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Stability of Adhesion Clusters under Constant Force
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We solve the stochastic equations for a cluster of parallel bonds with shared constant loading,
rebinding, and the completely dissociated state as an absorbing boundary. In the small force regime,
cluster lifetime grows only logarithmically with bond number for weak rebinding, but exponentially for
strong rebinding. Therefore rebinding is essential to ensure physiological lifetimes. The number of
bonds decays exponentially with time for most cases, but in the intermediate force regime a small
increase in loading can lead to much faster decay. This effect might be used by cell-matrix adhesions to
induce signaling events through cytoskeletal loading.
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analysis by Seifert [9]. However, physiological loading of ing rate � � kon=k0, and dimensionless overall force
Biological systems have to be able to change quickly in
response to external stimuli. This is one of the reasons
why molecular bonds in biological system are based on
noncovalent interactions and have short lifetimes of the
order of seconds. In order to achieve long-lived assem-
blies, cells in multicellular organisms adhere to the ex-
tracellular matrix and to each other through clusters of
adhesion molecules. The number of receptors in adhesion
contacts can range from just a few (e.g., for tethering of
leukocytes to vessel walls or in the nascent contacts close
to the leading edge of a locomoting cell) to �105 (e.g., in
mature cell-matrix contacts). Most types of adhesion
clusters are coupled to the cytoskeleton and have to
function under mechanical load, which leads to exponen-
tially increased dissociation rates [1]. Rebinding of bro-
ken bonds is often facilitated by the densely packed
arrangement of molecular bonds in the cluster. How-
ever, if the cluster operates under force, it is likely to be
pulled away by some elastic relaxation process in the
moment the last bond has been broken. Therefore the
cluster usually cannot rebind from the completely disso-
ciated state. Recently, the interest in the role of force at
adhesion clusters has strongly increased also in the bio-
logical community, since it has been shown that force at
cell-matrix adhesions correlates with contact size and
intracellular signaling [2].

Quantitative characterization of adhesion bonds has
made tremendous progress during the past decade,
mainly on the level of single molecules [3–5]. Because
of the low binding energies of adhesion bonds, thermal
activation is important, and theoretical models are re-
quired to interpret experimental data [6]. In order to make
contact with situations of biological interest, the quanti-
tative effort now has to be extended to clusters of adhesion
bonds. Clusters also allow one to study the effect of
rebinding, which is difficult to address on the level of
single molecules [7]. Recently, micropipette techniques
have been used to study cluster dissociation under a linear
ramp of force [8], in good agreement with a theoretical
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adhesion clusters is usually more or less constant on the
time scale of cluster lifetime. The stability of adhesion
clusters under constant force has been first modeled by
Bell [1], but his treatment was based on a simplifying
deterministic equation for the mean number of bonds.

In this Letter, we present exact and simulation results
for a stochastic version of the Bell model. In contrast to
the deterministic model, the stochastic one allows one to
treat the completely dissociated state as an absorbing
boundary. Moreover, it includes fluctuation and nonlinear
effects which are important for small adhesion clusters.
The main objective of this work is to obtain analytical
results for generic features of adhesion clusters.We present
several new formulas for cluster lifetime as a function of
cluster size, rebinding rate, and force, which now can be
used for quantitative analysis of adhesion experiments.
Although we do not address the specific features of
cell-matrix adhesions, our model suggests an appealing
mechanism by which cells might induce signaling events
through cytoskeletal loading.

Following Bell [1], we consider a cluster with a con-
stant number N0 of parallel bonds. At any given time,
each of the different bonds can be either open or closed.
The constant force F applied to the cluster is assumed to
be shared equally between the i closed bonds (0 � i �
N0). We assume that a single bond under force F ruptures
with the dissociation rate k � k0e

F=iFb introduced by Bell
[1], which can be rationalized by modeling bond rupture
as a thermally activated escape over a sharp transition
state barrier [6]. In this framework, the force scale Fb �
kBT=xb is set by thermal energy kBT and the distance xb
between the potential minimum and the transition state
barrier along the reaction coordinate of rupture. For
typical values xb � 1 nm and T � 300 K, we find the
typical force scale Fb � 4 pN. For the single bond asso-
ciation rate kon, we assume that it is independent of force.
Physiological values for both k0 and kon are expected to be
in the 1=s range. For the following, it is useful to intro-
duce dimensionless time � � k0t, dimensionless rebind-
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FIG. 2. Solution of the master equation gives the state prob-
abilities pi for i bonds being closed at time � (0 � i � N0).
Here they are plotted for N0 � 10. (a) � � 0 and f � 0.
(b) � � 1 and f � 0 for a reflecting boundary at i � 0.
(c) Same for absorbing boundary. (d) � � 0 and f � 50.
(a) and (b) follow from Eq. (5), (c) is obtained from Monte
Carlo simulations, and (d) follows from Eq. (6).
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FIG. 1. Schematic representation of an adhesion cluster under
constant force: There are N0 � 5 receptor-ligand pairs, of
which i � 3 are closed and equally share the constant dimen-
sionless force f. Single closed bonds rupture with dissociation
rate k � k0e

f=i and single open bonds rebind with force-inde-
pendent association rate kon. Our model has three parameters:
cluster size N0, dimensionless rebinding rate � � kon=k0, and
dimensionless force f.
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f � F=Fb. Figure 1 shows a schematic representation of
our model. Since bond rupture is a discrete process, the
stochastic dynamics of the bond cluster can be described
by a one-step master equation [10]

dpi

d�
� r�i� 1�pi�1 � g�i� 1�pi�1 � �r�i� � g�i�	pi;

(1)

where pi��� is the probability that i bonds are closed at
time �. The reverse and forward rates between the pos-
sible states i are

r�i� � ief=i; g�i� � ��N0 � i�: (2)

Depending on the experimental setup, rebinding from the
completely dissociated state (i � 0) might be possible
(reflecting boundary) or not (absorbing boundary). For
f � 0 and a reflecting boundary at i � 0, we deal with
natural boundaries, that is, given reasonable initial con-
ditions, no special equations are needed to treat the
boundaries. For finite f, r�0� � 0 is required to prevent i
from becoming negative. An absorbing boundary at i � 0
requires g�0� � 0. The mean number of closed bonds N as
a function of time � is N � hii �

PN0
i�0 ipi. From the

master Eq. (1), one can derive

dhii
d�

� �hr�i�i � hg�i�i: (3)

If r and g are both linear functions in i, Eq. (3) becomes
an ordinary differential equation for N. This suggests to
study the following deterministic equation:

dN
d�

� �Nef=N � ��N0 � N�; (4)

as has been done by Bell [1] for constant loading and by
Seifert [9] for linear loading. However, for finite force f,
the solution of Eq. (4) does not give the correct result for
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the first moment, since then the rate r defined in Eq. (2) is
nonlinear in i and the average in Eq. (3) cannot be taken.
More importantly, a differential equation such as Eq. (4)
follows from the stochastic equations only in the case of
natural boundaries. In order to treat the biologically
relevant case of an absorbing boundary, one therefore
has to study the stochastic description Eq. (1).

A full stochastic solution amounts to finding the set of
state probabilities pi��� as a function of the three dimen-
sionless parameters N0, �, and f. For force f � 0 and a
reflecting boundary, the solution results from the generat-
ing function given by McQuarrie [11]:

pi��� �
�
N0

i

�
��� e��1�����i�1� e��1�����N0�i

�1� ��N0
: (5)

Here and in the following we use the initial condition
N�0� � N0. If also rebinding � � 0, then we deal with the
simple case of independently decaying bonds. Figure 2(a)
shows that, in this case, a cluster with ten bonds decays
from i � 10 to 0 by visiting each of the intermediate
states to an appreciable degree. In order to stabilize the
cluster, one has to introduce rebinding. Then there is fast
relaxation to a stable stationary state, as shown in
Fig. 2(b) for � � 1. For the biologically relevant case of
an absorbing boundary, a stable stationary state does not
exist and the cluster will always dissociate on the long
run. In this case, one has to solve the first passage problem
of reaching the state i � 0 for the first time. This can be
done semianalytically by using Laplace transforms,
where the last backtransform has to be done numerically.
Alternatively, one can solve the master equation numeri-
cally by the Monte Carlo method (most efficiently with
the Gillespie algorithm [12]), as we always do in the
108102-2
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general case, when both rebinding � and force f are finite.
Figure 2(c) shows that, in this case, the plateaus from
Fig. 2(b) tilt downward, while p0 increases steadily with
time �. Stability further decreases if force f is turned on.
For very large force, rebinding (including the boundary
type at i � 0) becomes irrelevant, because the reverse rate
r dominates the forward rate g. Using a recursive scheme
to construct pi from pi�1, for � � 0 we find

pi��� �

 YN0

j�i�1

r�j�

!XN0

j�i

(YN0

k�i
k�j

e�r�j��

r�k� � r�j�

)
: (6)

The probability for cluster dissociation at time � is
p1���r�1�. Setting i � 1 in Eq. (6) and using Eq. (2),
one obtains a formula which has been given before in
Ref. [13]. Figure 2(d) shows, for the case f � 50, that now
the cluster decays very rapidly, with only a few of the
intermediate states being visited to an appreciable degree.

Once the set of state probabilities pi��� is known, one
can calculate any quantity of interest, in particular, the
mean number of closed bonds N as a function of time �.
We find that N��� usually decays exponentially. This is
demonstrated in Fig. 3(a) for the case f � 0. The origin
of the exponential decay can be understood as follows:
First, the system equilibrates into a binomial distribution
peaked around Neq � �N0=�1� �� as described by the
result for the reflecting boundary, that is Eq. (5). The
lower tail of this distribution then ‘‘leaks’’ into the state
i � 0 due to the absorbing boundary. The smaller N0 or �,
the larger the tail contribution at i � 1 and the faster the
systems lose realizations to the absorbing boundary. The
resulting decay can be approximated by N��� � Neqe�a�

with a � p1�1� from Eq. (5). For the values of N0 used in
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FIG. 3. (a) Simulation results for the mean number of closed
bonds N at time � for f � 0, � � 1, and N0 � 1, 2, 5, 10, and
15 (lower to upper lines). (b) Four typical simulation trajecto-
ries for each of the cases N0 � 10, 100, and 1000 for � � 1 and
f=N0 � 0:25. Dotted lines are N���. (c) Same for f=N0 � 0:3.
(d) Comparison of stochastic (solid lines) and deterministic
(dashed lines) results for N��� for N0 � 5 and 10 for � � 1 and
f=N0 � 0:3.
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Fig. 3(a), one finds a � 4:6� 10�4 9:7� 10�3, 0.16 and
0.5 for N0 � 2, 5, 10, and 15. Numerically, we find a �
2:5� 10�4, 8:5� 10�3, 0.13 and 0.6; thus, the leakage
estimate is rather good.

In order to assess the role of fluctuations, it is instruc-
tive to study single simulation trajectories. Since we use
the Gillespie algorithm for exact stochastic simulations
[12], they are expected to resemble experimental trajec-
tories. Figure 3(b) shows that, for large cluster size and
small force, typical trajectories fluctuate around a plateau
value close to Neq. However, for small cluster sizes,
fluctuations to smaller bond numbers lead to fast loss of
realizations to the absorbing boundary. Final decay is
rather abrupt due to force-accelerated rupture for decreas-
ing bond numbers. Figure 3(c) shows that, for sufficiently
large force, also the large clusters decay quickly. The loss
of stability for any cluster size follows from Bell’s stabil-
ity analysis of the deterministic Eq. (4), which yields
a critical force fc � N0plog��=e� [1], where the product
logarithm plog�a� is defined as the solution x of xex � a.
For typical values of N0 and �, fc belongs to the inter-
mediate force regime, 1< f < N0. For � � 1, we have
fc=N0 � 0:278. Figures 3(b) and 3(c) are below and
above the critical force, respectively. In contrast to
Bell’s continuum analysis, our stochastic analysis shows
that for small clusters a small increase in loading can lead
to the fast decay characteristic for the case without re-
binding also for forces below fc. Figure 3(d) compares
N��� as obtained from simulations to N��� as obtained
from numerical integration of the deterministic Eq. (4).
This shows that stochastic and deterministic results differ
also on the level of the first moment.

The quantity of largest practical interest is cluster
lifetime T as a function of the model parameters N0, �,
and f. In general, T can be calculated from the adjoint
master equation [10]. For N0 � 2 and 3, the solutions can
also be found by directly summing with appropriate
weights over all possible dissociation paths, each of which
is a sequence of Poisson processes. For N0 � 2, we find

T � 1
2�e

�f=2 � 2e�f � �e�3f=2�: (7)

For N0 � 4, the direct procedure becomes intractable.
However, in the case of vanishing rebinding (� � 0),
there is only one dissociation path and the exact solution
is simply T �

PN0
i�1 1=r�i� for all values of N0 [13]. In

Fig. 4(a), we plot T as a function of f=N0 for different
cluster sizes N0. In the small force regime, f < 1, T
plateaus at the value HN0

�
PN0

i�1 1=i � lnN0 �
1=�2N0� � �. Here HN0

are the harmonic numbers and
� � 0:577 is Euler’s constant. In this regime, T depends
only weakly (logarithmically) on N0 and large cluster
sizes are required to achieve long lifetimes [13,14]. In the
intermediate force regime, 1< f <N0, we find T �
HN0

�Hf � ln�N0=f�. Here the effective cluster size is
reduced to N0=f, because the cluster dissociates very
108102-3
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FIG. 4. Analytical results for cluster lifetime T. (a) T as a
function of f=N0 for � � 0 and N0 � 1, 10, 100, 1000, and
10 000 (lower to upper solid lines). The dotted curve is the
approximation T � ln�0:61�N0=f�	. (b) T as a function of
cluster size N0 for f � 0 and � � 0:0, 0.1, 1.0, and 10.0 (lower
to upper lines).
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rapidly for i < f. In the high force regime, f > N0, only
the term with i � N0 contributes: If the first bond breaks,
all remaining bonds break within no time. The destabi-
lizing effect of force can be counteracted by rebinding. In
the case of vanishing force (f � 0), the solution can also
be found by using Laplace transforms [10]. We find

T �
1

1� �

"XN0

n�1

��
N0

n

�
�n

n

�
�HN0

#
: (8)

For � � 0, we recover the result T � HN0
from above. For

N0 � 2, we get the result T � �3� ��=2 following from
Eq. (7). In general, T scales ��N0�1 with rebinding rate.
In Fig. 4(b), we plot T as a function of N0 for different
values of �. For � < 1, the logarithmic dependence of T
on N0 is valid over a wide range of cluster size. However,
for very large clusters, lifetime starts growing exponen-
tially with N0. For � > 1, this strong increase of T with
N0 is found for any value of N0. Therefore increasing
rebinding is much more effective than increasing cluster
size in achieving cluster stability, and essential to ensure
physiological cluster lifetimes with reasonable numbers
of bonds. For example, in the absence of both force and
rebinding and if the lifetime of each bond was 1 s (k0 �
1 Hz), Eq. (8) predicts that the astronomical number of
�1040 000 independent bonds would be needed to achieve a
cluster lifetime of one day (T � 105 s). In contrast, for
k0 � 1 Hz (� � 1), the same cluster lifetime T is
achieved by N0 � 20. If rebinding is 10 times slower
than unbinding (� � 0:1), cluster lifetime T is down to
7 s and one needs N0 � 150 bonds to regain a cluster
lifetime of one day. In this way, knowing cluster lifetime
and two out of the three parameters N0, �, and f allows to
estimate the unknown one.

Our model is also relevant for cell adhesion if initial
loading is much faster than cluster lifetime (otherwise the
assumption of constant force is not valid) and if cluster
decay is much faster than potential reinforcement process
(otherwise the assumption of constant cluster size is not
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valid). One example which might satisfy these conditions
is L-selectin mediated leukocyte tethering in shear flow
[15]. Our assumptions do certainly not hold for cell-
matrix adhesions, which have been shown to grow rather
than to decay under the effect of force [2]. Although the
specific processes at work at cell-matrix processes are not
the subject of this work, our model suggests that the stress
constant �5:5 nN=�m2 recently measured on elastic sub-
strates for the physiological loading of cell-matrix con-
tacts through the cell’s own contractile machinery [16]
might be close to the critical force fc � N0plog��=e�,
because then small changes in cytoskeletal loading would
result in strongly accelerated cluster decay. Increased
force on a subset of bonds might in turn induce signaling
events (possibly through mechanical opening up of pro-
tein domains) leading to subsequent recruitment of addi-
tional bonds. Recent single molecule experiments for
activated �5�1-integrin binding to fibronectin gave k0 �
0:012 Hz and Fb � 9 pN [17]. Setting Fc � 5:5 nN and
using N0 � 104, we predict � � 0:2, corresponding to a
rebinding rate kon � 0:002 Hz.
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