
Effect of Adhesion Geometry and Rigidity on Cellular Force Distributions

Ilka B. Bischofs,1,2,* Sebastian S. Schmidt,1,3 and Ulrich S. Schwarz1,4,†

1Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
2Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, California 94710, USA

3Helmholtz-Zentrum Berlin, Glienicker Strasse 100, 14109 Berlin, Germany
4Theoretical Biophysics Group, University of Karlsruhe, 76128 Karlsruhe, Germany

(Received 10 February 2009; published 23 July 2009)

The behavior and fate of tissue cells are controlled by the rigidity and geometry of their adhesive

environment, possibly through forces localized to sites of adhesion. We introduce a mechanical model that

predicts cellular force distributions for cells adhering to adhesive patterns with different geometries and

rigidities. For continuous adhesion along a closed contour, forces are predicted to be localized to the

corners. For discrete sites of adhesion, the model predicts the forces to be mainly determined by the lateral

pull of the cell contour. With increasing distance between two neighboring sites of adhesion, the adhesion

force increases because the cell shape results in steeper pulling directions. Softer substrates result in

smaller forces. Our predictions agree well with experimental force patterns measured on pillar assays.

DOI: 10.1103/PhysRevLett.103.048101 PACS numbers: 87.10.�e, 68.03.Cd, 87.17.Rt

Adherent tissue cells react very sensitively to the physi-
cal properties of their environment, including mechanical
stiffness and the spatial distribution of adhesive cues [1].
On flat substrates, mechanical stiffness and adhesive ge-
ometry can be controlled by using soft elastic substrates [2]
and microcontact printing of adhesive islands [3], respec-
tively. Rigidity and geometry can be altered simulta-
neously combining the above techniques [4,5] or by
using biofunctionalized pillar assays, in which cells adhere
to the tops of an array of flexible microneedles [6,7]. Such
biophysical approaches have revealed that stiffness and
geometry sensing are closely related as they both involve
forces being localized at discrete adhesion sites.

Despite the tremendous experimental progress in this
field, our theoretical understanding of the relation among
stiffness sensing, geometry sensing, and cellular force dis-
tributions is still very limited. Here we analyze a simple
theoretical model that describes the relation between cell
shape and force distribution. The shape of tissue cells
adhering to discrete sites of adhesion is dominated by the
formation of inward curved circular arcs of the nonadher-
ent contour [8–11]. This shape feature follows from a
modified Laplace law of competing effective surface ten-
sion and effective line tension. Based on these concepts, we
calculate traction forces of stationary cells as a function of
adhesive geometry and stiffness.

Model.—Fully spread tissue cells typically flatten with
only the nucleus sticking out, as shown schematically in
Fig. 1(a). Often they adhere to the substrate at sites of
adhesion distributed along the cell boundary. In this case, it
is appropriate to consider an effectively two-dimensional
(2D) model which parametrizes cell shape by its 2D con-
tour ~rðlÞ with the internal coordinate l. After cell spreading
is completed, the cellular forces are mainly contractile.
Figure 1(b) depicts the physical forces acting at the cell

boundary [8]. First, the cell contour is drawn inward
mainly due to spatially distributed tension in the actin
cytoskeleton and the plasma membrane. In the 2D model,
this effect is described by an effective surface tension �,
because the main effect is to reduce 2D surface area.
Second, the cell contour resists the inward pull. Often the
cell contour is reinforced by the assembly of contractile
actin cables connecting neighboring sites of adhesion. In
the 2D model, this effect is described by an effective line
tension � which contracts the contour between adhesion
sites. In mechanical equilibrium, the contractile forces
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FIG. 1. (a) Cartoon of a typical tissue cell adhering to a flat
substrate at four discrete sites of adhesion. In (b) we focus on the
framed region. (b) Physical forces acting at the free boundary
between two neighboring sites of adhesion: While the surface
tension � pulls the contour inward, the line tension � pulls the
contour straight. The black line represents an actin cable rein-
forcing the contour. (c) Here we consider three cases of increas-
ing complexity: cells adhering to one large adhesive island, cells
adhering to discrete sites of adhesion on a rigid substrate, and
cells adhering to discrete sites of adhesion on a soft substrate.
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exerted by cells are primarily balanced on the adhesive
substrate [12]. To derive the force distribution for a given
adhesive geometry, we therefore have to minimize the
effective energy functional for the cell contour under the
appropriate adhesion constraint:

E ¼
Z

�dAþ
Z

�dlþ
Z

~fad � ð ~r� ~r0Þdl: (1)

The first integral extends over the cell surface area A and
the second and third along the cell contour l. The third term

introduces the adhesion tension ~fad as a Lagrangian pa-
rameter for the constraint set by the adhesion geometry and
described by ~r0. Based on this model, we calculate the
cellular adhesion forces by solving the corresponding
Euler-Lagrange equation for the three cases depicted in
Fig. 1(c).

Continuous adhesion.—For cells that adhere continu-
ously to the substrate, the cellular shape ~r is fixed to ~r0.
The adhesion tension acting along the contour then follows
from Eq. (1):

~f ad ¼ �½�þ ��� ~n; (2)

where ~n is the normal vector of the contour curve and � its
local curvature. For convex shapes (� > 0), surface and
line tension conspire to pull the cell contour inward, while
for concave shapes (� < 0), the line tension opposes the
surface tension, thereby decreasing the adhesion force. For
example, a cell adhering to a circular patch of radius R
applies a constant and inwardly directed adhesive tension
�þ �=R along the contour. Along straight boundaries
(� ¼ 0), e.g., along the straight lines of polygonal cells,
the contribution of the line tension � vanishes and the
adhesion tension is simply �. The contribution of the
line tension localizes to the corners of the polygon.
Approximating a corner with opening angle � by an arc
with radius � and then taking the limit to a sharp corner by

� ! 0, we can calculate the adhesion force ~F acting in the
corner:

~F ¼ lim
�!0

Z ’
2

�’
2

�
�þ �

�

�
~nð�Þ�d� ¼ 2� cos

�
�

2

�
~nb; (3)

where ’ ¼ ��� and ~nb points in the direction of the
bisecting line. The model predicts that the smaller �, the
larger the force pulling on the corner, with a maximal value
of 2� when both arcs pull in the same direction. When
considering a finite radius r of the adhesion, one has to set
� ¼ r rather than taking the limit � ! 0, resulting in an
additional contribution by the surface tension �.
Experimentally, cells have been forced into various shapes
and forces have been measured by using adhesive islands
on compliant substrates [4]. On polygonal islands, strong
traction forces are measured at the corners. Our model
qualitatively predicts this corner effect and makes quanti-
tative predictions on the scaling with � which can be
experimentally tested in the future.

Discrete adhesion.—For cells that adhere to the sub-
strate at discrete points of adhesion, the cell contour be-
tween adhesion points is free, and the shape equation
resulting from Eq. (1) predicts the formation of circular
arcs with curvature � ¼ �=�. The adhesion force follows
from Eq. (3) by replacing the opening angle � with the
actual pulling angle �? � � spanned by the two contour
arcs pulling on the adhesion site.�? has to be derived from
the shape equation. For three equally spaced adhesion sites
with distance d spanning an angle �, we can derive an
explicit equation for the resultant force on the central
adhesion site as a function of the adhesion geometry:

~F ¼ 2�

�
� sin

�
�

2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
cos

�
�

2

��
~nb; (4)

with � ¼ �d=2� being a dimensionless measure for the
strength of the inward pull. � can also be interpreted as
dimensionless spanning distance d. Hence, the force scales
again with the line tension � but now also depends on the
spanning distance d and the surface tension �. Figure 2(a)
demonstrates that the larger the spanning distance d and
the more acute the opening angle�, the steeper the inward
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FIG. 2. (a) Dimensionless force F=2� at equally spaced adhe-
sion points as a function of the dimensionless spanning distance
� ¼ �d=2� for different opening angles � ¼ �=4, �=3, �=2,
2�=3, 3�=4, and � from top to bottom. (b) Dimensionless force
F=2� as a function of the dimensionless inverse stiffness 	 ¼
2�=K for adhesion to regular polygons with � ¼ �=4, �=3,
�=2, 2�=3, and 3�=4 from top to bottom and � ¼ 0:1.
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pull and the closer the force comes to its maximal value 2�.
This maximal value is reached at a critical pulling strength
�c ¼ sinð�=2Þ when the pulling direction has become so
steep that the two arcs physically touch each other (�? ¼
0), at which point other physical processes will take over
(e.g., pearling of tubular extensions [9]). For equally
spaced adhesion sites along a straight line � ¼ �, the
adhesion force scales exactly linear with spanning distance
d. As the opening angle� increases beyond �, the traction
force may become a pushing force. For unequal spacing
d1 � d2 between adhesion sites, a generalization of Eq. (4)
can be derived, which shows that the force direction is now
tilted towards the side with the larger spanning distance.

Elastic substrate.—To study how in our model elasticity
affects the adhesion force, we now consider discrete adhe-
sion sites that move in a harmonic potential with spring
constant K. For simplicity, we consider only regular poly-
gons, for which we find

~F ¼ 2�

��	� þ cosð�2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2
� þ cos2ð�2Þ � �2

q

	2
� þ cos2ð�2Þ

�
~nb; (5)

with 	� ¼ sinð�=2Þ þ 	 cosð�=2Þ. Here 	 ¼ 2�=K is a

dimensionless inverse stiffness. Figure 2(b) shows that the
maximal adhesion force is reached on a rigid substrate 	 ¼
0, where Eq. (5) reduces to Eq. (4). As the substrate
becomes softer, F decreases because the moving adhesion
points effectively decrease the spanning distance d. Indeed,
it is well known that cellular traction is weaker on softer
substrates [2]. Like for rigid substrates, the force decreases
with increasing opening angle. Both of these trends are
also evident in Figs. 3(a)–3(c), where we show computed
cell shapes for triangles, squares, and pentagons on stiff
(red) and elastic (blue) substrates.

Tension-elasticity model.—Up to now, our results were
derived with the assumption of constant line tension �.
Recently, it was suggested that this quantity has an elastic
origin, i.e., � ¼ EAu, where u ¼ ðL� L0Þ=L0 is the strain
induced in the elastic contour with rigidity EA. L0 ¼ 
d is
the resting length assumed to be proportional to the span-
ning distance d with a dimensionless resting length pa-
rameter 
. The arc contour length follows from
geometrical considerations as L ¼ 2R arcsinðd=2RÞ,
where R is the arc radius. Hence, the line tension � itself
becomes a function of the adhesion geometry:

�ðdÞ ¼ EA

�
2R


d
arcsin

�
d

2R

�
� 1

�
; (6)

which increases with d. Thus also the radius of curvature
R ¼ �ðdÞ=� increases with d, as indeed observed experi-
mentally [11]. The distance dependence of the adhesion
force now becomes a nontrivial function of the adhesion
distance d. On the one hand, the line tension increases with
d, thereby increasing the individual forces pulling on the
adhesions. On the other hand, the arc curvature � ¼

�=�ðdÞ decreases with increasing d, leading to less steep
pulling directions and therefore reduced overall force. In
Fig. 3(d), we compare the results of the tension-elasticity
model (green) to the constant tension model (red), where
all arcs have the same curvature � ¼ �=�. For the tension-
elasticity model, the two top arcs across the diagonal have
a reduced curvature �, because here the spanning distance

d is increased by a factor of
ffiffiffi
2

p
. The total force magnitude

slightly decreases due to less steep pulling directions,
although the tension in the individual arcs actually
increases.
Extracting model parameters from pillar assays.—In

general, one expects the surface tension � to be a global
quantity and the line tensions � to be different in different
arcs. Our model suggests a simple procedure to estimate
numerical values from the shape geometry. Figure 4(a)
shows experimental data for an endothelial cell on a pillar
array (Fig. 6 from Ref. [6]). The contour was fitted by
circular arcs using the procedure from Ref. [11]. Because
here we focus on contour effects, we exclude all arcs which
might interact with other arcs due to close proximity or
which might be distorted by internal stress fibers. The force
on a pillar is the vector sum of the two adjacent arc forces.
Assuming constant surface tension, the ratio of arc radii
equals the ratio of line tensions R1=R2 ¼ �1=�2, and the
respective pulling angles �i are given by cos�i ¼ Ri=2di.

Thus, the resultant directions of the contour forces ~F are
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FIG. 3 (color online). (a)–(c) Predicted cell shapes and adhe-
sion forces for various adhesion geometries on stiff 	 ¼ 0 (red)
and compliant substrates 	 ¼ 1=15 (blue). Parameters � ¼ 1=6
and � ¼ �=3, �=2, and 3=5� from (a) to (c). (d) Predicted cell
shape and adhesion forces on a rigid substrate using constant line
tension (red) and the tension-elasticity model (green, 
 ¼ 1,
lf ¼ 20a) for an adhesion geometry with different spanning

distances, namely, d ¼ a at the sides and d ¼ ffiffiffi
2

p
a at the top.

In the constant tension model, � was adjusted to result in the
same force for d ¼ a.
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determined by R and d only. Figure 4(b) shows that we
obtain excellent agreement between the predicted direc-
tions of contour forces and the measured directions of the
pillar forces (error bars result from an estimated 10%
uncertainty). Because the surface tension determines the
magnitudes of the contour forces, we extract a value of
� � 2 nN=�m by a least-squares fit to the experimental
data, which is at the upper limit of the range of values
reported earlier for cortical tension. The predicted contour
forces (red) are shown in Fig. 4(a) and compare favorably
with the measured pillar forces (white).

Discussion.—Ourmodel shows that shape and forces are
closely related in cell adhesion and demonstrates how the
spatial distribution of adhesion sites determines the forces
acting at sites of adhesion. The effect of these forces might
be further amplified by feeding into force or displacement-
dependent regulation of cytoskeleton and adhesion sites,
which should be included in future modeling. For example,
Eq. (5) predicts that displacement F=K first increases
linearly and then saturates as a function of inverse stiffness
K, with important consequences for strain homeostasis. In
this way, our model can be used to derive quantitative
predictions how cell behavior and fate can be steered by
adhesion geometry and stiffness.
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FIG. 4 (color online). (a) Predicted contour forces (red) and
measured pillar forces (white) for an endothelial cell cultured on
a pillar array [6]. Force direction is determined by cell shape
geometry and force magnitude scales with � as determined from
a least-squares fit. Our procedure allows us to predict the forces
within each arc � ¼ ð8; 9; 15; 25; 16; 9; 12; 13; 38; 19Þ nN along
the contour (counterclockwise starting at the asterisk).
Scales: Pillar spacing 9 �m; force with plus 14 nN. (b) Force
directions of pillar forces (black) and predicted contour forces
(red).
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