasticity model (TEM). Symbols denote simulation results (�
corresponds to square, ♦ to diamond, � to triangular, and © to
hexagonal topology), the solid line is the numerical solution of
Eq. (24), and the dashed line the analytical result Eq. (25). Side
lengths are (from bottom to top) d = 10, 19, 31, with critical tensions
σc ≈ 0.114, 0.060, 0.036.

behavior applies over a very large range of tensions, and only
breaks down at very large tension σ > 10−2; compare Fig. 9.
The inverse relation between r and σ represents a modified
Laplace law for ACNs and thus demonstrates that the concept
of an isotropic surface tension works well to explain cell shape.
With the linear relation between σ and τ , this implies that
r ∼ τ−1/3.

We also find excellent agreement between computer simu-
lations and TEM upon variation of spanning distance; compare
Fig. 9. Thus the elastic effects mediated by the spanning
distance d are captured well by the concept of an elastic
line tension. In summary, the analytical TEM results in a
surprisingly good description of the contour shape of ACNs.
As we will discuss in the next section, however, agreement is
less good regarding contour forces.

C. Contour forces and elastic catenary model

We now discuss the forces resulting from our computer
simulations. In the simulated networks of Fig. 3 for the HSN
and Fig. 5 for the ACN, the stresses in the network are coded
by color. In Fig. 10(a) we plot these stresses along a line
horizontally crossing the networks with square shapes slightly
above the middle line. In the HSN, stress gradually decays into
the sample, while for the ACN, it jumps up at the periphery.
Figure 10(a) also shows that forces in HSNs are much larger
than those in ACNs with a comparable equilibrium shape. The
stress distribution in the boundary of an ACN depends on the
lattice constant � of the network, as shown in Fig. 10(b). The
contour forces are minimal in the middle and increase toward
the sides. At an adhesion site, all network forces add up to
the overall force being transmitted to the substrate. For both
passive and active networks, the force which is exerted on an
adhesion site follows a power law as τH (τ ) is increased; see
Fig. 10(c). For τ = τH , adhesion force is much smaller in the
HSN than in the ACN. For active and passive networks of a
comparable shape, however, e.g., τH = 0.2 and τ = 0.01, we
observe the opposite behavior.

Although on an absolute scale the variation is not very
strong, Figs. 5(c) and 10(b) both demonstrate that for ACNs
under large network tension, peripheral force varies along the
contour. In contrast, the tension-elasticity model (TEM), which
is very successful in explaining shape, predicts homogeneous
force λ = rσ along the boundary. Figure 5(c) suggests one
reason which could explain this discrepancy. For ACNs, the
links essentially telescope in under contraction and therefore
their density along the contour varies for strong curvature along
the contour. This suggests that in order to explain the spatially
varying force in the contour, one has to revisit the assumption
of an isotropic surface tension σ creating a homogeneous force
density along the contour.

As an alternative to the TEM, we now investigate another
analytical model, which incorporates the effect of varying
link density, namely, the elastic catenary [55]. In the elastic
catenary, the pulling force on the elastic contour is not along
the normal, but along the direction perpendicular to the original
contour, similar to the situation in networks with square
shape and square topology; compare Fig. 8(b). Due to the
linear elasticity in the contour, the line density of links along
the contour varies in proportion to the contour tension. In
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FIG. 10. (Color online) Force distribution in adherent networks. (a) Force of vertical links which cross the straight line y = 5.5 in the HSN
from Fig. 3(a) (top) and the ACNs from Figs. 5(a) and 5(b) (bottom, middle). (b) Force in the bottom line links of an ACN with σ = 10−3 for
different lattice constants (symbols). From top to bottom: � = 2, 1, 0.5, 0.2. The straight line gives the line tension obtained via the TEM; the
curved line follows from Eq. (31). In both (a) and (b), on the x axis we have the x coordinate of the center of mass of the links. (c) Forces on
adhesion dots exerted by the ACN (top) and HSN (bottom). Simulation results are shown as dots, while lines give the power-law fits. For the
ACN we obtain f = aτb with a ≈ 6.16 and b ≈ 0.783 and for the HSN f = aτb

H with a ≈ 4.51 and b ≈ 1.26. (d) Power-law fits of adhesion
dot force vs surface tension. ACN and elastic catenary results (top line, collapsed) and TEM (low line).

dimensionless units, a length element is expanded to length
1 + T (s) in the presence of tangential contour tension �T (s) =
T (s)�t(s). With an initial inward force per unit length σ , the
effective force density is therefore σ/[1 + T (s)]. In contrast
to the TEM, we now assume not only a heterogeneous force
distribution, but also a vertical pulling direction. Therefore the
pulling force is �F (s) = (0,−σ/[1 + T (s)]). The force balance
again reads

d �T
ds

+ �F = 0, (26)

but now the solution is more difficult than for the TEM.
Because the tangent is normalized, it can be written as
�t = (cos φ(s), sin φ(s)), where φ(s) is the tangential angle
along the contour [56]; compare Fig. 8(b). Different from the
TEM, we now have to solve two equations:

d

ds
{T (s) cos[φ(s)]} = 0, (27)

d

ds
{T (s) sin[φ(s)]} = σ

1 + T (s)
. (28)

Equation (27) can directly be integrated, leading to T cos(φ) =
const = λc, while Eq. (28) can then be solved via the
substitution tan(φ) = sinh(p). This gives

x(p) = λc

σ
p + λ2

c

σ
sinh(p) + x0, (29)

y(p) = λc

σ
cosh(p) + λ2

c

2σ
cosh2(p) + y0. (30)

The integration constants x0 and y0 are determined by the
positions of the adhesion sites.

While in the TEM we assume the line tension λ to be
constant along the whole boundary line, for the elastic catenary

only the x component of tension, λc, is constant. Its value
can be determined numerically from the above equations for
given d and σ . One can show that for small surface tension
σ , the contour becomes parabolic with a radius of curvature
r = λc(1 + λc)/σ . For σ = 10−2 the relative deviation to the
prediction of the TEM is only 4%; that is, in this regime, the
elastic catenary model leads essentially to the same result as
the TEM with circular arcs. However, in contrast to the TEM,
this model predicts a spatially varying boundary tension of

T (p) = λc cosh(p). (31)

The curve without symbols in Fig. 10(b) shows that this model
qualitatively predicts the observed minimum in the stress dis-
tribution. The force acting on an adhesion dot is predicted to be

f =
√

2λc [1 + sinh(p0)] . (32)

Figure 10(d) shows that this prediction is quite accurate.

D. Strain stiffening

So far, we have treated the network links as cables or
springs, in which force increases linearly with elongation. This
implies that the elastic modulus of the network is independent
of strain. However, it is well known that the cytoskeleton
of cells shows a strong increase of elastic modulus with
strain (strain stiffening) [57]. This property of cytoskeletal
networks has been reconstituted in vitro with cross-linked
actin filaments of physiological length, which is of the
order of their persistence length (around 1 μm) [58]. Under
these conditions, strain stiffening results mainly from the
mechanical properties of the cross-linkers. For larger filament
lengths and stiff cross-linkers, there exists another mechanism
for strain stiffening, namely the nonlinear force-extension
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curve of semiflexible polymers as described by the wormlike-
chain (WLC) model [59]. The WLC model has been used
before to model semiflexible biopolymers such as DNA [60],
actin [61,62], and spectrin [33,34]. Because our network model
is especially suited to study the effect of link mechanics, we
now study strain stiffening based on the WLC model, although
for the physiologically relevant case, a model for cross-linker
mechanics might be more relevant.

While the WLC proper has vanishing resting length, here
we combine it with a finite resting length to also include the
effect of compression. Thus we use the nonlinear WLC model
to describe the mechanical links as they are tensed away from
their reference state, while the compressed state is modeled
as above (linear response for springs and no response for
cables). Complementing Eqs. (2) and (3) for the PCN, we
get in dimensionless form

�fij =
[
uij + 1

4

(
1

(1 − uij )2
− 1

)]
�eij , 1 < �ij , (33)

�fij = 0, �ij � 1. (34)

Force is now given as multiples of kBT /L0, while length
is again scaled with L0. Strain is now defined as uij =
(�ij − 1)/�n, in which �n gives the dimensionless difference
between maximal extension and reference length. Effectively
there is only one difference to the original model, namely the
additional term which diverges if the strain uij approaches
1. Without strain, this term vanishes. For ACNs, the original
model is extended in the same way.

We choose �n = 0.5; that is, the maximal extension is
1.5 L0. For small tension, τH < 0.2, the nonlinearity does
not affect the shape of the PCN much and we observe the
same invagination as in Fig. 3. Figures 11(a) and 11(b)
show for the PCN a comparison between linear and WLC
networks for a large value of tension, τH = 0.47. Obviously
the strain-stiffened network shows a much larger resistance
to invagination. We also note that forces are two orders of
magnitude larger in the nonlinear model. ACNs are affected
less by the nonlinearity, as shown in Fig. 11(c). Here we use
τ = 1 and again �n = 0.5. Comparison with Fig. 5(d) reveals
that the ACN collapses to a lesser degree than without strain
stiffening. This can be quantified by the arc height h(τ ), defined
as the maximum distance between initial and current edge
in the equilibrium shape. h is significantly reduced by the
nonlinearity, Fig. 11(d). Thus much higher motor forces are
needed to reach the collapsed state.

In Fig. 12(a), the contour of the strain stiffening PCN is
analyzed in more detail. Circular and linear fits are shown as
lines. The bottom two are given by straight lines. For τH < 0.3
the contour of the PCN-WLC is qualitatively the same as that
of the linear one, shown in Fig. 7(b). At τH = 0.3 the contour
cannot be fitted well by circle or line. If τH is increased
beyond 0.3, the network does not contract any further, but
again expands outward. This surprising effect does not occur
for ACNs. For τH > 0.4, the arcs appear to be circular. The
ACN-WLC contour, Fig. 12(b), only differs little from the
linear ACN contour, Fig. 7(b). Arcs are always circular (except
at the regions where tubes form). With increasing τ they
continuously move inward. Comparison with Fig. 7(a) reveals
that radii typically are larger in the nonlinear case.
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FIG. 11. (Color online) Contracted networks with wormlike
chain (WLC) mechanics. (a) PCN with τH = 0.47. (b) PCN-WLC
with τH = 0.47 and �n = 0.5. (c) ACN-WLC with τ = 1 and �n =
0.5. (d) Maximum invagination h of linear (upper curve) and nonlinear
(lower curve) ACN.
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FIG. 12. (Color online) Arc fits for PCN and ACN with nonlinear
links. (a) Contour of the PCN-WLC from Fig. 11(b). Symbols belong
to different values of τH : 0.1 (+), 0.2 (∗), 0.3 (×), 0.43 (�), 0.47
(♦). ♦ correspond to the bottom line of the network from Fig. 11(b).
(b) Contour of the ACN-WLC from Fig. 11(c). Symbols are bottom
line node positions, while the lines are circular fits. Motor force
values are τ = 10−2 (×), 2 × 10−2 (+), 10−1 (∗), 2.5 × 10−1 (©), 5 ×
10−1(�), 1 (�). Note that � gives the bottom line from Fig. 11(c).

011913-10



CONTRACTILE NETWORK MODELS FOR ADHERENT CELLS PHYSICAL REVIEW E 85, 011913 (2012)

E. Link adaption

Adherent cells are known to strongly adapt their cytoskele-
ton to the physical properties of their environment. During
recent years, it has become clear that the actin cytoskeleton
tends to reinforce under load. In addition, mechanical loading
of adhesion contacts leads to regulatory signals which increase
myosin motor activity inside the cell. Network models are
especially suited to study these biologically important effects
in a theoretical framework. In the following, we will investigate
which changes occur in the network if the elastic constant EA

and the force density T resulting from myosin II activity are
increasing with load.

For simplicity, we assume that both EA and T first increase
with force in a linear fashion and then saturate at constant
values, which is the simplest assumption for a process based
on enzymatic regulation:

EA(F ) = [EA]0 + [EA]1
F

F + F0
, (35)

T (F ) = T0 + T1
F

F + F0
, (36)

where the force scale F0 determines when half the maximal
increase has been reached. We again use dimensionless
parameters. Forces EA, T , F are measured in units [EA]0;
i.e., we define τ = T L0/[EA]0 (the same for τ0 and τ1), ea =
EA/[EA]0 (the same for [ea]1, [ea]0 = 1), and f = F/[EA]0

(the same for f0).
Figure 13 demonstrates that the effect of adaptation is

fundamentally different for passive versus active networks.
Here stiffer links are represented by thicker lines. Figure 13(a)
shows the result for a HSN (as shown by Fig. 3, for the square
shape a PCN gives the same results). In this case, only Eq. (35)
must be considered. While the peripheral links show the largest
values of ea, the rigidity decays smoothly from there into the
bulk. This is strikingly different for the ACN shown in Fig.
13(b). Here Eqs. (35) and (36) have been used. We find that the
stiffness is strongly localized to the periphery, as found before
for the internal stress. Thus for passive networks the adaption

(a) (b)
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FIG. 13. (Color online) Equilibrium shapes for adaptive net-
works. (a) Square HSN or PCN network with ea ≈ 9.40 for the
peripheral links and ea ≈ 1.75 for the innermost links. (b) Square
ACN network with ea ≈ 7.10 at the periphery and ea ≈ 2.00 for
the internal links. Parameters are [ea]1 = 10, f0 = 0.5 [in (a)],
τ0 = τ1 = 10−2, [ea]1 = 10, f0 = 0.1 [in (b)].
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FIG. 14. (Color online) Contraction of an ACN anchored to dots
of finite size. (a) Initial situation. Round tissue with radius rt adherent
to 4 round dots of finite radius rd which form a square with side length
dd . (b) Contracted tissue. Parameters are rt = 38, rd = 4, dd = 36,
τ = 0.1.

response is spatially continuous, while for actively contracting
networks, it is strongly localized to the rim. This nicely agrees
with experimental observations that strong peripheral actin
bundles typically line the cell contour [46]. In particular, our
model suggests that this effect is strongly determined by the
mechanical properties of the underlying networks.

F. Relation to tissue shape

Tissue contraction with discrete pinning sites is very similar
to cell contraction since adherent tissues also show invaginated
arcs [46,63]. However, in this case the spatial dimensions of the
pinning objects tend to be relatively large. In order to include
this effect, we have simulated a circular network contracting
around four circular dots of finite size; see Fig. 14(a). All nodes
on the circles are fixed in space. Motor force τ is increased
stepwise and nodes coming closer to each other than �c = 0.01
are glued together and in the following act as one [22]. Relative
dimensions are taken from [63], where a microtissue tethered
to four cylindrical posts is analyzed. With the ACN we are
able to reproduce the typical arc morphology of the contracted
microtissues; see Fig. 14(b). We note that this is not possible
with a FEM approach, as this leads to flat contours as for
HSNs [63]. Thus ACNs are a useful model both for cells and
tissues.

IV. CONCLUSIONS AND OUTLOOK

Motivated by the network nature of the actin cytoskeleton
and its effectively 2D organization in mature adhesion to flat
substrates, we have modeled adherent tissue cell contraction by
2D network models. The main aim of this work is to achieve
a detailed comparison of the shapes and force patterns for
different network types, namely Hookean spring networks
(HSNs), passive cable networks (PCNs), and active cable
networks (ACNs).

The shape of a HSN can be understood best by considering
the shape of its unconstrained reference shape. If tension is
not too large, the network contour follows the unconstrained
reference shape at regions sufficiently far away from the
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adhesion sites. Closer to the adhesion sites, the network
deforms and stress and strain accumulate. In contrast, the
ACN does not have an unconstrained reference shape and
without adhesion constraints would contract into a point.
Therefore no signature of the unconstrained reference shape
(like flat parts for a square-shaped lattice) appear in the contour.
Because it does not resist compression, stress and strain are not
propagated much into the network and are strongly localized
to the contour.

One of the most striking differences between the different
network types revealed by our analysis is the fact that in passive
networks, local changes to the adhesion geometry change the
network globally. This is in marked contrast to the active
network, where the addition of local adhesions has only a local
effect on the boundary. However, in this case the change in
spanning distance has a large effect on the stress in the contour,
as predicted by the tension-elasticity model (TEM). The TEM
is especially suited to quantitatively predict the shape of an
ACN, namely the circular arcs observed between neighboring
adhesion points and the scaling of their radius with spanning
distance and surface tension.

Despite this success, the TEM does not capture all aspects of
the network model. While the TEM assumes constant contour
tension, the computer simulations reveal that tension varies
along the contour. An elastic catenary theory qualitatively
predicts that tension decreases toward the middle of an
invagination due to local changes in link density along the
contour. However, it predicts neither the quantitative details of
the contour stress nor the circular arc morphology.

In the case of very large tension, both network types develop
different features. For the passive networks, the invaginations
tend to become more round, as the unconstrained reference
shape becomes so small that the contour cannot reach it
anymore. In contrast, the active network develops straight
features, because the network collapses into tubes at the
adhesion points. Indeed the formation of tubes has been ob-
served experimentally and eventually leads to pearling through
a Rayleigh-Plateau instability [44]. The region between the
tubes always stays circular for ACNs.

Network models are ideally suited for multiscale modeling
because physical properties can be easily added on the level
of a single link and lead to nontrivial effects on the level of
cell shape and forces. In order to demonstrate this important
aspect, we have studied two important additional features
of the cytoskeleton. First, nonlinear links were introduced
via the wormlike-chain model (WLC). In the WLC case the
passive square network first contracts and then expands again
as tension is increased. The ACN requires much larger values
of tension to contract compared to the linear case. Otherwise
the arc morphology is essentially the same as in the linear case.

As a biologically very relevant aspect of the cellular
cytoskeleton, we also have studied the adaptation response

of network links. For certain parameter values, a saturation
response for both elasticity and tension leads to a strong
difference between EA and T of boundary links, which
are strongly increased, and EA and T of internal links,
which are increased much less. Similar aspect have been
addressed before in the framework of finite element modeling
(FEM) [40]. In this case, the biochemical regulation has been
modeled with more detail. Both the resulting cell shapes and
the formation of stress fibers inside the cell demonstrate that
the FEM model strongly resembles the HSN studied here.
Therefore it would be interesting to combine the detailed
biochemical model with the actively contracting cable network
studied here. While it appears to be very challenging to develop
a homogenization strategy for the ACN, it is interesting to
consider whether features similar to those resulting from the
ACN could be obtained in a FEM framework.

Active cable networks have also been shown to describe
the circular arc morphology of tissues pinned at discrete
sites [46]. Because here arc radius also scales with spanning
distance as for the arc radius of strongly adhering cells,
the tension-elasticity model seems to capture all essential
elements of this situation. In the tissue case, the cable network
represents the fibrous nature of the collagen matrix and the
active contractility corresponds to cell contraction. Because
in addition water can flow out of the contracting cell-matrix
composite, volume is not conserved and compression is not
propagated. Therefore the standard models of elasticity are
strictly speaking not appropriate. Indeed they do not predict
the circular arc morphology, but rather show flat contours
corresponding to the unconstrained reference shape of the
elastic model [63].

In summary, the HSN, PCN, and ACN are simple model
systems which however show surprisingly rich responses to
internal contractility and therefore lead to interesting con-
clusions about the physical elements required to endow cells
with a sense of geometry. ACNs seem to be very appropriate
to model strongly adherent tissue cells as they not only
implement some of the most important fundamental features of
the cytoskeleton (asymmetry under tension and compression,
contraction by molecular motors), but also lead to functions
which are very reminiscent of real cells (robustness under
structural rearrangements and adaptation to local adhesion
constraints).
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[24] D. Kirchenbüchler, S. Born, N. Kirchgeßner, S. Houben,
B. Hoffmann, and R. Merkel, J. Phys. Condens. Matter 22,
194109 (2010).

[25] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton
(Sinauer Associates, Inc., Sunderland, MA, 2001).

[26] D. Boal, Mechanics of the Cell (Cambridge University Press,
Cambridge, 2002).

[27] J. C. Hansen, R. Skalak, S. Chien, and A. Hoger, Biophys. J. 70,
146 (1996).

[28] J. C. Hansen, R. Skalak, S. Chien, and A. Hoger, Biophys. J. 72,
2369 (1997).

[29] S. K. Boey, D. H. Boal, and D. E. Discher, Biophys. J. 75, 1573
(1998).

[30] D. E. Discher, D. H. Boal, and S. K. Boey, Biophys. J. 75, 1584
(1998).

[31] G. Lim H. W., M. Wortis, and R. Mukhopadhyay, Proc. Natl.
Acad. Sci. USA 99, 16766 (2002).

[32] H. Noguchi and G. Gompper, Proc. Natl. Acad. Sci. USA 102,
14159 (2005).

[33] J. Li, M. Dao, C. T. Lim, and S. Suresh, Biophys. J. 88, 3707
(2005).

[34] J. Li, G. Lykotrafitis, M. Dao, and S. Suresh, Proc. Natl. Acad.
Sci. USA 104, 4937 (2007).

[35] D. A. Fedosov, B. Caswell, and G. E. Karniadakis, Biophys. J.
98, 2215 (2010).

[36] P. A. DiMilla, K. Barbee, and D. A. Lauffenburger, Biophys. J.
60, 15 (1991).

[37] M. E. Gracheva and H. G. Othmer, Bull. Math. Biol. 66, 1470
(2004).

[38] D. Bottino, A. Mogilner, T. Roberts, M. Stewart, and G. Oster,
J. Cell Sci. 115, 367 (2002).

[39] I. V. Dokukina and M. E. Gracheva, Biophys. J. 98, 2794 (2010).
[40] V. S. Deshpande, R. M. McMeeking, and A. G. Evans, Proc.

Natl. Acad. Sci. USA 103, 14015 (2006).
[41] W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M.

Genin, and C. S. Chen, Nature Methods 7, 969 (2010).
[42] M. F. Coughlin and D. Stamenović, Biophys. J. 84, 1328 (2003).
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