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Epithelial cell layers on soft elastic substrates or pillar arrays are commonly used as model systems for

investigating the role of force in tissue growth, maintenance, and repair. Here we show analytically that the

experimentally observed localization of traction forces to the periphery of the cell layers does not necessarily

imply increased local cell activity, but follows naturally from the elastic problem of a finite-sized contractile

layer coupled to an elastic foundation. For homogeneous contractility, the force localization is determined by

one dimensionless parameter interpolating between linear and exponential force profiles for the extreme

cases of very soft and very stiff substrates, respectively. If contractility is sufficiently increased at the

periphery, outward directed displacements can occur at intermediate positions. We also show that aniso-

tropic extracellular stiffness can lead to force localization in the stiffer direction, as observed experimentally.
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Actively generated forces have emerged as a central
element in the way tissue cells interact with their environ-
ment, for example, during development and tissue mainte-
nance [1]. It is becoming increasingly clear that cells use
physical force to probe the mechanical properties of their
environments and to create a structurally coherent state
within the cell and tissue. Experimentally, however, it is
challenging to measure cellular forces in a physiological
context. Therefore their effect is usually assessed in an
indirect manner, for example, by mechanical relaxation
after laser cutting [2].

In order to directly measure the forces that cells exert on
their environments, two complementary techniques have
been established over the last decade. Embedding marker
beads into soft elastic gels enables the measurement of the
displacement field generated by cell traction forces applied
to the surface of the gel, which can then be estimated using
elasticity theory [3]. Alternatively, microfabrication tech-
niques are used to create an array of elastomeric pillars,
which for small displacements each act as a linear
spring [4].

In order to address the role of forces for larger cell
clusters, both soft elastic substrates and pillar assays have
been used for continuous layers of epithelial cells. Placing
such cells on a pillar array, it was found that cellular
traction forces are localized to the edge of the cell layer
[5,6]. A qualitatively similar effect has also been observed
for cell sheets migrating over soft elastic substrates [7],
although in this case the length scales over which the
stresses decayed were greater. It is tempting to assume
that force localization to the edge reflects increased me-
chanical activity of the cells at the edge, for example, of
putative leader cells [8]. However, a more detailed analysis
requires a mechanical analysis of the cell sheet coupled to
the elastic foundation.

In this Letter, we analytically solve the problem of a
contracting cell layer coupled to a layer of springs. For
homogeneous contraction, we show that the problem is
determined by one dimensionless parameter which inter-
polates between the extreme cases of soft pillars with a
linear force profile and stiff pillars with an exponential
force profile. We also show how our results change for
increased contractile activity at the rim and for substrates
with anisotropic stiffness.
Elastic model.—Microstructured surface assays consist

of a regular array of flexible elastomeric pillars with de-
fined surface chemistry, see Fig. 1. For small displace-
ments and slender pillars, the relation between the
traction applied to the pillars T and the displacement u
follows from linear elasticity theory [9],

T ¼ ku ¼
�
3�

4
Ep

r4

L3

�
u; (1)

where r and L are the radius and height of the pillar,
respectively, and Ep is the Young’s modulus. The pillars

thus behave as simple linear springs with effective spring
constant k.

FIG. 1. (a) Scanning electron micrographs of an epithelial cell
layer on an array of microfabricated elastomeric pillars [Image
adapted with permission from [5] (Copyright 2005 National
Academy of Sciences, U.S.A.).] (b) A schematic representation
of the pillar assay. The cell layer contracts and is resisted by a
distribution of linear springs on the surface.
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In the assays of interest the substrate is usually coated
with adhesion-promoting molecules so that the cells spread
thinly and form a continuous layer. We thus assume the
layer behaves as a continuous elastic solid. In addition, as
the typical lateral extension of the sheet is much larger than
the layer thickness h, we have the conditions for plane
stress in the layer and can use a two-dimensional model for
the cells. The force balance then reads

div � F� kNu ¼ 0; (2)

where F is the two-dimensional in-plane stress tensor
obtained by averaging the layer stress over the thickness,
and N is the number density of pillars. For a continuous
elastic substrate, the restorative force applied to the cell
layer would not take this simple form. Moreover more
detailed assumptions would be required to define the elas-
tic problem of the two coupled elastic layers. Nevertheless,
the linear traction force term from Eq. (2) can be also
considered as a first order approximation for soft elastic
substrates [10,11].

The cell layer is mechanically active, with cells simul-
taneously repositioning and contracting. Here we consider
only the final configuration of a contractile cell layer. Then
the problem of modeling layer contraction is similar to that
of thermoelasticity, where temperature changes generate
expansion or contraction in the material [10]. In thermo-
elasticity one typically introduces an expansion term pro-
portional to the target volume change into the constitutive
relation [9]. In analogy we take

Fij ¼ hEc

1þ �

�
eij þ �

1� �
ekk�ij

�
� hEc

2ð1� �ÞP�ij: (3)

The first term is the usual plane-stress linear elastic con-
stitutive relation with Ec the cellular Young’s modulus, �
the cellular Poisson’s ratio, and eij the strain tensor. The

second term in Eq. (3) captures cellular contractility, where
we have assumed that the contraction is isotropic. If the
layer is under no stress, Fij ¼ 0 and thus P ¼ eii (summa-

tion convention applies), and so P is the local target
volume change of a material element in the cell layer.

At the layer boundary no stress is applied, giving the
boundary condition F � n ¼ 0 on �. Integrating Eq. (2)
over the cell area D and applying the zero-stress boundary
condition gives

R
D kNu ¼ 0. Thus momentum is not gen-

erated in the system, as expected for a closed system.
Solution for a contracting stripe.—It is instructive to first

solve our elastic problem in one dimension, although ex-
perimentally even very anisotropic cell layers always con-
tract in both lateral directions. We consider a rectangular
sheet with eyy ¼ 0, such that the layer contracts only in the

x direction over the stripe width l0. Substituting Eq. (3) into
Eq. (2) we find that uðxÞ satisfies

d2u

dx2
� 1

l2
u ¼ 1

2
ð1þ �Þ dP

dx
(4)

with the zero-stress boundary condition du=dx ¼
ð1þ �ÞP=2 at x ¼ �l0 and with u ¼ 0 at x ¼ 0. Here
we have introduced a new length scale, the localization
length

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hEc

kNð1� �2Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4hEcL

3

3�ð1� �2ÞEpNr4

vuut ; (5)

with the second expression following from Eq. (1).
Assuming that the cell layer contracts uniformly, P is

constant. For the stripe case, it is convenient to set
P ¼ �2P0=ð1þ �Þ where P0 is then the target contraction
in the x direction. We then find that Eq. (4) is solved by

u

l0
¼ �P0

sinhð�x=l0Þ
� cosh�

(6)

where we have defined the dimensionless localization pa-
rameter � ¼ l0=l, the ratio of layer dimension to the lo-
calization length l. The internal stress FðxÞ can be obtained
by substituting Eq. (6) into the constitutive relation Eq. (3),
see [12].
In Fig. 2 the displacement u and internal stress F are

plotted for different values of �. We see that a constant
cellular contraction leads to nonconstant pillar displace-
ment, with greatest deflections at the edge. The nondimen-
sional parameter � controls the profile of the solution and
the rate of decrease of observed tractions away from the
layer edge. When � is large, the pillars dominate the
system and restrict the displacements to a small region
near the rim. When � is small, the substrate resists less
and the tractions decay slower. Note that both displacement
and stress scale linearly with cell contraction P0.
Solution for a contracting disc.—We now consider the

two-dimensional problem of a circular cell layer with
isotropic contraction, which is directly comparable to ex-
periments with finite-sized and isotropically contracting
cell layers. From symmetry arguments u ¼ uðrÞer, where
r is the radial distance from the center of the plate. The
radially symmetric equivalent to Eq. (4) reads
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FIG. 2 (color online). Plot of (a) displacement juj and (b) stress
F within the cell layer for the stripe geometry with P0 ¼ 0:7,
Ec ¼ 10 kPa, h ¼ 1 �m, � ¼ 0:45, and� ¼ 5, 6, 8, 10, 15 [from
top to bottom in (a) and from bottom to top in (b)].
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r2
d2u

dr2
þ r

du

dr
�

�
1þ r2

l2

�
u ¼ 1

2
ð1þ �Þr2 dP

dr
: (7)

The boundary conditions are now u ¼ 0 at r ¼ 0, while at
r ¼ r0 we have P ¼ 2ðdu=drþ u=rÞ=ð1þ �Þ.

Considering again the case of constant cellular contrac-
tion, P ¼ �P0, the solution of Eq. (7) with the specified
boundary conditions can be calculated in terms of modified
Bessel functions:

u

r0
¼ � 1

2�
P0ð1þ �ÞAð�ÞI1ð�r=r0Þ; (8)

Að�Þ ¼
�
I0ð�Þ þ �� 1

�
I1ð�Þ

��1
: (9)

Again � ¼ r0=l is the ratio of sample dimension and
localization length, i.e., the decay length scale for the
traction forces l. From Eq. (8) the radial stresses Frr and
hoop stresses F�� in the layer can be calculated, see [12],
which show a similar behavior as in the one-dimensional
case from Fig. 2(b), except that the hoop stress does not
vanish at the boundary. The plot for displacement essen-
tially looks like the one for the stripe case, Fig. 2(a), see
[12]. Our results are consistent with the simulations in [13],
where a uniformly contracting network of actin fibres on a
discrete pillar array was also observed to exhibit local-
isation of force to the edges of the network.

Regarding the comparison with experiments, typical
parameter values are N ¼ 0:25 �m�2 for the pillar den-
sity, r0 ¼ 50 �m for layer dimension, h ¼ 1 �m for layer
thickness, Ec ¼ 10 kPa for cellular Young’s modulus, and
� ¼ 0:45 for Poisson’s ratio. With pillar stiffness ranging
over 1–200 nN�m�1 [6], this gives a typical range for the
dimensionless parameter �� 7–100. The clear decay of
the traction profile reported in [6] agrees nicely with our
results. A more spread-out traction profile has been re-
ported in [7], which may be attributable to a low value of
�. However, as this study focused on the dynamics in a
migrating sheet, direct comparison is difficult in this case.

To further examine the role of � in determining the
profile of the solution, we consider the limiting cases of
small and large � . When � is small, the pillars are very
weak and the layer will be able to contract by a large
amount. When � � 1, we obtain to lowest order a linear
profile u��P0r=2, as one can infer either directly from
the differential equation or from the Bessel function.
Alternatively, in the case � � 1, when the springs domi-
nate the behavior of the sheet, the displacement localizes
strongly to the edge and we get an exponential profile,

u��P0r0ð1þ �Þ
2�

e��ð1�r=r0Þ: (10)

The exact profile of the solution is thus clearly controlled
by the nondimensional parameter, �, which quantifies the
relative strengths of pillars versus cells.

Effect of a contractile rim.—Up to now, we have as-
sumed that the layer undergoes a uniform contraction. We
now apply our model for the contractile cell layer to two
further situations of great practical interest, namely, non-
homogeneous contraction in the layer and anisotropic layer
stiffness. We first consider what the displacements would
look like if the layer had a more mechanically active rim.
We consider that the contraction jumps up at the rim:

P ¼
��P0 x < x1 or r � r1
�P1 x1 < x< l0 or r1 < r < r0

; (11)

for both the contracting stripe and disc. Equations (4) and
(7) are unchanged, as are the boundary conditions applied
at both the origin (u ¼ 0) and edge of the layer (zero
normal stress). At the interface between the two contractile
regions (i.e., at x ¼ x1 and r ¼ r1, for the stripe and disc
case, respectively), however, we impose the additional
conditions that the displacement u and stresses F (for
stripes) and Frr (for discs) are continuous across the inter-
face. With these additional boundary conditions it is pos-
sible to obtain analytical solutions for the displacement u,
see [12].
For the disc geometry, the resulting displacement is

plotted in Fig. 3(a). Note that the plot of the displacement
u has a kink at the point of transition between the two
contractilities, and that as the inner region becomes weaker
and P0=P1 decreases, this feature is accentuated. Equally,
as P0=P1 ! 1, this feature disappears and we recover the
solution for constant contractility. The displacements for
the contracting stripe solution are qualitatively the same.
For a sufficiently inactive inner region, there is the

possibility that contraction of the outer rim dominates to
such an extent that it can pull the inner region towards it,
resulting in positive displacements at intermediate posi-
tions, although the layer as a whole retracts its edge. This
effect depends sensitively on the spatial extent of the
contractile rim. For the stripe case with x1=x0 ¼ 1� �
and � � 1, positive displacements are possible only
when P0 � �2�2P1=2, see [12]. This dependence on
the extent of the more contractile region is also seen
in Fig. 3(b). In summary, the existence of positive
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FIG. 3 (color online). Plot of displacement u in a disc
with contractile rim for (a) P0=P1 ¼ 0:1, 0.3, 0.5, 0.7, 1 with
r1=r0 ¼ 0:9 (from top to bottom), (b) r1=r0 ¼ 0:75, 0.8, 0.85,
0.9, with P0=P1 ¼ 0:5 (from top to bottom). In both plots � ¼ 8,
P1 ¼ 0:7, � ¼ 0:45.
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displacements in experiments would be a clear signature of
increased contractility at the rim. The presence of sharp
kinks would indicate the transition to a well-defined con-
tractile ring, although in practice this effect is expected to
be smoothed out.

Solution for anisotropic pillars.—In a natural setting,
cells are often confronted with highly anisotropic environ-
ments, which can have a strong effect on their response.
This important effect can be investigated experimentally
by using pillars with elliptical cross sections [4,6,14]. Then
the apparent stiffness of the substrate depends on the
direction,

kð�Þ ¼ Kð1þ �cos2�Þ; (12)

where � is defined to be the angle of the pillar deflection
with respect to the major axis a. The minor axis is given
by the relation a2 ¼ b2ð1þ �Þ. The spring constant
is now K ¼ 3�Epb

3a=4L3 and so we redefine �2 ¼
r20KNð1� �2Þ=hEc. Using these arrays it is observed in

[6,14] that tissues elongate along the major axes of the
pillars, with cellular force being concentrated at the
pointed ends of the layers.

Combining Eqs. (2) and (3) with k given by Eq. (12), and
with the boundary conditions as before, the problem is now
fully two dimensional. We consider again the paradigm
problem of an initially circular layer, contracting isotropi-
cally, and solve the system numerically using finite ele-
ment methods for pillars with a=b ¼ 2 (i.e., � ¼ 3) and the
major axis in x direction (MATLAB PDE toolbox, The
Mathworks, Natick, MA). For isotropic pillar elasticity,
our numerical solutions agree perfectly with the analytical
results given above. The numerical results for the aniso-
tropic case are plotted in Fig. 4. Because of the symmetry
of the problem, it is sufficient to solve the problem on a
quadrant, imposing zero x, y displacement on y ¼ 0,
x ¼ 0, respectively. We see that an initially circular layer
on the anisotropic surface can be induced by uniform

isotropic contraction into a shape that is elongated in the
direction of larger stiffness (x direction). We also see that
the traction forces f ¼ kð�Þu are concentrated at the
pointed ends of the layer. We do not expect this effect to
be sufficient to account for the shape of the elongated
tissue islands reported in [6,14], but it is important to
note that an anisotropy in tissue shape and force profile
can be induced purely through the substrate properties.
Indeed this result of uniform cellular tension generating
anisotropic internal stresses could be used by cellular
assemblies to sense the direction of maximal stiffness
and to polarize accordingly.
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