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Efficiency of Initiating Cell Adhesion in Hydrodynamic Flow

C. Korn'? and U.S. Schwarz!

YWniversity of Heidelberg, Im Neuenheimer Feld 293, D-69120 Heidelberg, Germany
*Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
(Received 19 April 2006; published 28 September 2006)

We theoretically investigate the efficiency of initial binding between a receptor-coated sphere and a
ligand-coated wall in linear shear flow. The mean first passage time for binding decreases monotonically
with increasing shear rate. Above a saturation threshold of the order of a few 100 receptor patches, the
binding efficiency is enhanced only weakly by increasing their number and size, but strongly by
increasing their height. This explains why white blood cells in the blood flow adhere through receptor
patches localized to the tips of microvilli, and why malaria-infected red blood cells form elevated receptor

patches (knobs).
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Cohesion in biological systems and biotechnological
applications is usually provided by specific bonds between
receptors and ligands. The formation of these bonds re-
quires a physical transport process which brings receptors
and ligands to sufficient proximity for binding. On the
cellular level, one of the most prominent examples is the
binding of blood-born cells to the vessel walls under the
conditions of hydrodynamic flow. For white blood cells,
initial binding to the vessel walls is the first step in their
hunt for pathogens, which is then followed by rolling
adhesion, firm arrest, and extravasation [1]. Similar pro-
cesses are used by stem and cancer cells which travel the
body with the blood stream. Initiating binding to vessel
walls is also essential for malaria-infected red blood cells
in order to avoid clearance by the spleen and possibly also
to foster rupture and release of new parasites into the blood
stream [2]. Similar questions about initial binding under
flow conditions arise for bacteria, e.g., when binding to the
intestinal wall [3], and in biotechnological applications,
e.g., for adhesion-based cell sorting [4]. In order to control
shear flow and cell density in a quantitative way, standard
setups are flow chambers [5]. An essential but largely
unexplored aspect of these processes is receptor geometry,
that is, size, height, and separation distance of the receptor
patches. One way to address this issue experimentally is
the use of receptor-coated beads [6].

Earlier theoretical efforts in this context have been
focused mainly on issues related to white blood cells,
including modeling of the initiation of adhesion at high
cell densities (e.g., due to hydrodynamic interactions) [7]
and the process of rolling adhesion [8]. In these studies, the
parameters characterizing receptor-ligand binding are usu-
ally fixed at physiologically motivated values. In this
Letter, we take a more general view and ask how a variable
receptor geometry affects cell capture in hydrodynamic
flow. In order to study this issue in a systematic way, we
spatially resolve receptors and ligands. The cell is modeled
as a rigid spherical Brownian particle in linear shear flow
carrying receptors for ligands covering a planar boundary
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wall. In the absence of interactions with other particles or
external forces, there is no reason for such a particle to drift
towards the wall and initial binding has to rely completely
on thermal diffusion. In order to arrive at a generic model,
we consider the simplest of the possible downward driving
forces in experiments with flow chambers, namely, gravity.
The particle is set free at a certain height above the wall
and we calculate the mean first passage time (MFPT) for
the first receptor-ligand encounter as a measure for the
efficieny of initial cell binding. We consider three models
of increasing complexity in regard to the spatial distribu-
tion of receptors and ligands. We first show that if the
receptors on the cell and the ligands on the substrate are
distributed homogeneously, then the corresponding
MFPTs can be calculated exactly. In the case that receptors
are spatially resolved, we use extensive computer simula-
tions to calculate the MFPTs as a function of their number
and spatial dimensions, both in two and three dimensions.
As a third case, we in addition consider spatially resolved
ligand distribution.

Figure 1 introduces the parameters of our model. We
consider a sphere of radius R which moves with the hydro-
dynamic flow in positive x direction at a height z above the
wall with normal e,. The simplest possible flow pattern is
linear shear flow with shear rate . With the no-slip bound-
ary condition at the wall, the unperturbed velocity profile
reads u* = yze,. For a typical cell radius R = 5 pwm and
a typical shear rate y = 100 Hz, the Reynolds number in
aqueous solution is well below 1 and the hydrodynamic
flow is essentially described by the Stokes equation for
incompressible fluids. This is even more true for smaller
particles like micron-sized beads. Scaling estimates also
show that for typical parameter values for cell elasticity,
deformations due to shear flow and lubrication forces are
small and therefore the spherical approximation is justi-
fied. In addition to the hydrodynamic forces, in our model
there are also gravitational and thermal forces acting on the
particle. Such a combination of forces is the subject of
Stokesian dynamics [9] and in our case leads to the follow-
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FIG. 1. A cell of radius R moves in linear shear flow above a
wall at a height z, subject to hydrodynamic, gravitational, and
thermal forces. The efficiency for initiating binding is assessed
by calculating the mean first passage time for approach of
receptor and ligand to a capture distance ry, that is, for overlap
of the gray regions. Three models of increasing complexity are
studied here: (a) homogeneous coverage of cell and wall, (b) N,
equidistantly placed receptor patches on the cell, each with
radius r,, and (c) ligand patches of radius r, separated by
distance d.

ing Langevin equation [10]:
9,X, =u® + M(F® + F5) + kzT,BVBT + g5. (1)

T, is ambient temperature. The gravitational force reads
FC = —gAp(4mR3/3)e, with some density difference
Ap. The subscript ¢ denotes random variables. As usual,
the thermal force g, is assumed to be Gaussian:

(8)=0. (88 =2kgT M5 —1).  (2)
The superscript S for the multiplicative noise term in
Eq. (1) indicates that it has to be interpreted in the usual
Stratonovich sense. The matrix B in Eq. (1) is related to the
mobility matrix M through M = BB”. Vectors in Eq. (1)
are six dimensional, representing the spatial and orienta-
tional degrees of freedom. The mobility matrix M and the
shear force FS for a spherical particle above a wall cannot
be obtained in analytically closed form. However, they can
be calculated numerically to high accuracy and we will use
this for our simulations [11].

Considering the physical dimensions of our problem
shows that the motion of the cell is essentially governed
by two dimensionless numbers. For length, the natural
scale is cell radius R. Mobility and shear force scale as
M =1/(6mmR) and F5 = 6mmR?y, respectively. For
time, there are two relevant time scales, the deterministic
time scale 1/7 and the diffusive time scale R*/D =
6mnR3/kgT,, where we have used the Einstein relation
D = MkgT, for the diffusion constant D. Therefore, the
relative importance of hydrodynamic to thermal motion is
described by the Péclet number Pe = 67nR3y/kyT,. In
the limits Pe — 0 and Pe — oo, diffusive and deterministic
motion dominate, respectively. The gravitational force in-
troduces another dimensionless number, which we call the
Péclet number in z direction, Pe, = FOR/kyT, =
47gApR*/(3kgT,). In the following, we will nondimen-

sionalize length and time by R and 67nR3/kgT,,
respectively.

We start by considering homogeneous coverage of cell
and wall with receptors and ligands, respectively, compare
Fig. 1(a). Then rotational degrees of freedom are irrelevant.
Because the wall breaks the symmetry only in the z direc-
tion, motion in the x-y plane is decoupled from our prob-
lem. Thus in this case we essentially deal with a MFPT in
one dimension, which is independent of shear rate y and
which can be approached with standard methods for the
appropriate Fokker-Planck equation. Binding is identified
with approach of receptor and ligand to a capture distance
ro. Applied to the case of homogeneous coverage, the cell
has to fall to the capture height 1 + r. If dropped from the
initial height z,, the respective MFPT can be shown to be

T 1 fZU d 1 3)
= 7 .
" Pez I+ry Mzz(z)

Thus the MFPT scales inversely with the gravitational
force driving the cell onto the wall. With the lubrication
approximation M_.(z) = 1 — 1/z we find

T, = i[zo —1—ry+ ln<Z0 — 1)} 4)

Pez ro

Thus the MFPT diverges logarithmically with vanishing
capture distance ry (that is, when the cell has to get
infinitely close to the wall) and linearly with initial height
2o (that is, when the cell starts infinitely far away from the
wall). Although only the constant force chosen here results
in an analytical result like Eq. (4), for other types of force
laws it is straightforward to numerically calculate corre-
sponding falling times 7, [10].

We next consider the case of a spatially resolved recep-
tor distribution, compare Fig. 1(b). Now the cell is equi-
distantly covered with N, receptor patches, each with
radius r, and height ry. We first note that in this case,
initial orientation becomes important. Moreover, now
shear rate y enters the analysis: the shear flow increases
cell rotation, and for heterogeneous receptor coverage, this
strongly influences when the first receptor can bind the first
ligand. Because experimentally it is hardly possible to
prepare the initial orientation of the cell, in the following
we average over all possible initial orientations. One can
show that the angle-averaged MFPT is the MFPT to fall
from initial height z, to some intermediate height z,,
according to Eq. (3) (that is independent of orientation)
plus the angle-averaged MFPT to bind from the initial
height z,,. In this sense, the initial height is not relevant
for our problem and in the following we always use z5 = 2,
that is the cell has to fall for the distance of one radius
before binding can occur.

In Figs. 2(a) and 2(b) we show the MFPT as obtained by
extensive computer simulations as a function of Péclet
number Pe ~ ¥ and receptor patch number N, for two
(2D) and three dimensions (3D), respectively. Here 2D
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FIG. 2 (color online).  Effect of shear rate on mean first passage
time 7 for initial binding for spatially resolved receptors in
(a) two (2D) and (b) three dimensions (3D). The scales for
length and time are R and 6mwnR3/kgT,, respectively. The
Péclet number Pe = 6ryR3y/kzT, and the Péclet number in
z direction Pe, = 4mgApR*/(3kzT,) represent the strengths of
the hydrodynamic and gravitational forces, respectively, relative
to the thermal forces. zy = 2, Pe, = 50, ry = r, = 1073,

means that translational motion is restricted to the x-z
plane and rotations are restricted about the y axis, which
allows for much faster simulations. Each data point in
Fig. 2 is the average of at least 10° simulated trajectories
of the Langevin equation [Eq. (1)]. Our simulations are
very time consuming because with the receptor patches we
resolve objects of typical size 1073, that is, nm-sized
patches on micron-sized cells. From Fig. 2 we first note
that 7" decreases monotonously with increasing Pe and that
the shear rate does not change the relative sequence of the
curves for different N,. Thus the larger shear rate and the
more receptor patches present, the more efficient cell
capture. The crossover between the diffusion- and
convection-dominated regimes does not occur at Pe = 1,
but at much larger values Pe = 10. Next we note that in
the 2D case [Fig. 2(a)], for large Pe or large N,, all curves
level off to the exact result for homogeneous coverage
from Eq. (3), because in these two limits, the binding
process effectively becomes rotationally invariant. In the
3D case [Fig. 2(b)], the homogeneous reference value is
only achieved for large receptor numbers. The reason is
that for small numbers of receptors, the cell might have to
rotate around the x axis before a receptor moving on a
circle parallel to the x-z plane is able to bind a ligand on the
wall. Therefore, in 3D thermal diffusion remains essential
even in the case of large Péclet number.

In order to achieve a better understanding of the simu-
lation results shown in Fig. 2, it is instructive to decompose
the process into periods of falling and rotation, respec-
tively. A detailed analysis shows that in the 2D case this
decomposition allows to derive scaling laws for different
limits in regard to Pe and Pe,. An important case is the one
of large Pe,, when the cell is strongly driven onto the wall.
Then the binding process can be decomposed into a initial
falling period described by Eq. (3), followed by a purely
rotational search for ligand, which is independent of Pe,
and can be calculated analytically:

- ApA6? coth(35%) — 2Dy A0

’ 2420,

(&)

Here A@ = 6, is the angle between the absorbing bounda-
ries, 6, = 27 /N, the angle between receptor patches,
Ay = Pe/2 the rotational drift, and D, =~ 3/4 the rota-
tional diffusion constant. From Eq. (5) we get T ~ 1/N?
and T ~ 1/(N,Pe) for small and large Pe, respectively, in
excellent agreement with the scaling found in our simula-
tions. In general, Eq. (5) is a good qualitative description of
the 2D data shown in Fig. 2.

In order to consider the case of spatially resolved ligand,
compare Fig. 1(c), we cover the boundary wall with a
square lattice of circular ligand patches, with lattice con-
stant d and patch radius r,;. Because again the Péclet
number does not change the relative sequence of the differ-
ent MFPT curves, the efficiency of initial cell binding as a
function of receptor and ligand geometry can be investi-
gated in the diffusive limit Pe = 0. Figure 3 shows for this
case that the MFPT saturates both when increasing recep-
tor coverage by increasing N, or ligand coverage by de-
creasing d. A similar saturation behavior is also found
when increasing receptor and ligand patch sizes r, and
ry. Typically the saturation threshold for the parameters
used is located at a mean patch-to-patch distance d of about
0.17, both in regard with receptors and ligands. For a
coverage below the threshold, Fig. 3 shows that the
MFPT scales like ~1/N, ~ d*> and ~1/p; ~ d? in regard
to receptor and ligand coverage, respectively, where d
represents the distance between receptor and ligand
patches, respectively. This can be understood by noting
that the 1D MFPT for capture by diffusion scales ~d?
where d is the distance between the two absorbing bounda-
ries. The saturation effect observed with respect to N,, p;,
r,, and ry results from the space-filling nature of diffusion
which has been implicated before for the efficiency of
ligand capture by a cell [12].

FIG. 3 (color online). Mean first passage time 7 in 3D in the
diffusive limit (Pe = 0) as a function of (a) the number of
receptor patches N, for different values of patch height ry and
(b) ligand density p; as varied by decreasing ligand patch
distance d for different values of the number of receptors N,.
The dashed lines show the scaling behaviors T~ 1/N, and T ~
1/p, at low receptor and ligand coverage, respectively. zg = 2,
Pe, =50, rg=r, =rg = 1072,
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FIG. 4 (color online). Mean first passage time 7 in 3D in the
diffusive limit (Pe = 0) as a function of the receptor patch radius
r, for two different values of ry and three different values of N,.
For better comparison with regard to r the mean first passage
time 7), for homogeneous coverage from Eq. (3) has been
subtracted. The lines are fits according to Eq. (6). Other parame-
ters as in Fig. 2.

We finally turn to the effect of the capture distance r,. In
Fig. 4 we show the MFPT in the diffusive limit as a
function of the receptor patch radius r, for ro = 1073
and ro = 1072 as well as for three different values of N,.
We first note that the MFPT is much more influenced by a
change in rj or N, than by a change in r,. One can show on
geometrical grounds that the two parameters r, and r,
conspire to define an effective receptor patch size |/ry +
r, which then in turn determines the probability for bind-
ing. This line of reasoning leads to the formula

a

T=10 . + Ty, (6)
where a = 2t,/./ry, b = /To/2, t, is a typical diffusion
time between binding attempts which scales ~1/N,, and
T}, is the homogeneous result from Eq. (3). Equation (6)
implies that even for vanishing receptor size the MFPT
remains finite due to a finite ry. The lines in Fig. 4 show
that this equation can be fitted extremely well to the
simulation results. Moreover, the fitted values for a and b
agree roughly with the predicted scaling behavior.

In summary, our results show that the efficiency for
initiating cell adhesion in hydrodynamic flow is strongly
enhanced by increasing the number of receptor patches N,,
but only up to a saturation threshold. An increase of patch
size r, leads only to a weak enhancement of binding
efficiency. In contrast, a strong enhancement results from
increasing the patch height ry. For example, for a few
hundred receptor patches, an elevation of r, = 10~2 makes
initial binding already as efficient as for a homogeneously
covered cell. Strikingly, white blood cells are indeed char-
acterized by such a receptor geometry, because they are

covered with hundreds of protrusions (microvilli, typical
height 300 nm, corresponding to rq = 0.06) which carry
adhesion receptors like L-selectin at their narrow tips [5].
In general, white blood cells operate in the limit of a
homogeneously covered cell not only due to their receptor
geometry, but also because during capture they are usually
exposed to environments with Pe = 10*-10° (a typical
value for Pe, is 300). The principle of enhancing capture
efficiency by elevation of receptor patches seems to be also
used by other biological systems. One example of large
medical relevance appears to be malaria-infected red blood
cells, which develop thousands of little adhesive protru-
sions (knobs, typical height 20 nm, corresponding to ry =
0.004) [2]. The results presented here do not only allow to
understand the efficiency of cell capture in these biological
systems in a unified way, but can also be used for devel-
oping corresponding applications in biotechnology, includ-
ing adhesion-based cell or particle sorting.
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