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Forces in the actin cytoskeleton are generated by small groups of nonprocessive myosin II motors for
which stochastic effects are highly relevant. Using a cross-bridge model with the assumptions of fast
power-stroke kinetics and equal load sharing between equivalent states, we derive a one-step master
equation for the activity of a finite-sized ensemble of mechanically coupled myosin II motors. For
constant external load, this approach yields analytical results for duty ratio and force-velocity relation as a
function of ensemble size. We find that stochastic effects cannot be neglected for ensemble sizes below 15.
The one-step master equation can be used also for efficient computer simulations with linear elastic
external load and reveals the sequence of buildup of force and ensemble rupture that is characteristic for

reconstituted actomyosin contractility.
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Generation of motion and force by ATP-powered mo-
lecular motors is a hallmark of living systems [1]. In their
cellular environment, molecular motors usually operate in
groups [2]. A striking example is force generation in
skeletal muscle, where hundreds of nonprocessive myosin
II motors are assembled into the thick filaments of the
sarcomeres. Since the pioneering work of Huxley [3], the
statistical physics of large ensembles of myosin II motors
has been studied in great detail. It has been shown that in
order to describe the response of skeletal muscle to varying
loading conditions, it is essential that the unbinding rate of
myosin I from actin is strain dependent and decreases
under load [4,5]. In contrast to, e.g., the processive motor
kinesin, this makes myosin II a catch rather than a slip
bond [6,7] and leads to recruitment of additional cross
bridges under load [8].

The collective activity of myosin II motor ensembles is
also essential for the generation of motion and force in the
actin cytoskeleton of nonmuscle cells. In this case, the
actin structures are far more disordered than in muscle
and nonmuscle myosin II is usually organized in minifila-
ments comprising 10-30 motors [9]. For such small num-
bers of motors, stochastic effects will become important
and are indeed observed in experiments. Measurements of
tension generated by myosin II motors in reconstituted
assays, e.g., in three bead assays [6,10,11], active gels
[12,13], or motility assays [14], reveal noisy trajectories,
typically with a gradual increase of tension followed by an
abrupt release, which is likely due to detachment of the
whole ensemble (slip). However, a detailed and analyti-
cally tractable description for this biologically important
situation is still missing.

The collective activity of mechanically coupled molecu-
lar motors has been investigated before in the framework of
a generic two-state Fokker-Planck equation in which en-
semble size enters into the noise intensity [14,15]. In order
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to study effects of molecular details for ensembles of
myosin I motors, cross-bridge models originally devel-
oped for skeletal muscle can be used as a starting point
[4,5]. Because of their complexity, these models are usu-
ally studied by computer simulations. Analytical progress
has been made with a mean field approximation for large
system size [16]. Exploiting a separation of time scales in
the myosin II cycle and using the assumption of equal load
sharing between motors in equivalent states, here we derive
a one-step master equation which explicitly includes the
effects of strain-dependent rates and small system size. A
one-step master equation has been introduced before for
transport by finite-sized ensembles of processive motors
with slip bond behavior [17], but not for nonprocessive
motors with catch bond behavior. Our results suggest that
stochastic effects are particularly important for ensemble
sizes below 15, which corresponds to the typical size of
cytoskeletal minifilaments.

Model.—We model the myosin II cycle by three discrete
mechanochemical states. The cycle is shown schematically
in Fig. 1(a). To allow for comparison with earlier work,
transition rates and most other molecular parameters are
taken from Refs. [4,5]. In practice, they will depend on
ATP concentration and the exact type of myosin II [6,13].
In the unbound state (0), the motor head is loaded with
ADP and P; and the lever arm is in its primed conforma-
tion. The motor then reversibly transitions to the weakly
bound state (1) with forward rate ky; =~ 40 s~ ! and reverse
rate kyo = 2 s~ !. After release of P;, the lever arm swings
to the stretched conformation and the motor enters the
post-power-stroke state (2). The transition rates between
the two bound states are relatively high, with kj, = k,; =
10° s~!. Replacing ADP by ATP, unbinding from the sub-
strate and hydrolysis of ATP brings the motor back to the
unbound state (0). This last step is irreversible, with rate
k3, = 80 s~ !. Most importantly in our context, both power
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FIG. 1. (a) Myosin II motor cycle with three mechanochemical

states. (b) Mechanical coupling of a motor ensemble moving to
the right. The external load pulling to the left is balanced by
elastic forces in the neck linkers of the motors. Swinging of the
lever arm increases the strain of the neck linker and hence the
force exerted by a motor. (c) In the “parallel cluster model”
(PCM), all motors in the same mechanochemical state have the
same strain. (d) The corresponding two-dimensional reaction
network, with irreversible transitions marked by arrows. (e) The
effective one-dimensional network following from the assump-
tion of “local thermal equilibrium” (LTE) of the bound states.

stroke and unbinding depend on load. The power stroke
(1) — (2) moves the lever arm forward by d =~ 8 nm and
strains the elastic neck linker. Unbinding from (2) requires
further movement of the lever arm, thus making unbinding
slower under load.

As shown schematically in Fig. 1(b), the (upper) motor
filament mechanically couples the different motors in an
ensemble to each other. Because of the strain dependence
of the rates, they are also dynamically coupled. Hence, a
complete description of the ensemble dynamics has to
include conformational state and strain of every motor.
To arrive at a tractable model, we first note that the motors
pull in parallel. We next assume that all motors in the same
mechanochemical state exert the same force and hence
have the same neck-linker strain. We thus arrive at the
parallel cluster model (PCM) depicted in Fig. I(c), in
which the state of an ensemble with N, motors is charac-
terized by the number i of bound motors and the number
J = i of motors in the post-power-stroke state. The number
of motors in the weakly bound state follows as i — j. In the
PCM, each motor in the weakly bound state has the same
strain x;;, where the indices indicate the dependence of the
motor strain on the ensemble state (Z, j). The power stroke
stretches the elastic neck linker by d, so that motors in the
post-power-stroke state have the strain x;; + d. The strain

x;; of the weakly bound motors follows from the balance of
the external load F and the elastic motor forces: F,; =
knl(i — j)x;; + j(x;; + d)]. Here ky, = 2.5 pNnm ™! is the
spring constant of the neck linkers. For F,; = const, the
force balance leads to

Xij = (Fext - ]kmd)/lkm (D

Thus the strain x;; of the weakly bound motors is a state
variable determined by external load and both binding and
power-stroke dynamics. If all motors are in the weakly
bond state (j = 0), it is positive. It can become negative if
sufficiently many motors have gone through the power
stroke and if the external load is not too large. The strain
x;; + d of the post-power-stroke motors always stays posi-
tive and eventually drives force generation and motion.

In the PCM, the network of reactions between states
(i, j) is two dimensional [see Fig. 1(d)]. Because of slow
binding and unbinding, local thermal equilibrium (LTE) is
maintained for the bound states [5]. When i motors are
bound, the probability that j motors are in the post-power-
stroke state follows the Boltzmann distribution p(jli) =
exp(—E;;/kgT)/Z, where Z is the appropriate partition
sum. The energy E;; = E. + jE,, + Ecy in state (i, j) is
the sum of elastic energy Eq = ky,[(i — j)x7; + j(x;; + d)*]/2
stored in the neck linkers, free energy bias E,, =
—60 pNnm towards the post-power-stroke state, and a
possible external energy contribution E. . For F., =
const, we have E; = 0.

LTE of the bound states allows us to project the j axis
onto the i axis, thus arriving at a one-dimensional reaction
scheme with index i as shown in Fig. 1(e). Then the
probability p;(¢) that i motors are bound at time ¢ obeys
the one-step master equation

%pi — i+ Dpior + gli = Dpis —[r() + g ps. @)

The probability to find an ensemble in state (i, j) is p;; (1) =
p(jli) p;(r). The forward rate is g(i) = (N, — i)k,; because
N, — i free motors can bind. Unbinding is possible from
states (1) and (2) so that the reverse rate for given i and j is
r(i, j) = (i — j)kjo + jkoo(i, j). Averaging over j gives
r(i) = X;p(jli)r(i, j). The off rate from state (2) depends
on the applied load as ky (i, j) = k9 exp[ — ki (x;; + d)/ Fy ],
where F = 12.6 pN. With these prescriptions, the one-
step master equation Eq. (2) is fully specified for the case
of constant external load, F.,; = const. If the external load
depends on the position of the ensemble, as in the case of
linear elastic loading, Eq. (2) has to be solved together with
additional prescriptions for ensemble movement (see
below).

Binding dynamics for constant load.—Mathematically,
the reduction to Eq. (2) is a dramatic simplification, be-
cause many general results are known for one-step master
equations [18]. The stationary distribution is
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Figure 2(a) plots the average number of bound motors,
Ny = (i) = Zﬁi‘o ip;(00), as a function of F, for different
ensemble sizes N, (lines). The increase of Ny, is due to the
decrease of the unbinding rate (i, j) under increasing load.
Because p(jli) is strongly biased towards large j over the
range of force shown in Fig. 2(a), the strain dependance of
koo dominates the unbinding process so that myosin II
behaves as a catch bond in our context. Even if load shifted
the balance towards the weakly bound state, this would not
change this conclusion, because kg << ky for all relevant
force values. For skeletal muscle, the recruitment of addi-
tional cross bridges under load has been observed experi-
mentally [8] as predicted by computer simulations [4].
Here it follows in a relatively simple way from analytical
considerations. In order to validate the PCM leading to
Eq. (2), in Fig. 2(a) we also show results of computer
simulations which incorporate individual positions and
strain values for each motor (symbols). The agreement is
very good, except at very small load, where differences in
the strain values between different motors reduces unbind-
ing, an effect which is less relevant under larger load.

Next we discuss the effect of system size N,. In general,
smaller ensembles are more likely to detach as a whole.
The mean first passage time for ensemble detachment after
binding of the first motor is

I e
o= Z () - G £o) @

It is a polynomial of order N; — 1 in the ratio of binding to
unbinding rate. A numerical evaluation of Eq. (4) shows
that effectively it increases exponentially with ensemble
size. Once the ensemble has detached, on average it takes
the time Ty; = 1/g(0) = 1/N,ko, to rebind. We define the
duty ratio of an ensemble as

pa = To/(Tyo + Tpy). s
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FIG. 2 (color online). Analytical results for the parallel cluster
model (lines) and computer simulations with individual motor
strains (symbols) for constant external load. (a) Average number
N, of bound motors following from Eq. (3) as function of
Feg/N, for Ny =4, 8, and 15. (b) Duty ratio py given by
Eq. (5) as function of N, for F./N, = 0.013 pN, 1.262 pN,
3.786 pN, and 8.834 pN.

Figure 2(b) plots p4 as function of N, for different F.,,
(lines). Because T increases and 7T;; decreases with N,,
the duty ratio increases quickly with N, and reaches unity
for ensemble sizes around N, = 15. With increasing force,
pq increases faster because of the increasing N,. Again the
agreement with the simulation of the cross-bridge model
with individual motor strains (symbols) is rather good
except at very small force. Stochastic effects are expected
to be important for duty ratios below unity, i.e., below
ensemble sizes around 15. This implies that myosin mini-
filaments in the cytoskeleton are typically at the verge of
stochastic instability.

Ensemble movement.—We now consider the spatial co-
ordination schematically depicted in Fig. 1(b), that is, we
assume an immobile substrate over which an ensemble
moves to the right. The PCM assumes that all bound motor
heads are at the same position, which we denote by the
coordinate z. The anchors of the motors in the (upper)
motor filament are located at the common position
z — x;;. Note that whereas z increases to the right in
Fig. 1(b), external load F., and strain of the motors are
defined in the opposite direction. For the case of constant
external load, F,,, = const, z is a variable which is slaved
to the binding dynamics. When the ensemble works against
a linear external load, Fey = k¢(z — x;;), the value of z
enters the force balance and hence feeds back into the
system state. In addition, here one has to include an exter-
nal elastic energy Eey = k¢(z — x;;)?/2, where k¢ is the
external spring constant.

Although more complicated assumptions might be pos-
sible, here we make the following simple assumptions for
the dynamics of z within the PCM. Starting with a state
(i, j), we assume that a motor binds to the substrate with
vanishing strain at the position z — x;; just below its
anchor point. Binding of a new motor thus changes
the average position z of the bound motor heads by Az =
liz+ (z—x;))/(i +1) —z= —x;;/(i + 1). In order to
implement the assumption of equal strain for equivalent
motors, the positions of all bound motor heads are then set
to the new value of z. This shift is not meant to correspond to
a physical process, but is a theoretical procedure to imple-
ment the main assumption of the PCM. Unbinding does not
change z, because all bound motor heads are at the same
position. The power stroke does not change z either, because
it does not affect the positions of the motor heads. However,
x;; is affected by binding and unbinding as well as by the
power stroke via the force balance, so that the position of the
motor filament z — x;; is affected by all these transitions.
When an ensemble detaches completely from the substrate,
the motor heads relax to the position z — x;; of the anchors.
The detached ensemble then moves backwards with veloc-
ity vy, = —mF (slip), where 7 is the effective mobility of
the motor filament.

With these additional prescriptions, the rates defined for
Eq. (2) can now be used to investigate the details of the
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stochastic movement of the motor ensemble for arbitrary
laws for the external load. To simulate stochastic trajecto-
ries for the PCM, we use the Gillespie algorithm [19]. After
every change of i, x;; and p(j|i) are updated to calculate
the average strain of the weakly bound motors, x; =
Zj':o x;;p(jli), and the transition rates r(i) and g(i). In
case of binding, we change z by Az = —x;/(i +1).
Figure 3(a) shows a stochastic trajectory of an ensemble
working against constant load. The lower panel shows the
number of bound motors i, the upper panel the average
head position z as function of time. When bound, the
ensemble moves forward with fluctuations around a steady
state velocity. A slip leads to back steps of average size
v Ty. Figure 3(b) shows a trajectory for an ensemble
working against a linear elastic load. The ensemble is
slowed down by the load building up by the forward
motion. An increasing load stabilizes the ensemble be-
cause NV, increases. However, the very small ensemble
frequently detaches before reaching the stall force.
Detachment leads to a noisy trajectory in which the load
fluctuates around an effective stall force. This type of
trajectories, with gradual buildup and quick release of
tension, resembles those experimentally observed in three
bead assays [6,10,11], active gels [12,13] and motility
assays [14].

Force-velocity relation for constant load.—In state (i, j),
one can identify the ensemble velocity with v;; =
—g(i)x;;/(i + 1) (the ensemble only moves to the right
when the strain defined to the left is negative). The average
stationary velocity of a bound ensemble is

N, i
v, = Z Z v;;p(jli)pi(o0) (6)

i=1 =0

with p;(oo) from Eq. (3). This is the force-velocity relation
of the bound ensemble at constant load. Figure 4(a) plots
vy, as function of the external load per motor for different
N,. With increasing load, the velocity decreases. The up-
ward convex shape of vy (F.y) is due to the increase of N,
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FIG. 3. Stochastic trajectories. (a) Constant load: average head
position z (upper panel) and number i of bound motors (lower
panel) as a function of time ¢ for ensemble size N, = 8 and load
F.= 126 pN N,. (b) Linear load: average head position z
(upper panel) and number i of bound motors (lower panel) as
a function of ¢ (N, = 4, k;/N, = 0.0126 pNnm™!). In (a) and
(b), a detached ensemble slides backwards with mobility n =
10> nmpN~ s~ 1L

with F, which allows the ensemble to resist larger forces.
For small ensembles for F./N, > 0, bound velocity vy,
and also the stall force increase with increasing N,. Above
N, = 15, the force-velocity curve is independent of N,. This
confirms our conclusion from the duty ratio that stochastic
effects cannot be neglected up to a system size of 15
[compare Fig. 2(b)].

Assuming that the stationary velocity is established
quickly after binding to a substrate, the walk length of a
motor filament in one attachment event is given by d,, =
v, T1o. Although the bound velocity v, decreases, d,,
increases with F.,, because the detachment time 7y in-
creases strongly. Only upon passing the stall force, the
walk length drops to negative values. Comparison with
numerical solutions of the master equation (not shown)
reveals that d,, = v, T is a good approximation except for
very small values of d,. Because the sliding velocity is
negative, v, < 0, the effective velocity is reduced by the
occurrence of slip events:

v Ty + v Ty

oo = . 7
Vetp Too + T, Uy @)

Figure 4(b) plots the effective velocity v as a function of
the external load per motor. Because the duty ratio in-
creases and the rebinding time decreases with N, i.e.,
detachment is less frequent and back steps are smaller,
the velocity at small F,,, now increases with N,. In addi-
tion, detachment of small ensembles leads to a faster
decrease of wv.; under load and a smaller stall force.
Moreover, detachment leads to large fluctuations of z at
the effective stall force: instead of being stationary, the
ensemble alternates between slow forward motion when
bound and fast backward slipping when detached. Above
the threshold of N, = 15, where the duty ratio is close to
unity, the effective velocity is identical to the bound
velocity.
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FIG. 4 (color online). Force-velocity relation for constant load.
Main panels: analytical results for (a) the average bound velocity
vy, [see Eq. (6)] and (b) the average effective velocity v [see
Eq. (7)] of an ensemble as function of the external load per motor
Fey/N, for N, = 4,8, 15, 25, and 50. For v the free mobility is
n = 10> nmpN~'s~!. Insets: comparison of analytical results
(lines) with computer simulations of the cross-bridge model with
individual motor strains (symbols) for (a) v, and (b) vy as
function of external load F.,, for the same parameters as in the
main panels.
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The insets in Fig. 4 compare the analytical results using
the PCM to the computer simulations without PCM for vy,
and v as function of F,,. The agreement is rather good.
Because of the molecular friction resulting from differ-
ences in strain, the bound velocity at vanishing load now
decreases with N, and the curvature of the force-velocity
relation is less pronounced. The stall force and the role of
ensemble size for stochastic effects are predicted well.

Discussion.—In this Letter, we have derived a mathe-
matically tractable model for the collective behavior of
small ensembles of myosin II motors as a function of
system size. Our main assumption, the parallel cluster
model (PCM) for the load sharing, was validated by com-
puter simulations of a cross-bridge model with individual
motor strains. This assumption decreases the disorder in
the motor strains, so that the model cannot describe power-
stroke synchronization through load as it has been done
before with a detailed model for skeletal muscle [4].
However, our model makes accurate predictions for central
quantities such as duty ratio and force-velocity relation as a
function of ensemble size. For processive motors, the
strains of the motors are homogenized because fast moving
motors are slowed down by the increasing load. For the
nonprocessive motors studied here, this mechanism cannot
operate. However, here the differences in the strain of the
bound motors are reduced by the small duty ratio, thereby
making the PCM a reasonable assumption for our pur-
poses. Because of its computational simplicity, in the
future the approach introduced here can be used for studies
of the intriguing interplay between actin filaments and
small ensembles of myosin II motors in the actin cytoske-
leton of nonmuscle cells and reconstituted actomyosin
systems.
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