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The directed polymerization of actin networks is an essential element of many biological processes, including
cell migration. Different theoretical models considering the interplay between the underlying processes of
polymerization, capping, and branching have resulted in conflicting predictions. One of the main reasons for this
discrepancy is the assumption of a branching reaction that is either first order (autocatalytic) or zeroth order in the
number of existing filaments. Here we introduce a unifying framework from which the two established scenarios
emerge as limiting cases for low and high filament numbers. A smooth transition between the two cases is found
at intermediate conditions. We also derive a threshold for the capping rate above which autocatalytic growth is
predicted at sufficiently low filament number. Below the threshold, zeroth-order characteristics are predicted to
dominate the dynamics of the network for all accessible filament numbers. Together, these mechanisms allow
cells to grow stable actin networks over a large range of different conditions.
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In many situations of high biological relevance, including
the migration of animal cells and the propulsion of specific
intracellular pathogens, motility results from the directed
polymerization of a dendritic actin filament network [1]. The
organization of the growing network is determined mainly
at the leading edge, where a small number of proteins
regulate the interplay between three fundamental processes.
The driving force for propulsion is polymerization of actin
filaments from globular actin monomers. This is limited by
capping proteins, which bind to the filament ends and prevent
further polymerization. New filaments nucleate by branching
off from mother filaments [2]. Although the biochemical
details of this process are not yet completely understood,
it is widely accepted that the branching complex Arp2/3 is
activated by nucleation promoting factors (NPFs) such as
WASP and SCAR/WAVE proteins [3,4]. When an activated
Arp2/3 complex is bound to the side of an existing actin
filament, a daughter filament starts to grow at a characteristic
angle around 70◦ relative to the mother filament [compare
Fig. 1(a)]. At the same time, the branch point moves away
from the leading edge because of the ongoing polymerization
of actin filaments.

Due to the high biological relevance and universal nature of
the underlying processes, many theoretical models have been
suggested to describe the characteristic features of growing
actin networks [5]. However, in many cases contradictory
predictions have been obtained, in particular regarding ex-
perimentally observed force-velocity relations [6–12] and the
filament orientation distribution of the network [13–17]. Inter-
estingly, many of these contradictions are a direct consequence
of two different choices for the order of the branching reaction.
In autocatalytic models, the branching rate is assumed to be
proportional to the number of existing filaments in the network,
i.e., it is modeled as a first-order reaction in filament density,
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implicitly assuming an unlimited reservoir of activated Arp2/3
[13,18,19]. This yields growing actin networks for which
a constant filament density is maintained only at a unique
steady-state growth velocity. Increasing forces acting against
the network reduce the speed of growth only transiently, as an
increasing filament density subsequently lowers the force per
filament back to the stationary level.

In marked contrast to the autocatalytic scenario, another
class of models assumes that branching occurs with a constant
rate, i.e., it is taken to be a zeroth-order reaction in filament
density, corresponding to a limited supply of activated Arp2/3
[14,18,20]. Under these conditions, it has been shown that
a continuum of steady-state velocities exists. Moreover, two
competing steady-state filament orientation patterns are stable,
namely, the ±35 and +70/0/−70 patterns shown schemati-
cally in Figs. 1(b) and 1(c), respectively. Transitions between
these two fundamentally different network architectures can
be triggered by changes in network growth velocity [13,20].
Indeed similar structural transitions have been demonstrated
recently in electron microscopy data of the lamellipodium of
keratocytes, indicating their physiological relevance [15,16].
In this Rapid Communication, we will show that the two
contradictory model scenarios of autocatalytic and zeroth-
order branching can be unified within a general theoretical
framework that reconciles some of the seemingly contradictory
observations and predictions.

Arp2/3 activation model. We first introduce a kinetic model
for filament branching, based on a likely scenario for Arp2/3
activation [3,4,21]. Motivated by the dimensions of the lamel-
lipodium for cells migrating on a flat substrate, we consider
a two-dimensional situation in which the network slides away
from the leading edge with a well-defined retrograde velocity
vnw. All reactions are assumed to occur in a small reaction
zone extending from the leading edge over a nanometer-scale
distance dbr. We consider a system of two variables: A is the
concentration of Arp2/3 that is bound to the filaments but
does not lead to a daughter branch yet. P is the concentra-
tion of NPFs which is available to activate bound Arp2/3
complexes to nucleate a daughter branch. The kinetic
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FIG. 1. (a) Interplay of polymerization, capping, and branching at the leading edge of an actin network growing towards the top.
(b) A ±35 pattern is usually associated with dendritic actin networks. (c) However, theoretical and experimental evidence also exists for
a +70/0/−70 pattern.

equations are

dA

dt
= k+Nfil −

(
k− + vnw

dbr

)
A − k̃bAP ,

(1)
dP

dt
= −k̃bAP + kact(P0 − P ).

A increases as more complexes bind to the filaments with rate
k+ and decreases due to dissociation (rate k−), outgrowth (rate
vnw/dbr), and branching (rate k̃b). The last step also decreases
available P , as NPFs that activate Arp2/3 are occupied for
additional interactions with other Arp2/3 complexes at the
same time until they become available again at rate kact. P0 is
the total concentration of NPFs and Nfil is the number of actin
filaments (because Nfil will be a central quantity of interest
below, for our purpose it is convenient to consider the number
of filaments in a reaction volume of finite lateral size rather
than their concentration).

In steady state, Eq. (1) defines an effective rate of branching
as Bss ≡ k̃bAssPss. This rate is a function of filament number
Nfil as plotted in Fig. 2 for a typical set of parameters. At
sufficiently small filament number Nfil, the effective branching
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FIG. 2. Effective branching rate Bss vs filament number Nfil in
steady state. At low filament number the branching reaction is linear
(autocatalytic) as given in Eq. (2) (dashed line), while at high filament
number, a zeroth-order branching reaction is observed with a constant
rate given by Eq. (3) (dotted line). The gray backgrounds mark the
first- and zeroth-order regimes. The inset shows the corresponding
steady-state concentrations of filament bound Arp2/3 (Ass, solid line)
and available NPFs (Pss, dashed line).

rate is approximately first order in Nfil and hence the coefficient
of its linear expansion defines an autocatalytic branching rate
constant kac

b :

Bss
0 = P0dbrk+k̃b

P0dbrk̃b + dbrk− + vnw
Nfil ≡ kac

b Nfil . (2)

In the limit of large filament number Nfil, Bss saturates at a
constant rate as assumed in zeroth-order branching models:

Bss
∞ = P0kact . (3)

Thus the reaction smoothly changes from first to zeroth order
as the filament number Nfil increases.

Actin growth model. We next analyze the effect of the
order of the branching reaction on the steady growth states
of actin networks. To this end, we extend a deterministic rate
equation model that has been used before to describe both
autocatalytic as well as zeroth-order branching actin networks
[13,18,20]. The generic results reported here can be confirmed
in computer simulations based on individual filaments and
stochastic reactions [22]. We consider an ensemble of filaments
located in the same reaction zone of width dbr as introduced
above. Our central quantity is the distribution function N (θ,t)
for the number of uncapped filaments orientated at time t at an
angle θ with respect to the normal of the leading edge, which
evolves in time as
dN(θ,t)

dt
= −kcN (θ,t) − kθ

gr(vnw)N (θ,t)

+ kb

∫ +π

−π
W(θ,θ ′)N (θ ′,t) dθ ′( ∫ +π

−π

∫ +π

−π
W(θ,θ ′)N (θ ′,t) dθ ′ dθ

)1−μ
. (4)

Here the three terms on the right introduce capping, outgrowth
from the reaction zone, and branching, respectively. While
capping is simply a first-order process with constant rate,
independent of filament orientation θ , for outgrowth we
have to distinguish two cases. For |θ | � arccos(vnw/vfil),
single filaments growing with velocity vfil can keep up with
the leading edge and thus kθ

gr(vnw) = 0. If the orientation angle
exceeds the threshold, filaments grow too slowly and leave the
reaction region with rate kθ

gr(vnw) = (vnw − vfil cos θ )/dbr.
In the branching term, W(θ,θ ′) = W(|θ − θ ′|) is a dis-

tribution function of the relative branching angle between
mother and daughter filaments. Motivated by experimental
observations, we approximate this function by the sum of
two Gaussians centered around ±70◦ and each with standard
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FIG. 3. Phase diagram predicted from linear stability analysis of the analytical model and by numerically solving the actin growth model
(insets) [22]. (a) Projection onto (kc,vnw) plane. The dashed contour indicates identical transitions between +70/0/−70 and ±35 patterns for
all 0 � μ � 1. For μ = 1, an additional constraint restricts the stable parameter space to the gray shaded regions. (b) Projection onto (kc,kb)
plane for μ = 1 (autocatalytic growth). Only a subset of the parameter values results in stable steady-state solutions.

deviation 5◦. This corresponds well to the experimentally
reported range of branching angles between 67◦ and 77◦, which
have been measured both using purified proteins [23,24] and
in different cell lines [25,26]. The exact value of the branching
angle, however, is irrelevant for our results.

The normalization of the branching term in Eq. (4) is
appropriate to directly implement a specific reaction order μ

in the actin growth model. In order to couple the actin growth
model to the Arp2/3 activation model, below we will use
numerical calculations with μ = 0 and couple Eq. (1) and
Eq. (4) via the filament number dependent branching rate
kb(Nfil) = Bss derived above, with Nfil = ∫

N (θ,t)dθ . For
analytical progress and deeper insight, however, it is instructive
to first analyze the steady states of the actin growth model
with constant parameters kb and μ. Indeed, it can be shown
within the linear stability analysis employed below that both
procedures are equivalent [22].

Steady-state analysis. The actin growth model Eq. (4)
contains only four relevant parameters: the rates kc and kb

for capping and branching, respectively, the network growth
velocity vnw, and the order of the branching reaction μ. By
integrating the reaction model Eq. (4) over 35◦ sized angle
bins and neglecting contributions from filaments growing in
directions >87.5◦, we obtain three simplified coupled equa-
tions for the evolution of N0◦ , N±35◦ and N±70◦ , which can be
analyzed analytically. As an alternative which does not require
any additional assumptions, we determine the stable regimes
of network growth numerically, by propagating a finely dis-
cretized version of the equation until a steady state is reached.

In the analytical approach, there exist exactly two physically
meaningful steady-state solutions, N ss70 and N ss35, given by

N ss70
0◦ =

−kc − k70◦
gr +

√
2kc

(
kc + k70◦

gr

)
kc − k70◦

gr

C
1/(1−μ)
1 ,

N ss70
±35◦ = 0, (5)

N ss70
±70◦ =

2kc −
√

2kc
(
kc + k70◦

gr

)
kc − k70◦

gr

C
1/(1−μ)
1 ,

and

N ss35
0◦ = N ss35

±70◦ = 0, N ss35
±35◦ = C

1/(1−μ)
2 , (6)

where

C1 = kb/

√
2kc

(
kc + k70◦

gr

)
, C2 = kb/

(
2kc + 2k35◦

gr

)
. (7)

These two fixed points correspond to the two competing
orientation patterns depicted schematically in Figs. 1(c) and
1(b), respectively. Linear stability analysis shows that for
μ > 1, both are saddle points and thus no stable solution exists.
In contrast, μ � 1 leads to mutually exclusive stability of the
two solutions [22]. Figure 3(a) shows the regions of stability for
each of the two orientation patterns within the two-dimensional
parameter space spanned by kc and vnw. The dashed contour
indicates transitions between a +70/0/−70 pattern outside and
a ±35 pattern inside. Remarkably, the transition is independent
of kb and μ and thus all cases with μ � 1 show no difference
in the locations of the transitions. The result from the full
numerical analysis of Eq. (4) is shown as an inset. The main
difference between the analytical and numerical results is
that the stability of the ±35 pattern vanishes for large kc in
the analytical model, because it disregards contributions from
filament orientations �90◦. This increases the stability of the
+70/0/−70 pattern, when outgrowth of filaments is negligible
compared to capping.

Until now we have shown that for all reaction orders of
interest (0 � μ � 1), two orientation patterns compete for
stability, with phase boundaries being independent of the
exact value of μ. Nevertheless the limit μ → 1 (autocatalytic
growth) is special, because in this case, finite steady-state
solutions only exist if additional constraints are satisfied. Due
to Eq. (5), N ss70 is finite only when C1 = 1. From Eq. (7) this
requires k70◦

gr (vnw)kc + k2
c = k2

b/2. Due to Eq. (6), N ss35 is finite
only when C2 = 1. From Eq. (7) this requires k35◦

gr (vnw) + kc =
kb/2. Therefore, if a stable steady-state solution exists for given
values of kc and kb, then for μ = 1 it corresponds to a unique
network growth velocity vnw. In this way, the most prominent
feature of autocatalytic growth [18] emerges in our unifying
model. Due to these additional conditions, stable solutions are
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FIG. 4. Network growth velocity as a function of filament number
for different capping rates kc as obtained numerically from the unified
model (solid lines). Darker gray indicates decreasing kc. The dashed
lines show the results from a zeroth-order description. For capping
rates kmin

c � kc � kmax
c , an autocatalytic regime is observed at low

filament density. The capping rate kc = kmin
c (thick black solid line)

marks the transition to pure zeroth-order behavior. The inset shows
the results from stochastic computer simulations.

restricted in parameter space to a lower dimensional manifold,
which in case of the analytical model has a jump discontinuity
[22]. In Fig. 3(a) we show the projection of this manifold onto
the (kc,vnw) plane with bright and dark gray regions marking
the stability regions for the +70/0/−70 and ±35 patterns,
respectively. As the inset indicates, a jump discontinuity is not
observed in the full numerical treatment.

In Fig. 3(b), the manifold for μ = 1 is projected onto the
(kc,kb) plane (in this projection, the jump discontinuity cannot
be seen). Only a subset of (kb,kc) combinations yields stable
autocatalytic growth with finite filament number Nfil. This
important result is predicted both by the analytical and the
numerical approach (compare inset).

Limits of autocatalytic network growth. Using the insights
obtained in the preceding sections from the actin growth
model Eq. (4) with μ as a model parameter, we now combine
the Arp2/3 activation model Eq. (1) and the actin growth
model Eq. (4) with μ = 0 to arrive at a unifying theoretical
framework for actin network growth with a branching reaction
that is determined by a regulatory process. Figure 4 shows our
numerical results for network growth velocity vnw as a function
of filament number Nfil (solid lines) for various values of the
capping rate kc. They agree very well with the results from
stochastic computer simulations shown as an inset [22]. At
sufficiently low filament number, we observe an autocatalytic
regime where a whole range of values for Nfil corresponds
to the same velocity. For larger Nfil, however, the steady-
state network velocity starts to decrease similarly to a pure
zeroth-order description (dashed lines). These changes include
transitions between the two dominant filament orientation
patterns as predicted in Fig. 3.

Interestingly, the details of the crossover from first- to
zeroth-order branching strongly depend on the capping rate.
This can be understood in the analytical model analyzed
above. At low filament density, branching is effectively a
first-order reaction and thus the conditions C1 = 1 and C2 = 1,
previously derived from Eqs. (5)–(7) for μ = 1, need to
be satisfied here for stable growth as well. By inserting
the autocatalytic branching rate kac

b defined in Eq. (2) into

Eq. (7) and applying the relevant first-order condition, we are
able to derive estimates for minimum and maximum capping
rates kmin

c and kmax
c corresponding to the largest and smallest

possible network velocities, vnw/vfil = 1 and vnw/vfil = 0,
respectively:

kmin
c = vfil

2dbr

[
c +

√
2

(
kac

b dbr

vfil

)2

+ c2

]
, kmax

c = kac
b√
2
,

(8)

where c = cos 70◦ − 1. These two threshold values are shown
in Fig. 3(b) as the intersection of kac

b with the boundaries of the
stable autocatalytic parameter subset. Comparison of Eq. (8)
with the numerical results from the full model presented in
Fig. 4 shows that our analytical approach captures the location
of this crossover very well and thus accurately explains the
observed behavior. For increasing kc, the network velocity in
the autocatalytic region decreases until at around kc � kmax

c
the filament number decays to zero for all accessible network
velocities. For decreasing kc, the network growth velocity
reaches its maximal value at kc � kmin

c (thick solid line),
when the network is not able to balance filament branching
by capping and outgrowth anymore. In a purely autocatalytic
model, this would lead to a diverging and therefore unphysical
filament number. Within our unifying framework, the number
of filaments increases only to the point where zeroth-order
growth behavior starts to dominate and stabilizes a steady state
at finite filament number. In this regime, the results from the
full model (solid) agree with a zeroth-order branching model
(dashed).

Relation to experiments. In this Rapid Communication,
we have developed a theoretical framework that reconciles
conflicting results from two classes of actin growth models
and explains many experimental observation: an autocatalytic
growth regime at low filament density [6,9], zeroth-order char-
acteristics at high density [7,8], network velocity-dependent
transitions in filament orientation patterns [15,16], and bista-
bility and hysteresis at these transitions [9,20]. Strikingly our
model naturally avoids the instability which occurs at low
capping rate in the autocatalytic model.

Our model also makes testable predictions that can guide
future experiments. Using single-molecule microscopy either
in migrating cells [27] or in reconstituted assays, the number of
branching events can be directly correlated to filament density,
which can be compared to the effective branching rate as
predicted in Fig. 2. From electron microscopy data, filament
orientations can be extracted and correlated with the growth
velocity as demonstrated in [15,16]. This can be compared to
the unified phase diagram in Fig. 3. Finally, reconstituted actin
networks growing against a functionalized cantilever of an
atomic force microscope (AFM) or bead [8,9,28] are predicted
to yield an autocatalytic (i.e., force-insensitive) growth veloc-
ity for sufficiently low load and high concentration of capping
protein. In this regime the filament density near the obstacle
is thus expected to grow proportionally to the applied force.
When either the concentration of capping protein is reduced
below the threshold kmin

c [Eq. (8)] or the load on the network
is sufficiently increased, zeroth-order behavior is predicted to
take over as illustrated in Fig. 4.

040701-4



RAPID COMMUNICATIONS

UNIFYING AUTOCATALYTIC AND ZEROTH-ORDER . . . PHYSICAL REVIEW E 87, 040701(R) (2013)

Acknowledgments. J.W. was supported by the research unit
for systems biology ViroQuant at Heidelberg and by the
Deutsche Forschungsgemeinschaft (DFG) at Berkeley (Grant

No. We 5004/2-1). U.S.S. acknowledges support as a member
of the cluster of excellence CellNetworks at Heidelberg
University.

[1] Actin-based Motility, edited by M. F. Carlier (Springer, Houten,
Netherlands, 2010).

[2] T. D. Pollard, Annu. Rev. Biophys. Biomol. Struct. 36, 451
(2007).

[3] C. C. Beltzner and T. D. Pollard, J. Biol. Chem. 283, 7135
(2008).

[4] X. P. Xu, I. Rouiller, B. D. Slaughter, C. Egile, E. Kim, J. R.
Unruh, X. Fan, T. D. Pollard, R. Li, D. Hanein et al., EMBO J.
31, 236 (2012).

[5] A. Mogilner, J. Math. Biol. 58, 105 (2009).
[6] S. Wiesner, E. Helfer, D. Didry, G. Ducouret, F. Lafuma, M. F.

Carlier, and D. Pantaloni, J. Cell Biol. 160, 387 (2003).
[7] J. L. McGrath, N. J. Eungdamrong, C. I. Fisher, F. Peng,

L. Mahadevan, T. J. Mitchison, and S. C. Kuo, Curr. Biol. 13,
329 (2003).

[8] Y. Marcy, J. Prost, M. F. Carlier, and C. Sykes, Proc. Natl. Acad.
Sci. USA 101, 5992 (2004).

[9] S. H. Parekh, O. Chaudhuri, J. A. Theriot, and D. A. Fletcher,
Nat. Cell Biol. 7, 1219 (2005).

[10] M. Prass, K. Jacobson, A. Mogilner, and M. Radmacher, J. Cell
Biol. 174, 767 (2006).

[11] F. Heinemann, H. Doschke, and M. Radmacher, Biophys. J. 100,
1420 (2011).

[12] J. Zimmermann, C. Brunner, M. Enculescu, M. Goegler,
A. Ehrlicher, J. Käs, and M. Falcke, Biophys. J. 102, 287 (2012).

[13] I. V. Maly and G. G. Borisy, Proc. Natl. Acad. Sci. USA 98,
11324 (2001).

[14] S. Schaub, J. J. Meister, and A. B. Verkhovsky, J. Cell Sci. 120,
1491 (2007).

[15] S. A. Koestler, S. Auinger, M. Vinzenz, K. Rottner, and J. V.
Small, Nat. Cell Biology 10, 306 (2008).

[16] J. Weichsel, E. Urban, J. V. Small, and U. S. Schwarz, Cytometry
Part A 81A, 496 (2012).

[17] A. B. Verkhovsky, O. Y. Chaga, S. Schaub, T. M. Svitkina,
J. J. Meister, and G. G. Borisy, Mol. Biol. Cell 14, 4667
(2003).

[18] A. E. Carlsson, Biophys. J. 84, 2907 (2003).
[19] T. E. Schaus, E. W. Taylor, and G. G. Borisy, Proc. Natl. Acad.

Sci. USA 104, 7086 (2007).
[20] J. Weichsel and U. S. Schwarz, Proc. Natl. Acad. Sci. USA 107,

6304 (2010).
[21] S.-C. Ti, C. T. Jurgenson, B. J. Nolen, and T. D. Pollard, Proc.

Natl. Acad. Sci. USA 108, E463 (2011).
[22] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.87.040701 for more details.
[23] R. D. Mullins, J. A. Heuser, and T. D. Pollard, Proc. Natl. Acad.

Sci. USA 95, 6181 (1998).
[24] L. Blanchoin, K. J. Amann, H. N. Higgs, J. B. Marchand, D. A.

Kaiser, and T. D. Pollard, Nature 404, 1007 (2000).
[25] T. M. Svitkina and G. G. Borisy, J. Cell Biol. 145, 1009

(1999).
[26] M. Vinzenz, M. Nemethova, F. Schur, J. Mueller, A. Narita,

E. Urban, C. Winkler, C. Schmeiser, S. Koestler, K. Rottner
et al., J. Cell Sci. 125, 2775 (2012).

[27] A. Millius, N. Watanabe, and O. D. Weiner, J. Cell Sci. 125,
1165 (2012).

[28] O. Chaudhuri, S. H. Parekh, W. A. Lam, and D. A. Fletcher, Nat.
Methods 6, 383 (2009).

040701-5

http://dx.doi.org/10.1146/annurev.biophys.35.040405.101936
http://dx.doi.org/10.1146/annurev.biophys.35.040405.101936
http://dx.doi.org/10.1074/jbc.M705894200
http://dx.doi.org/10.1074/jbc.M705894200
http://dx.doi.org/10.1038/emboj.2011.343
http://dx.doi.org/10.1038/emboj.2011.343
http://dx.doi.org/10.1007/s00285-008-0182-2
http://dx.doi.org/10.1083/jcb.200207148
http://dx.doi.org/10.1016/S0960-9822(03)00051-4
http://dx.doi.org/10.1016/S0960-9822(03)00051-4
http://dx.doi.org/10.1073/pnas.0307704101
http://dx.doi.org/10.1073/pnas.0307704101
http://dx.doi.org/10.1038/ncb1336
http://dx.doi.org/10.1083/jcb.200601159
http://dx.doi.org/10.1083/jcb.200601159
http://dx.doi.org/10.1016/j.bpj.2011.01.063
http://dx.doi.org/10.1016/j.bpj.2011.01.063
http://dx.doi.org/10.1016/j.bpj.2011.12.023
http://dx.doi.org/10.1073/pnas.181338798
http://dx.doi.org/10.1073/pnas.181338798
http://dx.doi.org/10.1242/jcs.03379
http://dx.doi.org/10.1242/jcs.03379
http://dx.doi.org/10.1038/ncb1692
http://dx.doi.org/10.1002/cyto.a.22050
http://dx.doi.org/10.1002/cyto.a.22050
http://dx.doi.org/10.1091/mbc.E02-10-0630
http://dx.doi.org/10.1091/mbc.E02-10-0630
http://dx.doi.org/10.1016/S0006-3495(03)70018-6
http://dx.doi.org/10.1073/pnas.0701943104
http://dx.doi.org/10.1073/pnas.0701943104
http://dx.doi.org/10.1073/pnas.0913730107
http://dx.doi.org/10.1073/pnas.0913730107
http://dx.doi.org/10.1073/pnas.1100125108
http://dx.doi.org/10.1073/pnas.1100125108
http://link.aps.org/supplemental/10.1103/PhysRevE.87.040701
http://link.aps.org/supplemental/10.1103/PhysRevE.87.040701
http://dx.doi.org/10.1073/pnas.95.11.6181
http://dx.doi.org/10.1073/pnas.95.11.6181
http://dx.doi.org/10.1038/35010008
http://dx.doi.org/10.1083/jcb.145.5.1009
http://dx.doi.org/10.1083/jcb.145.5.1009
http://dx.doi.org/10.1242/jcs.107623
http://dx.doi.org/10.1242/jcs.091157
http://dx.doi.org/10.1242/jcs.091157
http://dx.doi.org/10.1038/nmeth.1320
http://dx.doi.org/10.1038/nmeth.1320



