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Geometrical model for malaria parasite migration in structured environments
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Malaria is transmitted to vertebrates via a mosquito bite, during which rodlike and crescent-shaped parasites,
called sporozoites, are injected into the skin of the host. Searching for a blood capillary to penetrate, sporozoites
move quickly in locally helical trajectories, that are frequently perturbed by interactions with the extracellular
environment. Here we present a theoretical analysis of the active motility of sporozoites in a structured
environment. The sporozoite is modelled as a self-propelled rod with spontaneous curvature and bending rigidity.
It interacts with hard obstacles through collision rules inferred from experimental observation of two-dimensional
sporozoite movement in pillar arrays. Our model shows that complex motion patterns arise from the geometrical
shape of the parasite and that its mechanical flexibility is crucial for stable migration patterns. Extending the
model to three dimensions reveals that a bent and twisted rod can associate to cylindrical obstacles in a manner
reminiscent of the association of sporozoites to blood capillaries, supporting the notion of a prominent role of

cell shape during malaria transmission.
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I. INTRODUCTION

Malaria is caused in vertebrate hosts, for example mice
and men, by eukaryotic parasites belonging to the genus
Plasmodium. The parasites are transmitted to the vertebrate
host via the bite of an infected Anopheles mosquito. During
the blood meal, the mosquito injects several tens of parasites,
called Plasmodium sporozoites, into the skin of the host. A
first necessary condition for the host to become infected is
that some of these sporozoites reach and penetrate a blood
vessel [1-4], to be then transported to the liver by the blood
stream. After a replication stage in the liver, the parasites enter
again the blood circulation and infect red blood cells, leading
to the typical symptoms of the disease, like periodic fevers. The
infectious cycle continues with the uptake of infected blood
by another mosquito.

Although each stage of the malaria life cycle offers inter-
esting physical aspects, here we focus on sporozoite migration
because it is characterized by some surprising features. We
first note that sporozoite migration in the skin is very fast,
with an average migration speed exceeding 1 um/s, which
is one to two orders of magnitude faster than the migration
of typical tissue cells [3]. Plasmodium sporozoites are about
10 um long and about 1 um wide, depending on the species
and stage of maturity [5]. Mature sporozoites are crescent
shaped with an average radius of curvature of about 5 um [6]
and move on circular trajectories on a flat substrate, with
a strong preference for counterclockwise movement (under
an inverted microscope, that mirrors the real image) [6].
In contrast to crawling cells, that extend protrusions to
translocate, sporozoites migrate with changes in cellular shape
that are limited to their curvature [7]. Sporozoites lack cilia or
flagella and therefore are not swimming cells, as for example E.
coli [8]. Instead, their type of motion is called gliding motility
and depends on adhesion between the cell and the substrate.
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Sporozoites are supposedly propelled by an internal conveyer
belt system that translocates adhesive transmembrane proteins
from the front to the rear end of the cell, exploiting an
evolutionary ancient actomyosin system [9,10]. In contrast
to mammalian tissue cells, however, this adhesion is relatively
nonspecific as the adhesion receptors seem to bind to many
different ligands [11].

The observation of two-dimensional (2D) circular move-
ment, together with the fact that, in an unstructured 3D
environment, sporozoites tend to move on roughly helical
paths, suggests that the movement of sporozoites is strongly
determined by their geometrical shape [3,5,6,12—14]. How-
ever, sporozoite trajectories are also highly dependent on the
structural properties of their environment. For example, they
show different patterns of locomotion in the tail versus the ear
of mice, possibly as a result of the different organization of the
extracellular matrix [13]. The role of the environment in sporo-
zoite migration has been previously addressed by experimental
studies that have employed microfabricated pillar arrays [13].
Similar experimental approaches have been used recently
also for other cellular systems, for example the nematode
worm C. elegans [15], the amoeba Dictyostelium [16], the
bacteria Neisseria gonorrhoeae and Myxococcus xanthus [17],
and the eukaryotic parasite causing the sleeping disease, the
trypanosome [18]. Migration of sporozoites through arrays
with different pillar diameters and spacing revealed complex
motion patterns depending on both radius and spacing,
highlighting the role of the interplay between the peculiar
geometrical features of the parasite and repeated encounters
with obstacles [13]. However, a quantitative framework to
understand the features of sporozoite migration in complex
environments is still missing.

Sporozoite gliding is different from most other types of
cell locomotion that have been analyzed with mathematical
models before, but also shares some instructive similarities.
The flow of actin and related molecules driving the conveyer
belt system [10,19] is reminiscent of the flow of actin in
keratocytes, that has been studied, e.g., within a hydrodynamic
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FIG. 1. (Color online) Plasmodium sporozoites are curved gliding parasites that describe environment-dependent trajectories. (a) On a 2D
substrate sporozoites move on roughly circular trajectories in a counterclockwise direction. (i) Time series of differential interference contrast
(DIC) images (time given in seconds). (ii) Overlay of a time series of fluorescent images of three gliding sporozoites. (b) In 3D unstructured
gels sporozoites describe perturbed helical trajectories, as shown here with maximum fluorescent projections of two sporozoites migrating in
matrigel. (c) In vivo trajectories (red) of sporozoites (green, white arrowheads) migrating in the dermis of the ear of a mouse appear more
random but circular elements are clearly present. The trajectories are maximum fluorescence intensity projections for 240 s. Sporozoites are
represented at the start of the imaging in green and pointed to by the white arrowheads. Trajectories, in red, are represented from 5 s after the

start till the end of the imaging time. All scale bars: 10 pum.

framework [20] or phase field models [21]. However, the struc-
tural organization of the actin system in sporozoites is very
different and far from understood [22]. The coupling between
the sporozoite and the substrate via adhesion molecules is
similar to the situation in adherent animal cells, which has
been described before, e.g., as a slip boundary for an active
gel [23,24], but again the exact details are not known yet. In
particular it is unclear how adhesion molecules are injected
into and removed from the conveyer belt system, and how
they are organized along the body of the sporozoite [7].

Due to the uncertainty regarding the molecular system, it is
natural to start with a mathematical analysis at the cellular
level. In this framework, active motion in the presence of
hard obstacles is often treated using Brownian models for
simply shaped and nondeformable particles [25-28]. However,
in the case of sporozoites, as well as of other cells moving in
structured environments [15—18], cell deformations should be
taken into account. One instructive example is the bacterium
Myxococcus xanthus, that is also self-propelled and rod shaped
and that has been described as a flexible chain of beads [29,30].
While this work investigated interactions between the bacteria,
here we address a single but curved object interacting with a
given obstacle array. Moreover we do not model the parasite
as a chain of beads, but introduce a parametrization that is
computationally less expensive.

In this paper we propose a cell-level, geometry-based
model for sporozoite migration that takes into account the
sporozoite curvature and length, but not its thickness. Our
model focuses on adhesion to a solid support and repeated
collisions with obstacles. We exclude the explicit modeling
of the internal gliding machinery whose effect, to a first
approximation, is to propel the sporozoite forward at a typical
speed. Instead, we model the parasite as a self-propelled rod
with spontaneous curvature that, in the absence of obstacles,
moves with constant speed along a circular trajectory of
matching curvature. Motivated by experimental observations,

collisions with hard obstacles are solved either by a temporary
change in the curvature of the rod or by a random reorientation.
Extending our model to three dimensions, we consider the
effect of twist and show that both bending and twisting help
the parasite to navigate arrays of cylindrical obstacles with
the shape of blood vessels. Our analysis demonstrates how the
complexity of sporozoite motility in structured environment
is shaped by the geometrical and mechanical properties of the
parasite, and provides a quantitative framework to rationalize
the experimental results for sporozoites moving in pillar arrays
and other structured environments.

II. EXPERIMENTAL OBSERVATIONS

We start with the experimental observations underlying
our theoretical analysis (more details of our experimental
procedures are provided in Appendix A). Sporozoites from
the rodent model parasite Plasmodium berghei migrating on
a two-dimensional flat substrate describe circular trajectories
with aradius similar to their own radius of curvature [Fig. 1(a)].
Migration in unstructured 3D environments, such as matrigel,
leads to perturbed helical trajectories [Fig. 1(b)]. Trajectories
in vivo (e.g., in the ear of a mouse) are more irregular, but
still include circular elements with a radius that again seems to
correspond to the radius of curvature of the parasite [Fig. 1(c)].

In order to study motility patterns in quantitative detail,
microfabricated PDMS pillar arrays have emerged as a very
useful assay because it allows us to design the geometrical
structure and to perform microscopy that can be easily com-
bined with image processing. The pillars are usually placed
in a hexagonal arrangement [Fig. 2(a)(i)]. Because sporozoite
adhesion is relatively nonspecific, no special surface func-
tionalization or passivation is required. The sporozoites settle
between and interact with the pillars, sometimes leading to
clear deviations from their unperturbed shape [Fig. 2(a)(ii)].
While sporozoites often seem to make contact with a pillar
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FIG. 2. (Color online) (a) (i) Top views by scanning electron
microscopy of microfabricated arrays consisting of PDMS pillars
on a flat PDMS substrate and arranged according to a hexagonal
lattice. (ii)—(iv) Plasmodium sporozoites migrating in the arrays lie
on the substrate and can interact with the pillars: the ends of the
parasite can either contact the pillars (black arrowheads) or not.
Scale bars: 10 um. (b) Circling of sporozoites around pillars does
not require direct contact. Furthermore, occasional contact does not
confine the parasite to the pillar. Numbers indicate time in seconds.
Scale bars: 10 um. (c) Typical trajectories of sporozoites migrating in
pillar arrays: circular trajectories (green online, light grey otherwise)
around pillars (red online, dark grey otherwise) (i), linear (iii), and
meandering (iv) trajectories. In addition, adhesion of sporozoites can
also be unstable, leading to a probing phase that ends with migration
into a new direction (ii).

during translocation [Fig. 2(a)], adhesion between the parasite
and a pillar is not a requirement to circle around it [Fig. 2(b)].
Typical trajectories of P. berghei sporozoites in pillar arrays
are shown in Fig. 2(c) as overlay of a time series of fluorescent
images. Sporozoites can circle around pillars both in a stable
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FIG. 3. (Color online) Curvature distribution of Plasmodium
sporozoites automatically measured from a sample of N = 102 cells.
The distribution is widely distributed around curvatures of about
0.2 um~!, corresponding to an average radius of curvature of about
5 pum.

manner [Fig. 2(c)(i)] and in an unstable manner [Fig. 2(c)(ii)].
In the second case, the parasite remains attached to the
substrate with its back end and probes the environment in a
waving manner until it adheres and migrates again with a new
orientation. Trajectories can also show distinct linear patterns
as in Fig. 2(c)(iii) or be mainly meandering as in Fig. 2(c)(iv).

Although motility patterns of sporozoites in obstacle
arrays can be automatically classified using image process-
ing [13,31], it is difficult to quantify the systematic effect
of the structure of the environment on the migration of
the single cell because of the inherent variability within a
population of sporozoites. Experimental evidence suggests
that spontaneous curvature, cell length, bending rigidity, and
adhesion structure show a strong degree of variability from
one sporozoite to the other. For example, Fig. 3 shows the
broad distribution of spontaneous curvature (details given in
Appendix A). While this geometrical feature of the sporozoite
can be measured relatively easily, most of its other features
are not directly accessible, especially not in the context of
motility assays. In the present work we propose a physical
model to systematically study the role of the geometrical
and mechanical properties of sporozoites during migration in
obstacle arrays, which in the future might be helpful to estimate
these microscopic properties from macroscopic observations.

III. BASIC MODEL
A. Geometrical considerations

Consider a hexagonal lattice of lattice constant / patterned
with circles (pillars) of radius p, the distance between two
nearest neighbors being d = I — 2p. We model the sporozoite
as a bent rod of length L and curvature «o [Fig. 4(a)]. We
define a set of nondimensional quantities such that the rod has
unit curvature:

F=pko; d=dky; 1=2p+d, L=Lky. (1)

Consider the parasite moving on the circle that best fits its
shape. In a (0,d) lattice the parasite is said to move steadily if
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FIG. 4. (Color online) (a) Plasmodium sporozoites are elongated
cells, with an aspect ratio of about 10. We consider a 1D model
parasite as a bent rod that, when unperturbed, describes a circular
trajectory on the circle that best fits its shape. Migration of the rod in
hexagonal obstacle arrays is characterized by frequent collisions, but
two unperturbed stable motility patterns are possible, depending on
the obstacle size and distance: circling around one or more obstacles
(ARN) and circling between the obstacles (BTW). (b) Geometric
diagram identifying the regions of the (,5,(7) plane, delimited by the
solid lines, where the stable motility patterns ARN and BTW are
allowed. In region 1 no steady pattern is possible, region 2 allows for
ARN patterns, region 3 for both ARN and BTW patterns, while in
region 4 only BTW patterns are possible. The dots correspond to the
curvature values from the distribution of Fig. 3 for typical obstacle
array parameters (p = 5,d = 6) um (dark gray) and (p =4,d =
3) um (green online, light grey otherwise) used in experiments [13].

its circular trajectory does not collide with any of the obstacles
in the lattice. This is possible in two ways: either the trajectory
lies between the pillars (BTW) or it loops around one or more
pillars (ARN) [Fig. 4(a)]. Conditions for steady movement in
the obstacle array are derived from the geometry of the lattice.
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Circling between the pillars is possible for distances
d>3-52-3) @)

while circling around one or more pillars is possible for
d>1—7 and p < 1. 3)

The curves identified above define four regions in the (,3,(7)
plane, delimited by the solid lines in Fig. 4(b). In region
1 no steady pattern is possible, region 2 allows for ARN
patterns, region 3 for both ARN and BTW patterns, while
in region 4 only BTW patterns can fit. The dark gray and
green (or light grey) points in Fig. 4(b) correspond to the
curvature values from the distribution of Fig. 3 for typical
obstacle array parameters (o =5 um, d = 6 um) and (p =
4 pum, d = 3 um), respectively, as used in experiments [13].
Since a sample of sporozoites does not localize to a unique
region of the (0,d) plane, the information on the curvature of
the sporozoite is necessary to make predictions about its most
likely trajectory. For a typical experiment with the curvature
distribution shown in Fig. 3, we conclude that both ARN and
BTW motility patterns are expected to be observed.

B. Interaction with the obstacles

Motivated by detailed experimental observations of Plas-
modium berghei sporozoites migrating in pillar arrays, we
divide the interaction with the obstacles in two categories
(Fig. 5). In the first case, the parasite successfully avoids
the pillar via a temporary change in the bending of the
cell body. In the second case, the parasite transiently loses
adhesion to the substrate to then reattach with a new orientation
to resume migration. In the following we formalize these
experimental observations using two different descriptions of
the interaction between the bent rod and the obstacles: the
binary and the statistical interaction schemes, corresponding
to a stiff and a flexible rod, respectively. To keep the model
simple, we disregard the asymmetry between clockwise and
counterclockwise motion, which is expected to be of minor
relevance for the case of frequent collisions studied here.

In the binary model the sporozoite is stiff and can move with
fixed unit curvature either clockwise or counterclockwise. A
collision triggers a check to determine if the configuration
symmetric with respect to the tangent in P solves the overlap
[Fig. 5(a), rightmost orange rod]. If not, than the parasite
reorients by rounding up around P and sampling a random
exit angle to resume motion with unit curvature and a prob-
ability 1/2 of moving either clockwise or counterclockwise
[Fig. 5(b)]. The binary model is purely geometrical and avoids
changes in curvature, but allows for the two basic responses
observed in experiments (deflection and tumbling).

In the statistical model, we allow the parasite to assume
a non-natural curvature for a short time in order to solve a
collision situation. We consider an interval I = [—k,k] of
curvatures that the sporozoite can assume in order to avoid
an obstacle upon collision. However, only a subset I. C [
allows the parasite to avoid the obstacle. We assign to each
curvature an energy E(x) according to a symmetric double
well potential with minima in ¥ = =1, so that in general the

042720-4



GEOMETRICAL MODEL FOR MALARIA PARASITE ...

Temporary change in curvature

solved

PHYSICAL REVIEW E 90, 042720 (2014)

Reorientation

(i) (ii)

-
. N ,
L4 .

’reorientation’s»
' Pl 7\
|

PR

(b)

FIG. 5. (Color online) We group the interactions between Plasmodium sporozoites and obstacles in two categories. In the first (a), obstacles
are avoided via a change in the bending of the cell body. The deformation is temporary, meaning that once the collision is solved the rod
proceeds its migration with unit curvature, the sign of which is consistent with that of the temporary curvature, while the deformed region
progressively shifts towards the rear of the rod. (b) In the second interaction mode the collision is solved via a reorientation of the rod, after
which migration is resumed with unit curvature and an equal probability of moving clockwise or counterclockwise. Our model thus allows
both for changes in the curvature of the rod as well as for random reorientations. The balance between the two modes of interaction depends

on the model parameters.

total bending energy of the rod reads

L
Etend =/ ds E[k(s)]
0

L
_ / ds{[ie(s) — 1lic(s) + 11 @)
0

We introduce a temperature via 8 = 1/(kgT) to account for
the strength of the bending effect. We also assign an energy
E,np to areorientation (tumbling) event. We finally distinguish
between new curvatures of equal or of different sign. Therefore
we introduce o, the initial sign of the curvature. We then define
the partition function Z(g) that includes all possible outcomes
of the collision event in the statistical model:

1
J— _ﬁEIm — _ﬂE en
Z(B)=c¢e ’”+2[1~|—asgn(ic)] E e Phbend
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+

This equation shows that the rod has three possibilities upon
collision: it can tumble, it can assume a new curvature with
sign o, or it can assume a new curvature with sign —o. New
curvatures with the same sign are close to the initial curvature
and are weighted by Boltzmann factors. New curvatures of
opposite sign must overcome an energy barrier Ep,x and
therefore are treated differently from curvatures with the same
sign. The outcome of the collision is chosen stochastically

according to the probabilities represented in the partition
sum. Independent of this outcome, the resulting parasite
deformation is only temporary, meaning that once the collision
is solved the rod proceeds its migration with unit curvature.
Progressively, the deformed region shifts towards the back
of the rod. If the interval I consists only of « = %1, we
recover the binary model. When /. is empty, the rod performs
a random reorientation, again as in the binary model. The
inverse temperature 8 describes the importance of the energy
terms for adhesion and bending versus an equal partitioning
between all possible states.

C. Classification of the trajectories

We analyze the trajectory the parasite describes under the
different interaction rules by tracking its rear end P. Using a
custom-made MATLAB routine we classify which proportion
of the trajectory of P is spent either circling around a pillar
(ARN)), circling between pillars (BTW), or moving through the
lattice in a linear fashion (LIN). Portions of the trajectory not
falling in any of these categories are classified as meandering
(MND). Sample results of this classification are shown in
Fig. 6. In the following we analyze the trajectories of the
parasite for two representative values of o =0.7,1.3 and a
set of distances d € [0.2,3] and compare the results with the
predictions from the geometric diagram in Fig. 4(b). The
details of our analysis of the trajectories are explained in
Appendix B.
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Classification of motility patterns

e circling around pillars esss» linear path

e circling between pillars esss» meandering path

FIG. 6. (Color online) Sample output of the algorithm classifying
the motility patterns. For each trajectory we isolate paths circling
around obstacles (ARN), between obstacles (BTW), and linear paths
(LIN); the parts of the trajectory excluded from these categories are
classified as meandering (MND). In the right box, the arrows identify
the transitions from one pattern to another.

D. Simulation results

In our model, the parameters 8 and E ¢ describe the effects
of adhesion and bending. Because at the current stage it is not
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possible to estimate their values from a microscopic model, we
fix their values to § = log?2 and Ey,,x = 1 as a representative
choice for a wide set of parameters that lead to results
consistent with the experimental observations. In accordance
with experimental observations, the typical parasite length is
setto L = 2m /3. In the following, each parameter set is studied
using N = 50 independent simulations. The rod moves with
constant unit speed and the trajectory is measured in terms of
the nondimensional arc length s. The rod is discretized in steps
ds = 0.02L and each simulation can last until the trajectory is
200L long. For numerical reasons, a simulation is terminated
when, at a random reorientation, gle distance between P and
the obstacle is below dp;, = 0.01L.

We start with the condition E,,; = +00, which means
that the collision with an obstacle is solved by a random
reorientation only when none of the possible deformations is
able to free the rod. Results of the binary model, corresponding
to the limiting case x = %1, are represented in Figs. 7(a)
and 7(d). For 0 = 0.7 [Fig. 7(a)] we observe, with increasing
d, a dominance of MND, then ARN, and finally BTW. The
transition from MND to ARN takes place in correspondence
with the dashed line that represents the curve separating region
1 fromregion 2 in Fig. 4(b). Similarly, the transition from ARN
to BTW begins at the dashed-dotted line, that represents the
line separating regions 2 and 3 in Fig. 4(b). For o = 1.3 we only
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FIG. 7. (Color online) Occurrence of motility patterns for stiff and flexible rods. The red (squares), blue (circles), and green (downward
triangles) solid lines denote the ARN, BTW, and LIN patterns respectively. The black solid line (upwards triangles) refers to MND patterns.
(a) For the binary model with o = 0.7 the distance dependence of the motility patterns is characterized by a transition from MND to ARN to
BTW. The transition from ARN to BTW is conserved also when the rod is flexible (b),(c), but the transition from MND to ARN is lost in (c),
when the rod can increase its absolute curvature to avoid an obstacle. The dash-dotted and dashed lines represent the lines in Fig. 4(b) separating
region 1 from 2 and region 2 from 3 for p < 1. The transition from one motility pattern to another takes place as predicted by Fig. 4(b). (d) The
binary model for p = 1.3 only allows for a transition from MND to BTW. Flexible rods (b),(c) can also circle around the obstacles and move
linearly in the array. The dash-dotted line represents the line in Fig. 4(b) separating region 1 from 4 for o > 1. It corresponds to the onset of

BTW patterns for both the stiff and the flexible rods.
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Small distance Intermediate distance circling and linear patterns where in the binary case only
_ _ _ _ meandering is possible [compare Fig. 7(d) with Figs. 7(e)
pillar 1 pillar 2 pillar 1 pillar 2 and 7(f)]. Figures 7(b) and 7(e) refer to a rod that can choose

> curvatures from the interval 7V = [—1,1], while Figs. 7(c)

and 7(f) correspond to a rod choosing from the wider interval

\ collision I® = [—(/L + 1/2),(r/L + 1/2)]. Since in this last case

¢ y the rod can increase its absolute curvature to solve a collision,
P P

BTW competes with ARN at lower d than with IV, leading
to an increased MND and BTW pattern and a faster decrease

(@) (b) of ARN.
Figure 7(e) shows a dip in the ARN curve. In fact, for
Large distance pillar radii p > 1 circling can take place only if the rod is
g flexible, at the cost of continuous collisions with the obstacle
pillar 1 pillar 2 and adjustments of the curvature of the rod. Three different

on pillar 1, but pillar 2 interferes with the trajectory of the rod
after the curvature change. As a consequence, circling around

situations can be isolated (Fig. 8). The distance dis very small

[Fig. 8(a)]: in this case the adjustment in the curvature of the

rod depends on both pillar I and pillar 2. For intermediate

values of d [Fig. 8(b)] the change in curvature depends only
P

(c) pillar 1 is possible only at the cost of separate collisions with
. o . ) both pillar 2 and pillar 1. For d large enough [Fig. 8(c) pillar
FIG. 8. (Color online) Collisions of the parasite with the ob- 2 does not interfere with the trajectory of the rod after the

stacles depending on the lattice spacing. (a) At small distances a
collision causes the rod to deform based on pillar 1 and pillar 2.
(b) Intermediate distances force the rod to interact separately with
pillar 1 and pillar 2, while at large distances (c) the rod does not
interact with pillar 2. Since intermediate distances correspond to an
augmented collision frequency, random reorientations are also more
frequent and circling around the obstacles is less likely than at small
or large distances.

curvature change due to the collision with pillarl. Therefore,
circling around pillar 1 does not require collisions with any
other pillar.

Figure 7(f) does not show any dip in the ARN curve; this is
due to the interval I®® being wider than I(". The possibility of
increasing the absolute curvature offers more possibilities to
solve the collision at intermediate distances without randomly
reorienting (Fig. 8). In addition, BTW competes with ARN at
lower d than in the case of " , thereby favoring the decrease

observe a transition from MND to BTW, because the obstacle in the circling frequency at larger d.
radius is too large to allow for ARN. The transition coincides We next consider the case of a finite E,,;, which means
with the dashed-dotted line that separates regions 2 and 3 in  that the parasite can solve collisions by tumbling even when
Fig. 4(b). Results from the binary model therefore agree very ~ they could be solved by a deformation. The effect of Ejp is
well with the predictions from the geometrical phase diagram. relevant in conditions where collisions between the rod and
Allowing the rod to change curvature upon collision the obstacles are frequent and the possible solutions limited,
has the effect of increasing the occurrence of circling for ~ i-e., for o > 1 and low d (Fig. 9 for IM). Low values of
P <1 [Figs. 7(b) and 7(c)]. For § > 1 the flexibility allows E . favor random reorientations, particularly at low distances.
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FIG. 9. (Color online) Effect of a finite E,,,, on the migration patterns of a flexible rod (I). The red (squares), blue (circles), and green
(downward triangles) solid lines denote the ARN, BTW, and LIN patterns respectively, the black solid line (upward triangles) refers to MND
patterns. The dash-dotted line represents the onset of BTW as predicted by Eq. (2). (a),(b) Low values of E,,,;, allow the rod to solve a collision
via a random reorientation even if the obstacle could be avoided via a change in curvature. This favors meandering patterns at low d, when
collisions with the obstacles are most frequent. (c) High values of E,,,, restore the changes in the bending of the rod at low d [Figs. 7(e)
and 8(a)].
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FIG. 10. (Color online) (a) An anisotropic obstacle array consists of pillars that have half of the contour (black) triggering a random
reorientation of the rod, while the other half favors changes in the bending of the rod. We divide the lattice in sectors corresponding to the
natural directions of the lattice in order to quantify the directionality imposed by the anisotropy on the trajectories. (b),(c) Fraction of trajectories
that end up in each of the sectors defined in (a). Sectors from 1 to 6 are plotted, in order, in blue, red, green, black, yellow, and cyan. Sector 2
can be distinguished by the square markers. Anisotropic obstacle arrays (b) favor the occupancy of sector 2 (red line, square markers), whereas
no sector is preferred in the isotropic case (c). The anisotropic obstacle array induces directionality because it renders less likely for the rod to

move from a noncoated to a coated region than the other way around.

Consequently, meandering paths grow at low d and the dip
in the ARN disappears [Figs. 9(a) and 9(b)], while it is still
present at higher E,,,;, [Fig. 9(c)].

IV. MODEL EXTENSIONS

A. Anisotropic obstacle arrays

We introduce an anisotropy in the obstacle array by
assuming that half of the contour of the obstacle can trigger
a random reorientation of the rod upon collision. Collisions
occurring at the reorienting contour [black in Fig. 10(a)]
are assigned a tumbling energy E;,, = —20, while we set
E\np = 20 otherwise. To analyze the effect of the anisotropy
on the trajectories we divide the lattice in six sectors, each /3
wide, and measure the fraction of the simulated trajectories
that terminate in each of them. The sectors are centered at the
starting point of each trajectory; in Fig. 10(a) they are centered
on the obstacle to emphasize the connection with the natural
directions of the lattice.

The effect of the reorienting contour is pronounced for
© > 1, that is, when the rod can circle around an obstacle only
via continuous collisions and curvature adjustments. Under the
obstacle configuration of Fig. 10(a) the rod is more likely to
end up in sector 2, represented by the red line (square markers)
in Fig. 10(b) (curvature interval (V). In contrast, no sector
stands out when we analyze the location of the end points
in an isotropic obstacle array [Fig. 10(c)]. The directionality
in the migration induced by the anisotropy in the pillar array
can be explained with the help of Fig. 10(a). A rod moving
from the reorientation-triggering region to a normal region of
the obstacle collides with it in the normal region and solves
the interaction via a deformation. On the contrary, a rod that
moves from the normal region to the reorientation-triggering
region collides with the part of the pillar that forces a random
reorientation. Since the center of the random reorientation is
the rear end P, the random reorientation takes place close
to the normal region of the obstacle. Effectively, this feature
renders less likely for the rod to move from a normal to a

reorientation-triggering region than the other way around,
thereby leading to the observed directionality.

B. Heterogeneous obstacle arrays

Letus consider environments with obstacles of two different
radii, as in Fig. 11(a). In the following we will refer to the
outer (more common) pillar radius as g, while the inner, less
common pillar radius is labeled p,. We refer to the distance
between two neighboring outer pillars as d.

Geometrical considerations analogous to those for the
homogeneous obstacle array allow us to state that the rod
moves steadily in the (0,0p,d) lattice if it can circle between
the pillars (BTW), around the outer pillar (ARN) or around the
inner pillar (ARN,) [Fig. 11(a)]. The pattern ARN, is possible
for p, < 1. The condition on d for ARN, to take place is
d > 1 — p. The pattern ARN is possible for o' < 1, while the
corresponding conditions on d are

d>1-p, forp,<p, (6)

d>1-25+4p, forp,>p. (7

Finally, BTW can take place for

d > SIV3(1+ 5) + VA4 + 5P — (B + 121 — 27,
7, ®)

for p, <

d>~3-p2—-+3), forp,>p. )

We now investigate how the trajectories of a flexible rod
(curvature interval /") in a heterogeneous pillar array differ
from those in a homogeneous array. In order to do that,
we adapt the MATLAB routine for trajectory classification to
distinguish circling around the two different kinds of pillars.
As a control, we apply the routine to a flexible rod (IV)
with E;,,, = 400 in a homogeneous pillar array [Fig. 11(b)].
Coherently with the homogeneity of the array, the occurrence
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FIG. 11. (Color online) (a) Heterogeneous arrays include ob-
stacles of two different radii, p and p,; p is three times more
common than p,; p can be smaller or larger than p,. Stable
motility patterns for a bent rod in the lattice are circling between
obstacles (BTW) or circling around o or p, (ARN and ARN,,
respectively). (b)—(d) Occurrence of motility patterns for a flexible
rod (V) in heterogeneous obstacle arrays. The red (squares), yellow
(right triangles), blue (circles), green (downward triangles), and
black (upward triangles) solid lines denote, in this order, ARN,
ARN,, BTW, LIN, and MND patterns. The dashed yellow line
(right triangles) corresponds to three times the frequency of ARN,.
(b) If o' = p, the occurrence of ARN reflects p being three times
more common than p,. This correspondence is broken when g #
in (c) and (d), because the rod associates more often with obstacles
that represent a better geometrical fit.

of circling around pj, is 1/3 of the occurrence of circling
around p. The deviations between the dashed yellow line
(right triangular markers), that is, three times the occurrence
of circling around p, and the red line (square markers, circling
around p), are due to finite statistics effects.

Figures 11(c) and 11(d) show the analysis of the patterns for
the two pillar pairs (0,0,) = (1.3,1.1) and (o, ;) = (1.3,1.5).
In both cases, all the pillar radii exceed the radius of curvature
of the rod, therefore making circling around any of the
pillars possible only at the cost of continuous interactions and
adjustments of the rod’s curvature. Focusing on the circling
patterns around each of the two available radii, we see that
the rod associates preferably with the pillars that have the
curvature closest to 1, avoiding the other option. In other
words, the rod spends more time in the regions of the pillar
array that represent a better geometrical fit.

C. 3D obstacle arrays

In three dimensions, we have to consider not only bending,
but also twisting as a fundamental deformation mode of the
parasite. We extend our model to three dimensions by adding a
twist to the bent rod with the introduction of a nondimensional
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FIG. 12. (Color online) (a) Three-dimensional obstacles array
consist of identical cylinders arranged according to a hexagonal
lattice. A bent and twisted rod that moves in the array on a helical
path is deformed and deviated by the interaction with the obstacles
and can as a result loop around the cylinders. (b)—(d) Mean number
of cylinders per simulated trajectory involved in one or more looping
events. The blue (circles), red (squares), green (upward triangles),
black (downward triangles), and yellow (right triangles) curves refer,
respectively, to 5 = 0.6, 0.7, 0.8, 0.9, and 1. Looping is deterred by
variations in the torsion of the rod (b), but is favored at smaller radii
for rods with a flexible curvature, as in (c) and (d).

torsion parameter 7o. Motivated by the interaction between
sporozoite and blood vessels, as an obstacle array we now
consider a hexagonal lattice of hard cylinders of radius p
[Fig. 12(a)]. The unperturbed trajectory of the rod is assumed
to be a helix with unit curvature and torsion T, so that, in terms
of the nondimensional arc length s, a trajectory around the z
axis is expressed as

HI?Q COS(S 1+?g)

0

hg z(s) = ﬁ sin (sy/1+75) |- (10)
S
143,

The three-dimensional equivalent of ARN is a helical trajec-
tory looping around a cylindrical obstacle.

For simplicity we consider only positive curvatures and
torsions. Let us consider a set of curvatures I = [Kmin,Kmax]
and a set of torsions J = [Tmin, Tmax ] that the rod can assume in
order to avoid a cylinder upon collision. To each configuration
of the rod we assign an energy E:

L
E =/ ds{E[k(s)] + E-[t(s)]}
0

L
= f ds{[x(s) — 11 + alz(s) — TI*}, (11)
0

where o is a coefficient defining the relative contribution
of the curvature and torsion energy terms. Similarly to the
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two-dimensional case [Eq. (5)] we define the partition function

Z(B) = Z Z o BUEKOI+E [t()])

kel telJ

ZZ Zefﬂ{EK[K(S)]JFEr[T(S)]}_ (12)

kel . tel,

In order to avoid overly expensive computations, in the
following we use the zero temperature limit (8 — 00), which
constrains the system to its minimal energy states. The pair
(,7) that solves a collision is the one minimizing E in 1. x JL.

We choose L = 27/3,a = 1,and Ty = 0.5. Each parameter
set is supported by N = 150 independent simulations when
the rod is flexible in the curvature or in the torsion only,
by N = 100 when both curvature and torsion can vary. The
rod is discretized in steps ds = 0.02L while each simulation
can last until the trajectory is 200L long. A simulation is
terminated if no (k,7) configuration allows the rod to solve the
collision. The intervals for curvature and torsion are [0,27 /L]
and [0,+/(2/L)* — 1] respectively.

We compare the trajectories of rods that are allowed to
solve collisions by changing only their curvature, only their
torsion, or both. Trajectories are characterized by the number
of cylindrical obstacles involved in at least one looping event
[Fig. 12(a)]. We find that looping around the obstacles is
favored when the rod is allowed to change its curvature upon
collision, but is suppressed when only the torsion is allowed
to change [Figs. 12(b) and 12(c)]. When both curvature and
torsion are variable, the rod can loop around the obstacles also
in very crowded environments [Fig. 12(d)].

V. DISCUSSION

Fast and effective sporozoite migration in the host skin is
essential to ensure successful transmission of malaria [1-3].
Starting from the striking observation that the sporozoite stage
is the only phase of the life cycle of the malaria parasite
in which the cells are crescent-shaped [6], we have studied
the consequences of this peculiar geometry for sporozoite
motion in structured environments. Existing studies addressing
sporozoite motility have mainly focused on the molecular
mechanisms underlying the propulsion machinery [10,32].
Here we take a more macroscopic viewpoint and build on pre-
vious work that has investigated experimentally the migration
of sporozoites in pillar arrays [13]. In this paper we have used
geometrical arguments and stochastic computer simulations
to analyze sporozoites as self-propelled and curved rods. We
have focused on migration in arrays with circular or cylindrical
obstacles because of our focus on geometrical determinants.

For arrays of identical circular obstacles, the system is
most interesting when the obstacles have radii larger than
1, so that the bent rod, that has unit curvature, can associate
with the obstacles only at the cost of continuous collisions.
In this case, the migration patterns of flexible parasites are
much richer than those of stiff parasites. Flexible parasites
can associate to the obstacles and also move linearly in the
lattice where, under the same conditions, stiff parasites can
only collide and reorient, resulting in meandering patterns
[Figs. 7(d)-7(f)]. A flexible parasite can solve its collisions
via a change in curvature, therefore reducing the frequency
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of random reorientations and describing a trajectory that in
general is more stable and smoother.

Flexible parasites are sensitive to anisotropies in the
obstacle array [Fig. 10(a)], that trigger directional movement
[Fig. 10(b)]. This finding provides an interesting experimental
perspective. In fact, selectively coated obstacles offer a simple
coupling between mechanical and chemical properties in
sporozoite motility. Assays of this kind are in principle
experimentally realizable [33], provided a suitable inhibitor of
adhesion to the substrate and the pillars is used. For example,
polyethylene glycol (PEG) has been used previously to prevent
sporozoite adhesion [11]. Such a system would contribute to
the validation and improvement of the model, in addition
to further help the understanding of sporozoite motility in
controlled environments and in the presence of an elementary
anisotropy. Indeed, one could envision experimental setups of
intermediate complexity, for example arrays of soft elastic
pillars, that could give information on the forces involved
in collisions. Insights from such systems would then help to
quantitatively analyze sporozoite motility in vivo.

We have further used our model to analyze the effect of
obstacles of different sizes [Fig. 11(a)] on the trajectories
of the rod. Our results show how the sporozoite statistically
associates with preference to the obstacles that provide a better
fit to its shape (Fig. 11). It is tempting to interpret this result
in vivo, when the sporozoite glides through the dermis of the
host aiming at a blood capillary. The ability to spend more time
around structures of matching size could help the parasite in the
search for a blood capillary to invade. Surprisingly, the typical
radius of a blood capillary is about 8—10 um, very close to the
typical radius of curvature of sporozoites [6], that are also ob-
served to loop around blood vessels before invading them [3].

As a last step, we have extended the model to account
for parasite migration in three-dimensional obstacle arrays
[Fig. 12(a)]. In this case, the parasite is both bent and twisted
and moves, if unperturbed, on a helical trajectory. Collisions
with the cylindrical obstacles deviate the rod and allow for
the trajectory to loop around them [Fig. 12(a)]. This feature
is intriguing, in that it closely resembles the circling of
sporozoites around blood vessels in vivo [3]. Our findings
reveal that flexibility in the curvature of the parasite is essential
for looping to take place. Torsional flexibility alone does not
allow for looping, but combined with curvature variations
boosts looping in very packed environments (Fig. 12). We
speculate that sporozoite motility in vivo and the association to
blood capillaries is greatly favored by the ability of the parasite
to adapt its curvature and torsion based on the structure of the
surrounding environment. New techniques to custom design
three dimensional microenvironments [34] represent a high po-
tential for further experimental studies of sporozoite migration.

To conclude, we have shown that sporozoites migrating
in complex environments can be efficiently modelled as self-
propelled bent (and, in three dimensions, twisted) rods. The
flexibility in the bending of the rods facilitates migration in
obstacle arrays that do not represent a good geometrical fit.
Our focus on cell shape and on the details of the interaction
with the obstacles shows that much of the complexity observed
in experiments studying sporozoite migration [13] can indeed
stem from the geometrical and mechanical properties of the
system. Using three-dimensional cylindrical obstacles we have
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shown that trajectories can loop around them, suggesting a
prominent role of the geometrical properties of sporozoites
also during migration in the skin of the host, that is successful if
it terminates with the finding and invasion of a blood capillary.
Our work provides a theoretical framework to analyze future
experiments in a quantitative manner.

We finally note that our modeling approach, focusing on
basic geometrical and mechanical properties, is not limited to
the study of sporozoite motility. In fact, it could be used for
the study of other motile cells that undergo temporary shape
changes during gliding, for example other apicomplexa such
as Toxoplasma gondii [35] or gliding bacteria [36].
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APPENDIX A: DETAILS ON THE EXPERIMENTS
1. Ethic statement

All animal experiments were performed concerning FE-
LASA category B and GV-SOLAS standard guidelines.
Animal experiments were approved by German authorities
(Regierungsprasidium Karlsruhe, Germany), 8 Abs. 1 Tier-
schutzgesetz (TierSchG).

2. Plasmodium sporozoite generation and imaging

Fluorescent Plasmodium berghei (strain NK65) sporozoites
were produced in Anopheles stephensi mosquitoes and isolated
as described in Ref. [37]. Sporozoites were harvested between
17 and 21 days after mosquito infection. Imaging of motile
sporozoites was performed on an inverted Axiovert 200M
Zeiss microscope using the GFP filterset 37 (450/510) at room
temperature. Images were collected with a Zeiss Axiocam
HRM at 1 Hz using Axiovision 4.6 software and a 10x Apoplan
objective lens (NA = 0.25). DIC (differential interference
contrast) images of the substrate were taken before and after
the movie sequence to generate merged files of the PDMS
pillars with the time-lapse series (or projected trajectories) of
motile sporozoites. Generally, a time lapse series was recorded
that comprised one image per second for a total of 300 frames.
The parasites were either tracked manually using the Imagel
manual tracking plugin or with ToAST [31]. Images were
compiled with ImageJ.

3. Production of micropillar substrates

We used the micropillar arrays described in Ref. [13] plus
a new one exhibiting pillars of different diameters. Briefly,
a master mask was designed using a custom-made program.
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This was converted with the mask-writer software DWL-66
(Heidelberg Instruments). On the mask, the individual pillars
were arranged in hexagonal patterns to minimize deviations
in the desired distance between pillars in any direction. The
master mask was produced by ML&C Jena. The PDMS
micropillar substrates were then made by photolithographic
and replicate moulding techniques as described in Ref. [38].
To improve the wetting of the hydrophobic pillar substrates
they were first treated chemically with Extran, an alkaline
solution (Merck, Germany), in a 1:10 dilution in H,O for 20
min on a shaker. Afterwards the pillar arrays were washed
three times for 10 min in distilled water. A silicon flexiPERM
chamber (GreinerBioOne) was used to record sporozoites,
which surrounds the micropillar substrate and thus maintains
a stable environment essentially without flow. For the motility
studies on pillar substrates the sporozoites in motility medium
(RPMI, Roswell Park Memorial Institute, including 3% bovine
serum albumin) were added to the chamber surrounding one
pillar field.

4. Curvature measurements

We have measured the curvatures of Fig. 3 starting from
images of fluorescent sporozoites on a flat substrate. We have
used MATLAB routines to extract the morphological skeleton of
each cell. We have then computed the radius of the circumcircle
of all the triangles that can be built using the end points of the
skeleton as two of the vertexes. The curvature of the parasite is
defined as the inverse of the average of the circumcircle radii.

APPENDIX B: CLASSIFICATION
OF MOTILITY PATTERNS

1. Two-dimensional obstacle arrays

To analyze the motion of a bent rod in an obstacle array we
study the positions of its rear end P. The trajectory of P is con-
tinuous everywhere, except when a random reorientation takes
place. In this case, the bent rod rounds up with center P and
uniformly samples an exit angle, from which it resumes migra-
tion with unit curvature and a probability 1/2 of moving either
clockwise or counterclockwise. The maximum length required
for the point P to lose memory of the rounding-up is L.

The analysis of a trajectory T begins with a check for
random reorientations and the exclusion of the L long paths
following them. Let n, be the number of random reorientations
in T, so that there are at most n, 4+ 1 continuous paths 7; left
to be analyzed independently. Within each 7;, we distinguish
between linear (LNR) paths, paths circling between pillars
(BTW), around a pillar (ARN), as well as meandering paths
(MND). In the case of arrays with obstacles of two different
radii we distinguish circling around each of the two kinds
(ARN and ARNjy).

We define minimum lengths for the continuous paths 7;
to be possibly classi}de as LNR, BTW, or ARN. Paths
longer than Ly ng = 8L are considered for LNR classification.
Paths longer than Lgrw = 27 /Ko are considered for BTW
classification. Paths longer than Larny = 37 max(1/ky, 0") are
considered for ARN classification. For homogeneous arrays,
o' = p, while for heterogeneous arrays p’ = (¢ + 05)/2. The
default curvature of the rod k; is 1 with our choice of non
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dimensional quantities, but is explicitly written here for clarity
purposes. Paths 7; shorter than min(Lynr,Lprw,LARN) are
classified as MND. Distinction between LNR, BTW, and ARN
paths takes place independently. Possible overlaps are taken
care of as a final step.

2. Circling between pillars

We compute the center of mass Rcm of each continuous
piece of length Lgrw of a trajectory 7;. The segment is
classified as BTW if Rcy is outside the pillars, its distance
from the closest pillar is larger than &, Vand (|T; — Rem|?) is
below a user-defined threshold that we set to rgrw = 0.1/kp.

3. Circling around pillars

For each continuous piece of length L zgrn of a trajectory T;
we compute the center of mass Rcy. The segment is classified
as ARN in two cases. (a) Rcy is outside the pillars, its distance
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from the closest pillar is below Eo_l —2p* and (|T; — Reml?)
is below a user-defined threshold fagn. (b) Rcem is inside a
pillar and (|7; — Reml?) < tarn. In both cases, we choose
tarn = 0.3 /K. For homogeneous pillar arrays o* = p, while
for heterogeneous arrays 5* is the radius of the pillar that the
parasite is circling around.

4. Linear

For each continuous piece of length Ljng of a trajectory
T; we compute the elongation as the ratio between the
end-to-end distance and Lyngr. The segment is classified as
LNR if the elongation is above the user-defined threshold
ting = 0.8.

All the regions that have not been classified up to now are
classified as MND. We take care of the regions that have been
classified as more than one pattern by ranking ARN before
BTW, which in turns ranks before LNR.
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