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Chapter 1

Introduction

1.1 What is soft matter ?

This question is easy to answer: soft matter distorts easily in response to
external force. However what exactly is meant with easy ? Which physical
scales are we talking about ? In order to address this question, it is instructive
to consider the simple stretching experiment depicted in Fig. 1.1. A bulk
sample of elastic material of resting length L0 is stretched to the extension
L0 +∆L by a force couple F applied at two of its faces over a cross-sectional
area A. Therefore the deformation is caused by the stress σ = F/A and
can be characterized by the strain ǫ = ∆L/L0. For small deformations, one
usually finds a linear relationship between stress and strain

σ = Eǫ (1.1)

where E is the elastic modulus (Young modulus) representing the material
properties. This implies that the elastic slab behaves like a Hookean spring,
with a linear force-displacement relation F = K∆L, where the spring con-
stant is given by K = EA/L0. Because strain is dimensionless, the dimension
of the Young modulus is the same as for stress, that is [E] = [σ] = Pa = N/m2

= J/m3. The Young modulus therefore has to scale as E = U/a3, with U
being a typical energy and a being a typical length scale of the system under
consideration. Thus soft matter has to be characterized either by a small
energy scale or by a large length scale.

In practice, most soft matter systems show both features. With regard to
energy, soft condensed matter is held together by non-covalent interactions
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Figure 1.1: A slab of elastic material with crossectional area A and resting length
L0 is stretched by ∆L by applying a force couple F . The mechanical response of
the material is described by the elastic modulus E = FL0/A∆L.

like van der Waals forces or hydrogen bonds. Then the typical energy scale
is thermal energy kBT , where kB is the Boltzmann constant kB = 1.38 ×
10−23 J/K and T is ambient temperature. A convenient choice for scaling
arguments is T = 300 K, so that kBT becomes 4.1 × 10−21J = 4.1 pN nm.
In a physical chemistry context, it is more common to refer to macroscopic
quantities, so we use the Avogadro number NA = 6.022 × 1023 to compute
kBTNA = RT = 2.5 kJ/mol = 0.6 kcal/mol, where R = kBNA is the molar
gas constant.

With regard to length, soft matter usually corresponds to supramolecular
aggregates, thus typical length scales are much larger than atomic ones. For
example, a colloidal crystal is characterized by thermal energy U = kBT
and a supramolecular length a = 10 nm, resulting in an elastic modulus
E = kPa. In contrast, atomic crystals, which are traditionally studied in
solid-state physics, are characterized by U = eV = 40 kT and an atomic
length a = 0.1 nm, resulting in E = GPa. More extreme values are the Pa-
range for very soft gelatine and the TPa-range for carbon nanotubes, while
the usual houseware rubber in the MPa-range represents the middle ground.

Due to the small energy scale, soft matter systems are intrinsically dy-
namic and thermal noise is sufficient to induce structural changes. This
outstanding property of soft matter systems allows them to self-organize and
to self-heal. On the one side, this endows soft matters systems which a sort
of robustness which usually is not present in traditional condensed matter
systems (e.g. usually an atomic crystal after fracture has no chance to grow
together again). On the other hand, it also makes them very fragile, because
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small perturbations can easily perturb the system.
Soft matter systems are very important due to their technological rel-

evance. In fact, many such systems are known to us from everyday life,
including all kinds of bath room items (tooth paste, shampoo, cosmetics,
etc), food (salad dressing, yoghurt, pudding, ketchup, etc), paint, the liquid
crystals in our computer displays, motor oil and beer foam. In general, the
term soft matter includes material systems like colloidal suspensions, liquid
crystals, fluid-fluid interfaces, fluid membranes and polymers, all of which
are treated in detail in the following.

Throughout this text, special emphasis will be put on the fact that all
biological systems are made of soft matter, including the cells and tissues
in our body. The structural properties of cells are mainly determined by
lipid membranes and the filamentous proteins of the cytoskeleton. Tissue is
a composite material comprising cells and an extracellular protein network
(extracellular matrix ). All fundamental processes of life rely on the fact that
biological systems are made from soft matter, because its dynamic character
allows the systems to adapt quickly to changes in their environment.

However, it is important to also note that biological systems differ in es-
sential aspects from inanimate soft matter systems, for three related reasons.
First, biological systems are the result of several billion years of evolution
and are under strict genetic control. This implies that many genetically en-
coded programmes can be triggered in the cell which leads to very specific
behaviour that cannot be predicted on physical grounds. Second, generic
interactions between the different components are suppressed in favor of spe-
cific interactions, for example van der Waals-attraction between cell surfaces
is suppressed in favor of the lock-and-key reactions between surface recep-
tors and their ligands. And third, biological systems are active in the sense
that with the help of metabolic reservoirs, active processes take place which
would not occur spontaneously. In contrast to traditional condensed matter
systems, soft matter allows biological systems to tightly couple structural
and regulatory processes.

1.2 Physical scales of biomaterials

The marvels of nature are one important motivation to study the physics of
soft matter. As a background to the main part of this text, we now give
some more details regarding the physical scales in biological systems.
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(a) (b)

Figure 1.2: State-of-the-art electron tomography of cellular structures. (a) This
image shows in red the actin cytoskeleton of a migrating amoeba. Ribosomes and
membranes are shown in green and blue, respectively. (b) This image shows the
upper part of a malaria parasite at the stage at which it is transmitted from the
mosquito into the host skin. The microtubules in green are the main stabilizing
element for cell shape.

The quantum of life is the cell (here we assume that autonomous replica-
tion is one criterion for life, so a virus is not considered to represent life). As
Rudolf Virchow realized in 1858, every cell originates from the division of an-
other cell. Cells are small, but not inconceivably small. For human cells, the
typical size is 10 µm. Therefore 103 cells fit into 1 cm and (103)3 = 109 cells
fit into a finger tip. That is roughly as many as rice corns fit into a middle-
sized room. Interestingly, the size of cells (10 µm) behave to macroscopic
scales (1 cm) as the size of large biomolecules (10 nm) to the cellular scale
(10 µm). Therefore 109 of these large biomolecules could make up one cells,
each with around 105 atoms. This estimate then results in 105109109 = 1023

atoms on the macroscopic scale, exactly as requested by Avogadro’s number.
Since the naked eye resolution is 200 µm, we cannot see cells. In order

6



1

4

5

3

2

7

6

(a) (b)

Figure 1.3: (a) Schematic drawing of a higher animal cell. Important cellular
structures include (1) the plasma membrane, (2) other membrane structures like
the two nuclear membranes, the endoplasmic reticulum, the Golgi apparatus and
vesicles, (3) the glycocalix, (4) the actin cortex, (5) the microtubule system, (6)
DNA and (7) the cytoplasm. (b) In a biomimetic approach to cell shape and
mechanics, one can reduce the structural complexity of the cell by considering
only the effects of plasma membrane and actin cortex. Such a reduced system in
fact corresponds quite well to the situation with the red blood cell, which therefore
is the most important model system to study cell shape and mechanics.

to do so, we need a microscope, so in 1665, Robert Hooke was the first
to see cells. In fact optical resolution is 200 nm and by far sufficient to
observe cells. In order to look at subcellular structures in detail, one needs
an electron microscope, with a resolution better than nm. This is sufficient
to see lipid bilayers, globular proteins and protein filaments, which all have
sizes of a few nm. Nowadays the most impressive visualizations of cellular
structures result from electron tomography. Fig. 1.2 shows the visualization
of the lamellipodium of a migrating amoeba.

As already mentioned, the typical energy scale for soft matter is kBT =
4.1 pN nm. With a typical length scale of nm, this leads to a typical force
scale of pN for proteins. As explained above, a typical elastic scale for
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supramolecular aggregates is kPa. In fact this is also the order of magni-
tude measured with the atomic force microscope for the stiffness of animal
cells like the fibroblasts from connective tissue (the detailed values depend
on cell type and the current state of the cell; bacteria and viruses are much
stiffer). For single protein domains, the relevant length scale (e.g. the dis-
tance between van der Waals bonds) is rather smaller and the elastic scale
reaches the GPa-range.

Due to their common origin, all cells are assembled from similar subcellu-
lar components. The sophisticated structures of cells from higher animals like
humans are of particular interest for biomedical reasons. In order to char-
acterize their physical properties experimentally, these properties have to be
defined in an operative way. During recent years, many new experimental
techniques have been developed which now allow to study the physical prop-
erties of living cells, including fluorescent probes, atomic force microscopy,
laser optical tweezers, (optical) cell stretchers, colloidal bead microrheology,
elastic substrates and microfluidic chips. Alternatively, biomaterial can be
reconstituted and probed in the test tube, which allows to compare with
macroscopic measurement techniques. In the following, we list a few of
the subcellular structures of interest (a schematic drawing is provided in
Fig. 1.3a) and the physical scales which have been found in experiments.
The detailed meaning of these physical quantities will be explained later in
this text:

(1) plasma membrane: a lipid bilayer which serves as a space partitioner
and permeability barrier; due to its fluidity, transmembrane proteins
can move freely in this two-dimensional sheet; a good model are vesicles;
overall bilayer thickness 4 nm, hydrocarbon layer thickness 2 nm, with
a dielectric constant of 2, in contrast to 80 for the surrounding water;
bilayer bending rigidity 20 kBT , rupture tension 10−3 J/m2, stretching
modulus 0.2 J/m2

(2) other membrane structures: other structures formed by lipid bilay-
ers are the two nuclear membranes, the endoplasmic reticulum, the
Golgi apparatus, transport vesicles, endosomes, and mitochondria

(3) glycocalix: a polyelectrolyte brush surrounding the cell, controls adhe-
sion and ligand binding; strongly depends on cell type, typical thickness
50 nm, most surface receptors are buried in it
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(4) actin cortex: a thin layer of actin polymer network located below the
plasma membrane; filamentous actin is a semiflexible polymer dynam-
ically crosslinked by a variety of additional proteins; together with
myosin II molecular motors, it is also the essential component of mus-
cle; a good model for the actin cortex are polymeric capsules; thick-
ness 100 nm, elastic modulus kPa; the composite sandwich of plasma
membrane and actin cortex determines much of cell mechanics, which
therefore has to be described by thin shell elasticity; in experiments,
it was found that the cell envelope is under an effective tension of the
order of nN/µm

(5) microtubuli: a system of stiff polymers radiating from a common cen-
ter, the microtubule organizing center close to the nucleus; micro-
tubules provide the tracks along which molecular motors like dynein
and kinesin transport their cargo, and contribute to overall cell me-
chanics; actin filaments and microtubules together with intermediate
filaments (not shown here) form the cytoskeleton, that is the system of
polymer networks which gives structural integrity to eukaryotic cells

(6) DNA: a flexible polymer whose basepair sequence carries the genetic
information; human DNA has a length of 2 × 3 giga basepairs (Gbp)
× 0.34 nm = 2 m, which is compactified into the µm-sized nucleus
despite the high charge of 2e− per basepair, a feat which is accomplished
mainly by multivalent counterions like spermidine and with the help of
histones, large proteins onto which the DNA is wrapped

(7) cytoplasm: the dense solution of ions and molecules filling the interior
of the cell; the viscosity for the movement of small particles is only
modestly larger than the one of water, but the macroscopic viscosity
(which is relevant e.g. when deforming the whole cell) is 104 Pa s (sim-
ilar to honey, 107 the one of water); salt concentration 100 mM (like
sea water), which leads to a Debye screening length of only 1 nm

The cellular system depicted in Fig. 1.3a is too complex as to be ap-
proached head-on with physical methods. In order to investigates the phys-
ical aspects of cells, it is helpful to reduce the cellular complexity and to
start with appropriately reduced models. In Fig. 1.3b, the reduced version of
Fig. 1.3a is shown which already reproduces many important aspects of cell
shape and mechanics, namely a polymer capsule wrapped by a lipid bilayer.
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(a) (b)

Figure 1.4: Physical modelling of red blood cells. (a) The equilibrium shapes of
red blood cells as a function of area difference between the two monolayers of the
lipid bilayer. Electron micrographs on the left fit nicely to theoretical results on
the right. (b) Typical shapes of red blood cells in hydrodynamic shear flow as
simulated with multiple particle collision dynamics.

In fact such a system exists in nature, namely the red blood cell, which has
lost most of its intracellular inventory when converted into the transporter
vehicle as which it is used in the body. In Fig. 1.4 we show results from
the physical modelling of red blood cell shape both in equilibrium and in
shear flow. These results demonstrate that the physical principles for cell
shape and mechanics are indeed amendable to theoretical analysis. One of
the purposes of this text is to introduce the concepts required to deal with
these issues.

1.3 Further reading

For the theory of soft matter physics, there are several excellent books avail-
able, including

• SA Safran, Statistical thermodynamics of surfaces, interfaces, and mem-
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branes, Addison-Wesley, Reading 1994

• PM Chaikin and TC Lubensky, Principles of condensed matter physics,
Cambridge University Press, Cambridge 1995

• KA Dill and S Bromberg, Molecular driving forces : statistical thermo-
dynamics in chemistry and biology, Garland Science 2003

The following proceedings from the winter schools at Research Center Juelich
provide an up-do-date view on soft matter research:

• JKG Dhont, G Gompper and D Richter, eds, Soft Matter: Complex
Materials on Mesoscopic Scales, Proceedings winter school Research
Center Juelich 2002

• G Gompper, UB Kaupp, JKG Dhont, D Richter and RG Winkler, eds,
Physics meets Biology: From Soft Matter to Cell Biology, Proceedings
winter school Research Center Juelich 2004

The following books combine experimental and theoretical issues of soft mat-
ter systems:

• JN Israelachvili, Intermolecular and surface forces, 2nd edition, Aca-
demic Press 1992

• DF Evans and H Wennerström, The colloidal domain: where physics,
chemistry, and biology meet, 2nd edition, Wiley 1998

• RAL Jones, Soft condensed matter, Oxford University Press 2002

• T Witten and P Pincus, Structured fluids : polymers, colloids, surfac-
tants, Oxford 2004

For elasticity theory, the standard textbook is

• LD Landau and EM Lifschitz, Elasticity Theory (VII), Pergamon Press,
Oxford, 1986

For polymer theory, the standard textbooks are

• M Doi and SF Edwards, The theory of polymer dynamics, Clarendon
Press, Oxford, 1986
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• M Rubinstein and RH Colby, Polymer Physics, Oxford University Press
2003

For membranes, vesicles and capsules, excellent reviews are provided in

• R Lipowsky and E Sackmann, Eds., Structure and Dynamics of Mem-
branes, Elsevier, Amsterdam 1995

• U Seifert, Configurations of fluid membranes and vesicles, Advances in
Physics 46: 13-137, 1997.

• C Pozrikidis, ed., Modeling and Simulation of Capsules and Biological
Cells, Chapman and Hall / CRC Press, 2003

Finally there is an increasing number of books on biological physics:

• J Howard, Mechanics of motor proteins and the cytoskeleton, Sunder-
land 2001

• D Boal, Mechanics of the cell, Cambridge University Press 2002

• P Nelson, Biological physics: energy, information, life, Freeman 2004

• R Philips, J Kondev and J Theriot, Physical Biology of the Cell, Taylor
and Francis 2008
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Chapter 2

Molecular and colloidal
interactions

In this chapter we will learn that soft matter is characterized by interactions
that are weak, attractive and short-ranged. In particular, we will see that
cohesion in soft matter systems usually arises from the electrostatic interac-
tion. A detailed analysis shows that this one kind of interaction leads to a
long list of seemingly uncorrelated phenomena. The fact that today we can
understand them all from a common source shows how well developed our
understanding of soft matter systems has become over time. We will start
with the Coulomb interaction between charged particles and then address
the issue of distributed charge. This includes mobile counterions in solution,
which leads to screening and short-ranged interactions. Then we turn to
dipolar interactions, including the ubiquitous van der Waals interaction. We
will discuss hydrophilic, hydrophobic and depletion interactions, which are
important to understand both colloidal and biological systems. Finally we
discuss the nature of biological interactions, which roughly speaking corre-
spond to a complicated mixture of soft matter interactions to achieve very
specific interactions.

2.1 Covalent bonding

Covalent or chemical bonding arises from the electron cloud shared between
different atoms and its strength has to be calculated from quantum mechan-
ics. In general, covalent bonding is short-ranged, directional and strong. For

13



+

+

-
+

-

+

-

+

-

+

-+

-

+ -

+-

-

-

+
-

+

-

+

-

+

-

+-

+

- +

-+

(a)

+ - + - + -

+- + - + -

+ - + - + -

(b)

Figure 2.1: (a) The attraction between two oppositely charged particles in solu-
tion is weakened if the solvent molecules are polarizable. This effect is described by
the dielectric constant ǫ (2 or oil and 80 for water). (b) A charge-neutral assembly
of positive and negative charges can be stable, for example the sodium chloride
crystal (Na+Cl−) schematically shown here.

single, double and triple carbon-carbon bonds, one finds energies of 140, 240
and 330 kBT , respectively. Covalent bonding in condensed matter systems
depends on the details of the chemical environment. For example, the C-H
bond in H-CHO and H-CN has energies of 144 and 200 kBT , respectively.
Metallic bonding is similar to covalent bonding and also has an energy scale
much larger than thermal energy (band structure in solids is usually calcu-
lated in eV = 40 kBT ).

2.2 Coulomb interaction

2.2.1 Point charges

The pairwise Coulomb or ionic interaction energy reads

U =
q1q2

4πǫ0ǫ

1

r
(2.1)

where the qi are the two charges and r is distance. ǫ0 = 8.85×10−12 C2/Jm is
the permittivity of vacuum and ǫ is the dielectric constant of the surrounding
medium, with approximate values of 1, 2 and 80 for air, hydrocarbon and
water. A large dielectric constant means that the Coulomb interaction is
weakened because the medium surrounding the charges is polarized, compare
Fig. 2.1a. It is important to note that the concept of the dielectric constant ǫ
is not simply an assumption, but rather it is a non-trivial result obtained by
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spatial averaging over regions of ≈ (10 nm)3. Usually the dielectric constant
decreases with increasing temperature (i.e., the Coulomb interaction becomes
stronger), because thermal motion decreases the degree of polarization. The
1/r-dependance in Eq. (2.1) implies that the Coulomb-interaction is long-
ranged, like the gravitational interactions which accounts for the structure
of the universe.

In general, ionic interactions are as strong as chemical bonding. For exam-
ple, for one sodium (Na+) and one chloride (Cl−) ion one has an equilibrium
distance at room temperature and in vacuum of r = 0.28 nm. The charges
are simply unit charges, q1 = −q2 = e = 1.6 × 10−19 C. Using Eq. (2.1), one
finds U = −200 kBT , that is the same order of magnitude as for covalent
bonding. If one now considers the sodium chloride (Na+Cl−) crystal, the
Coulomb interaction from Eq. (2.1) has to be summed over all ions in the
crystal, compare Fig. 2.1b. Surprisingly, the result for the energy per ion
differs only by a factor of 1.747, the so-called Madelung constant. The main
effect at work here is that positive and negative charges more or less cancel
each other, a phenomenon called screening. The theoretical result also shows
that charge-neutral arrangements can be stable, meaning that they can pro-
vide a favorable cohesive energy. In macroscopic units, it corresponds to a
cohesive energy of -206 kcal/mol. Experimentally one finds -181 kcal/mol,
which is surprisingly close to the theoretical result. The dielectric constant
ǫ does not enter here because the vacuum is taken to be the reference state.
However it becomes important if one wants to explain why a salt crystal can
dissolve in water: because here ǫ is large, going into solution does not cost
much energy and thus there is always a sizable probability for ions to be in
solution, where they gain entropy.

Soft matter and biological systems are often characterized by the pres-
ence of surfaces or interfaces. In many cases, their effect can be described by
introducing so-called image charges. Image charges are placed outside the
sample volume in such a way that the boundary conditions are just right.
The classical example for the interaction of a point charge with a surface
is the case when this surface is conducting, compare Fig. 2.2a. Then the
electric field has to be normal to the surface everywhere, otherwise charges
in the conductor would move. In the case of a plane conducting surface, one
simply has to assume an image charge of opposite sign, q′ = −q, opposing
the original charge q. Therefore the surface is effectively attractive. In soft
matter physics, however, conducting surfaces are rare and a much more rele-
vant case is an interface with a jump in the dielectric constant. An important
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Figure 2.2: (a) A charge close to a conductor induces an image charge of opposite
sign and therefore is attracted by the surface. (b) Close to an interface to low
dielectric constant like oil, an image charge of equal sign is induced and repulsion
results.

example is the water-oil interface with ǫw = 80 and ǫo = 2. The situation of
a point charge in the water phase is solved by two image charges, namely a
charge q′ = q(ǫw − ǫo)/(ǫw + ǫo) ≈ q at the opposing position and a charge
q′′ = 2qǫo/(ǫw + ǫo) ≈ 0 at the same position. Therefore one essentially has
an image charge of equal sign and repulsion results, compare Fig. 2.2b. This
is another example of the general tendency that charges prefer the medium
of high dielectric constant.

2.2.2 Distributed charges

In soft matter and biological systems, charges are often spatially distributed.
In order to study how interaction laws vary with geometry in the case of the
Coloumb interaction, we start with a short review of electrostatics. From the
interaction potential Eq. (2.1), the force on a particle follows as

F = −∇U =
q1q2

4πǫ0ǫ

r

r3
= q2E (2.2)

where E, the force on a test particle with positive unit charge, is the electro-
static field. Experimentally, one finds that the electrostatic field arising from
different charges is a superposition of the electrostatic fields which result
from the single charges:

E(r) =
1

4πǫ0ǫ

∫

dr′ρ(r′)
r − r′

|r− r′|3 = −∇φ(r) (2.3)
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Figure 2.3: (a) Charge distributed along a line, e.g. along DNA. (b) Charge
distributed along a plane, e.g. a charged lipid bilayer. In both cases, the fictitious
cylinders are used to calculate the electric field (arrows) with the help of the Gauss
law.

where ρ is charge density and

φ(r) =
1

4πǫ0ǫ

∫

dr′
ρ(r′)

|r − r′| (2.4)

is the electrostatic potential. From this, one immediately can verify the
Maxwell equations of electrostatics:

∇× E = 0, ∇ · E = −∇2φ =
ρ

ǫ0ǫ
(2.5)

where we have used ∇ × ∇φ = 0 and ∇2(1/r) = −4πδ(r) with δ(r) being
the Delta-function. The second relation is the Poisson equation. In integral
form, it is known as the Gauss law

∫

V

dr(∇ · E) =

∫

∂V

EdA =

∫

V

dr
ρ

ǫ0ǫ
=

QV

ǫ0ǫ
(2.6)

where we have used the divergence theorem to convert the volume into an
area integral and the Poisson equation to arrive at QV , the overall charge
contained in the volume V .
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As a first example, we consider the charged line with charge density λ,
compare Fig. 2.3a. This would be a model for example for DNA with λ =
−2e/0.34 nm. We now consider a cylinder of radius r and length L around
the charged line. For symmetry reasons, the electrostatic field can have a
radial component Er only. Appling the Gauss law Eq. (2.6) gives

Er2πrL =
λL

ǫ0ǫ
⇒ Er =

λ

2πǫ0ǫr
(2.7)

Therefore the electrostatic field now scales ∼ 1/r rather than ∼ 1/r2 as
around a point charge. For the potential, we find

φ = −
∫ r

Er′dr′ = − λ

2πǫ0ǫ
ln r (2.8)

There are two problems with this result, namely the two divergences at small
and large distances. The divergence at small distance can be fixed with a
molecular cutoff, which gives a constant distribution to the potential and
therefore can be neglected. The divergence at large distance is more severe: it
implies that it is impossible to fix a finite potential as the boundary condition
at infinity. In fact this kind of boundary problem is characteristic for Laplace-
type equations in two dimensions. If boundary conditions are an important
issue, then a more detailed model is needed.

The next example we consider is the infinitely extended charged plane
with charge density σ, compare Fig. 2.3b. This could be a model for example
for a bilayer made from charged lipids, with σ of the order of e/nm2. We
now consider a small cylinder crossing the plane, with surface area A at the
top and bottom sides. For symmetry reasons, the electrostatic field can have
a normal component Ez only. The Gauss law Eq. (2.6) now gives

Ez2A =
σA

ǫ0ǫ
⇒ Ez =

σ

2ǫ0ǫ
, φ =

−σz

2ǫ0ǫ
(2.9)

Therefore the force on a test particle is independent of the distance to the
wall and the electrostatic field jumps by (σ/ǫ0ǫ) across the surface.

The result Eq. (2.9) has many interesting consequences. For example,
consider two equally charged planes facing each other, which might be for ex-
ample the surfaces of two large and close-by colloids. Eq. (2.9) then predicts
that an ion between the two surfaces does not feel any force, irrespective of
its position, because the two electric fields are of equal magnitude and point
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in opposite directions. Next consider two oppositely charged planes facing
each other. Now Eq. (2.9) predicts that an ion outside this arrangement does
not feel any force, because again the two electric fields are of equal magnitude
and point in opposite directions. This is an extreme example of screening.
Between the two planes, an ion would be pulled to the oppositely charged
plane.

The latter arrangement is also known as a capacitor in classical elec-
trostatics. An important example for a biological capacitor is the plasma
membrane of nerve cells, where ion pumps and channels leads to accumula-
tion of opposite charges on the different sides of the membrane. A capacitor
is characterized by the capacitance C = Q/∆φ, which describes how much
charge Q can be accumulated for a given potential difference ∆φ. In our case,
we have ∆φ = σd/ǫ0ǫ and Q = σA, resulting in C/A = ǫ0ǫ/d. With d = 2
nm and ǫ = 2 for the hydrophobic part of a lipid bilayer, we get a value of
µF/cm2, which is exactly the right order of magnitude as found experimen-
tally for non-myelinated nerve cells. Note that electrostatics at the plasma
membrane of neuronal cells is the basis of the way our brain functions (the
corresponding field of biology is called electrophysiology).

2.2.3 Counterions in solution

We have already observed above that in a stable system, all charges have
to be compensated by charges of the opposite sign. Indeed, in soft matter
systems charges usually are never far from charges of the opposite sign. The
most common situation is a surface immersed in a liquid. There are two
mechanisms how such a surface can become charged: dissociable surface
groups might release counterions into solution (e.g. protons for acidic groups),
and charged particles might get adsorbed from solution (e.g. Ca2+ onto the
zwitterionic headgroup of lipid bilayers). In both cases, mobile counterions
will balance the charges on the surface. While entropy drives them away
from the surface, the surface charges keeps them close. In this way, the
charged object gets shielded by a diffuse layer of counterions. Together with
the surface charges, this gives rise to the so-called electrical double layer.
The shielding effect becomes stronger when salt is added to the solution,
because now there are more counterions being attracted by the surface, while
co-ions are repelled. Therefore added salt is an easy way to reduce the
electric interaction between charged objects in solution. Famous examples
are precipitation of mineral particles when rivers hit the sea (resulting in
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river deltas) and compactification of DNA in the cell nucleus by multivalent
counterions like spermidine.

Because counterions are mobile, we now for the first time have to deal
with thermal averages. Because the particles interact with long-ranged inter-
actions, these seemingly simple systems are very hard problems in theoretical
physics. This becomes clearer if we write down the Hamiltonian of this sys-
tem:

H

kBT
=
∑

i<j

q2e2

4πǫ0ǫkBTrij

+
∑

i

qe2σzi

2ǫ0ǫkBT
=
∑

i<j

q2lB
rij

+
∑

i

zi

µ
(2.10)

where q now denotes valency (that is the charge is qe) and σ is the area
number density of elementary charges (that is the area charge density is
eσ). Here we have used the result Eq. (2.9) for a charged plane. Eq. (2.10)
introduces two new quantities. The Bjerrum length lB = e2/(4πǫ0ǫkBT )
is the distance at which two unit charges interact with thermal energy. In
vacuum, its value is 56 nm, while in water, it goes down to 0.7 nm. The Gouy-
Chapman length µ = 1/(2πqσlB) is the distance from the wall at which the
potential energy equals thermal energy. It can also be identified with the
thickness of the diffusive counterion layer. For a number density at the
charged wall of σ = 1/nm2, its value is 1 nm (for q = 1). We now rescale all
distances with µ to get a dimensionless Hamiltonian

H

kBT
=
∑

i<j

Ξ

r̄ij
+
∑

i

z̄i (2.11)

where we have introduced the coupling strength

Ξ =
lBq2

µ
= 2πq3l2Bσ =

q3e4σ

8π(ǫǫ0kBT )2
(2.12)

Note that the high powers in q and T results from the different scaling of
point-point and point-plane interactions, i.e. it is a geometrical effect.

Eq. (2.12) shows that there are essentially two regimes here. For low
charge or high temperature one has Ξ < 1, correlation effects are small and
one can use a mean field theory, the so-called Poisson-Boltzmann theory. For
added salt, this theory can be further simplified by linearization, leading to
Debye-Hückel theory. For high charge or low temperature one has Ξ > 1,
the so-called strong coupling limit. Then correlation effects become impor-
tant and can be treated with a field theoretical virial expansion. Eq. (2.12)
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Figure 2.4: (a) Counterions in solution form a diffusive layer around a charged
surface, resulting in the electrical double layer. Charge condensation is counter-
acted by entropy. (b) For added salt, coions are repeled from the surface and the
electrical double layer is enhanced. Therefore salt increases screening effects.

also shows that valency q is a crucial parameter. In fact it is well known
in biology that condensation problems (like DNA compactification) often in-
volves multivalent ions. It is also important to note that the strong coupling
limit indeed is experimentally accessible: with trivalent ions (q = 3) and
σ = 1/nm2, we already have Ξ = 100.

2.2.4 One charged surface

We first consider one charged surface, compare Fig. 2.4a. The basic idea
here is self-consistency between the potential and the charge density. The
potential has to satisfy the Poisson equation ∇2φ = −ρ/ǫ0ǫ. For the volume
charge density ρ, we neglect correlation effects and assume that it follows as
for a single particle in an external field. In thermal equilibrium, the number
density n follows from a Boltzmann distribution, n = n0 exp(−eφ/kBT ) (for
q = 1). Moreover ρ = en. Combining these equations gives the Poisson-
Boltzmann equation

∇2φ = − e

ǫ0ǫ
n0e

−
eφ

kBT (2.13)

which is a second order non-linear differential equation for φ. Two boundary
conditions are required for its solution. The first boundary condition is that
no force acts at infinity, i.e. φ′(∞) = 0. A second boundary condition follows
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from charge neutrality:

σ = −
∫

∞

0

ρdz = ǫ0ǫ

∫

∞

0

φ′′dz = −ǫ0ǫφ
′(0) ⇒ φ′(0) =

σ

ǫ0ǫ
(2.14)

With these two boundary conditions, Eq. (2.13) can be solved analytically:

φ =
2kBT

e
ln(z + µ) , n =

1

2πlB

1

(z + µ)2
(2.15)

In contrast to the result φ ∼ z for the case without counterions, now the
electrostatic potential scales only ∼ ln z. The counterion profile shows a
long-ranged (power-law) decay.

Next we consider the case of added salt, compare Fig. 2.4b. For sim-
plicity, we consider a simple 1:1 electrolyte like sodium chloride. Moreover
we note that far away from the wall, charge is carried only by the salt with
concentration n0. We therefore write

∇2φ = − e

ǫ0ǫ
n0(e

−
eφ

kBT − e
eφ

kBT ) =
2e

ǫ0ǫ
n0 sinh

eφ

kBT
≈ κ2φ (2.16)

The linearization is valid for small potential or high temperature and the lin-
earized Poisson-Boltzmann equation is known as the Debye-Hückel equation.
In Eq. (2.16) we have introduced a new length scale, the Debye screening
length 1/κ = (ǫ0ǫkBT/2e2q2n0)

1/2 = 1/(2n0lB)1/2. Its values are 1 µm, 10
nm, 1 nm and 0.3 nm for 10−7 M (pure water), 10 mM, 100 mM (physio-
logical salt concentration) and 1 M, respectively. For the planar geometry,
Eq. (2.16) is solved by φ = (σ/ǫ0ǫκ)e−κz, i.e. the potential decays exponen-
tially fast on the scale of the Debye screening length. Thus the decay is
long-ranged in Poisson-Boltzmann theory (without salt) and short-ranged in
Debye-Hückel theory (with salt).

For a sphere with radius R, which could be a protein, ion or micelle, we
have to solve

∇2φ =
1

r

d2(rφ)

dr2
= κ2φ ⇒ φ =

RφR

r
e−κ(r−R) (2.17)

The surface potential φR follows from the Gauss law Eq. (2.6):

ER =
QV

4πǫ0ǫR2
= −φ′|R =

φR(1 + κR)

R
⇒ φR =

QV

4πǫ0ǫ(1 + κR)R
(2.18)
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Figure 2.5: If two charged surfaces oppose each other, both the counterion dis-
tribution n and the electrostatic potential φ are symmetric around the origin.
Counterion entropy leads to a disjoining pressure between the surfaces.

There are two important special cases of Eq. (2.18). For no salt, κ = 0 and
φ = QV /(4πǫ0ǫr), thus we recover the Coulomb law. For a point charge, R =
0 and φ = QV e−κr/(4πǫ0ǫr) (Yukawa-potential). Therefore the interaction
between point-like charges in the case of salt becomes very short-ranged.

Since we deal with a linear theory, total energy follows by simple summa-
tion (in other words, the Yukawa-potential is the Green function for Debye-
Hückel theory). For charged and dilute colloids in solution, the time scales of
particle and counterion movement and the length scales of particle size and
separation are usually sufficiently well separated such that a statistical treat-
ment can be based on effective interaction laws like the Yukawa-potential. It
also can be used to derive the potential around spatially distributed charges
which are screened by salt. By integrating the Yukawa-potential for a charged
line with charge line density λ, we find φ = 2kBT lBλK0(κr), where K0

is the Bessel function. For κ → 0 (salt-free limit), we retrieve the result
φ = −λ ln r/2πǫ0ǫ, compare Eq. (2.8). By integrating the Yukawa-potential
for a charged plane with charge area density σ, we get φ = 2πkBT lBσe−κz/κ,
which for κ → 0 results in φ = −σz/2ǫ0ǫ, compare Eq. (2.9).

In regard to the strong coupling limit, we only report the result to first
order in the virial expansion, n = 2πlBσ2e−z/µ. Although an exponential
decay occurs like in Debye-Hückel theory, this result has nothing to do with
linearization of the Poisson-Boltzmann theory. In particular, here the decay
occurs over the Gouy-Chapman length µ rather than over the Debye screening
length 1/κ.

2.2.5 Two charged surfaces

We now consider the distribution of counterions between two similarly charged
surfaces with distance d, which we take to be centered around the origin,
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compare Fig. 2.5. This situation is a model e.g. for two colloids at small
separation. Experimentally it can be investigated with a setup called the
surface force apparatus. For the case without salt, we again have to solve
the Poisson-Boltzmann equation Eq. (2.13), only that now the boundary
conditions are slightly different. For symmetry reasons, the first boundary
condition is simply φ′(0) = 0. The second boundary condition again follows
from charge neutrality:

σ = −
∫ d/2

0

ρdz = ǫ0ǫ

∫ d/2

0

φ′′dz = ǫ0ǫφ
′(d/2) ⇒ φ′(d/2) =

σ

ǫ0ǫ
(2.19)

Then the exact solution is

φ =
kBT

e
ln(cos2(Kz)) , n =

n0

cos2(Kz)
(2.20)

where n0 now is the counterion density at the midplane and K is a constant
given by K2 = (e2n0)/(2ǫ0ǫkBT ). Thus once K is known, n0 follows as
n0 = (2K2ǫ0ǫkBT )/e2. K has to be determined as a function of σ and d:

φ′(d/2) =
2kBTK

e
tan

Kd

2
=

σ

ǫ0ǫ
(2.21)

Eq. (2.20) shows that the counterion profile between two similarly charged
surfaces is sort of parabolic, with counterions accumulating at the sides. Su-
perficially this reminds of the situation with one surface, when counterions
were attracted to the oppositely charged surface. However, the situation
now is fundamentally different, because as we have seen above for a single
charge in front of a charged surface, the electrostatic force on a single ion is
independent of distance and the two forces from the two surfaces cancel each
other. In fact the real reason why counterions accumulate at the sides is mu-
tual repulsion between different counterions. This situation is similar to the
accumulation of mobile charges on the surface of any conductor with mobile
charges. Charge accumulation is further favored by the fact that negative
and positive charges can condense into stable structures, as we have seen for
the NaCl-crystal. So why do the counterions not simply condense onto the
surfaces ? The answer is that we deal with a high temperature situation and
configurational entropy drives them back into solution, therefore entropy is
an essential element to understand Eq. (2.20). In summary, it is essentially
the counterion pressure (disjoining pressure) which pushes the surfaces away
from each other.
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The exact value for the the disjoining pressure follows in a very general
way from the contact value theorem, which is stated here without derivation:

p = kBTn0 (2.22)

Thus the pressure on the surface is simply the osmotic counterion pressure
at the midplane. Using the Poisson-Boltzmann result for n0, Eq. (2.22) gives

p = 2ǫ0ǫ

(

kBT

e

)2

K2 (2.23)

This equation has two interesting features: first it scales ∼ T 2, indicating
that we deal with an entropic effect, which vanishes with temperature T ,
and second we see that p > 0, that is the pressure is always repulsive. For
large separation, d → ∞ and therefore Eq. (2.21) demands that in order
to give a finite value for the charge density σ, we must have Kd/2 ≈ π/2.
Therefore

p ≈ 2ǫ0ǫ

(

kBT

e

)2
(π

d

)2

(2.24)

The pressure in Poisson-Boltzmann theory is a long-ranged effect.
It is instructive to put numbers on these results. For σ = 0.2 C/m2

(roughly one elementary charge per nm2) and d = 2 nm, we find K = 1.3×109

1/m. Therefore the counterion concentration at the midplane is n0 = 0.7 M.
At the surface, it is n(d/2) = 12 M. Therefore it is a factor 18.5 higher at
the sides than in the middle, and this over a distance of only 1 nm. For the
electrostatic potential, we have φ(0) = 0 by construction and φ(d/2) = 74
mV at the surface. The pressure between the surfaces follows as p = 17 atm,
which is much larger than atmospheric pressure. An important biological
application of this large osmotic counterion pressure is the way the cartilage
surfaces in our knee joints are prevented from direct contact. In this case, the
counterions balance the charges on certain polymers attached to the surfaces,
but the fundamental mechanism is the same. Thus counterion pressure is the
reason why we can go jogging.

We only briefly discuss the two other interesting regimes of Debye-Hückel
theory and the strong coupling limit. In the first case of added salt, the
exact solution reads φ = φ0 cosh(κz). Thus the concentration profile and
the pressure decay exponentially with distance z, that is they are short-
ranged. In the strong coupling limit, entropic effects become less relevant and
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Figure 2.6: (a) The interaction between two dipoles is strongly orientation-
dependent. The angles involved follow from the two orientation vectors n1 and
n2 and the normalized separation vector r. (b) The most favorable configuration
is parallel alignment, with all other possible configurations being less favorable.
Therefore dipolar fluids are characterized by chaining.

charges tend to condense onto the surfaces. A detailed analysis shows that
for large coupling strength Ξ, attraction between similarly charged surfaces
becomes possible, that is pressure becomes negative. Although this result
sounds surprising, it is well known experimentally that highly charged planar
surfaces attract each other in the presence of multivalent counterions. For
example, this effect restricts the swelling of e.g. clay or lipid lamellar phases.
Strong coupling theory also explains why multivalent ions are so prominent
in compactification of highly charged biological material like DNA.

2.3 Dipolar and van der Waals interactions

Up to now we have considered the long-ranged Coulomb-interaction. We
have found that geometry modulates the interaction laws and that screening
by mobile counterions can considerably shorten their range. Another mech-
anism by which short-ranged interactions arise in soft matter systems is the
electrostatic interaction of electric dipoles. These dipoles can be either per-
manent (like in CO, H2O, NH3) or they can result transiently from charge
fluctuations.

The interaction between two dipoles follows from a multipolar expansion
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of the Coulomb potential as

U =
(ea)2

ǫ0ǫr3
[(n1 · n2) − 3(n1 · r)(n2 · r)] (2.25)

where a is the distance between the two charges in a dipole, r is the unit
vector between the two dipoles and the ni are the unit vectors describing the
two dipole orientations. Fig. 2.6a depicts these definitions. In Eq. (2.25), the
term in brackets describes the angular part of the interaction. Its evaluation
in Fig. 2.6b shows that parallel alignment in a chain is the most favorable
configuration. In regard to distance, the dipolar interactions decays ∼ 1/r3.
As the charges can reorient, it is generically attractive. Dipolar interactions
can be conveniently studied in colloidal systems, namely with dipolar fluids,
which are characterized by disordered networks of chains at low density and
by spontaneous polarization at high density.

When interaction energies are low, e.g. in water with its high dielectric
constant ǫ, then the dipoles are subject to strong configurational fluctuations
and one has to perform a thermal average over all possible orientations. An
effective interaction W can then be defined by

e−W/kBT = 〈e−U/kBT 〉 =

∫

e−U/kBT dΩ
∫

dΩ
(2.26)

Since both W and U are small compared with thermal energy kBT , one next
can expand the two exponentials. For Eq. (2.25), the first order term vanishes
and the second order term gives the so-called Keesom interaction

W = − 〈U2〉
2kBT

= − (ea)4

3(4πǫ0ǫ)2kBTr6
(2.27)

which generically is attractive. Similarly short-ranged interactions also result
from polarization effects. A permanent or transient dipole gives an electric
field E ∼ 1/r3, which in a polarizable medium leads to a new dipole p ∼ E,
thus resulting in W = −pE ∼ −1/r6. For permanent and transient dipoles,
these are the so-called Debye and London interactions, respectively, with
the latter being an example of a dispersion force resulting from quantum
mechanical fluctuations. Since the Keesom, Debye and London interactions
all scale as ∼ −1/r6, the are collectively called van der Waals interaction. It
is the main source of cohesion in soft condensed matter systems.
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Figure 2.7: (a) Two films of thickness h interacting over a distance D. (b) Two
spheres of radius R interacting over a distance D. For close approach, D ≪ R,
the interaction can be calculated from the Derjaguin approximation.

Like the Coulomb interaction, the van der Waals interaction is strongly
modulated by geometry. In many cases, one can assume pairwise additivity
(Hamacker approach):

W = − A

π2

∫

V1

dr1

∫

V2

dr2
1

r12
6

(2.28)

The Hamacker constant A has a typical value of 25 kBT . For two bodies
made from material 1 and 2 in a medium m it scales like ∼ (ǫ1−ǫm)(ǫ2−ǫm).
Therefore A > 0 for 1 = 2, that is like bodies attract. However, for ǫ1 <
ǫm < ǫ2, van der Waals interaction can also leads to repulsion.

A large variety of different geometries have been treated in the Hamaker
approach, including the interaction between thin and thick films, halfspaces,
hollow and full spheres, cylinders and strings. As an instructive example,
here we discuss in detail the interaction between two thick films, each of
thickness h, and separated by a distance D, compare Fig. 2.7a. This could
be a model for the van der Waals-interaction between two lipid bilayers in a
lamellar stack. First we integrate over one film:

W1(D) = − A

π2
2π

∫

∞

0

rdr

∫ D+h

D

dz
1

(r2 + z2)3
(2.29)

= − A

2π

∫ D+h

D

dz
1

z4
= − A

6π

[

1

D3
− 1

(D + h)3

]

(2.30)
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Next we integrate over the second film. Due to translational invariance in
the x-y-plane, this results in an energy per area:

w(D) =

∫ D+h

D

dD′ W1(D
′) = − A

6π

h2(3D2 + 6Dh + 2h2)

D2(D + h)2(D + 2h)2
(2.31)

= − A

12π

[

1

D2
− 2

(D + h)2
+

1

(D + 2h)2

]

(2.32)

The two equivalent expressions are useful to consider two limits of interest.
In the case of thin films, h → 0 and one has

w(D) = − Ah2

2πD4
(2.33)

Note that the scaling part of this result can easily be guessed: in the limit
of small thickness, w has to scale ∼ h2, and D is the only other length scale
present to obtain an energy per area. In the case of halfspaces, D → 0 and
one has

w(D) = − A

12πD2
(2.34)

Again it is easy to guess the scaling form, but obviously the full calculation
is required to get the numerical prefactors, which here amount to a more
than one order of magnitude reduction. Because there are only two length
scales in this problem, the crossover between the two cases occurs at D ≈ h.
As in the electrostatic case, again we note that different geometries lead to
different scaling laws. In particular, the two halfspaces show a van der Waals-
interaction which is much more long-ranged (∼ 1/D2) than the ones between
two thin films (∼ 1/D4) or single molecules (∼ 1/r6).

The integrals of the Hamacker approach can also be solved exactly for the
case of full and hollow spheres, which are important models for colloids. For
example, the result for two full spheres with radii R1 and R2, respectively,
and distance r reads

WR1R2
= −A

6

{

2R1R2

r2 − (R1 + R2)2
+

2R1R2

r2 − (R1 − R2)2
+ ln

(

r2 − (R1 + R2)
2

r2 − (R1 − R2)2

)}

(2.35)
The result can also be used to obtain the interaction between two hollow
spheres with finite thickness:

WS1S2
= WB1B2

−WC1C2
−WC1S2

−WS1C2
= WB1B2

+WC1C2
−WC1B2

−WB1C2

(2.36)
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where we have decomposed each sphere into ball (B) and core (C) and re-
peatingly used WCB = WCS + WCC . The remaining expressions can now be
evaluated using Eq. (2.35).

In many cases one is interested in the interaction between two objects
at small separation. In the case of two spheres, using R1 = R2 = R and
D = r − 2R ≪ R in Eq. (2.35) leads to

W = − AR

12D
(2.37)

Thus the decay is slower than between two halfspace, because less material
is moved away upon separation. Another and more general way to obtain
this result is the use of the Derjaguin approximation, which is a perturbation
analysis around the planar case. The basic idea is that for a given point
on one surface, one determines the point of closest approach z on the other
surface. One then integrates w(z) for the interaction between planar surfaces
over the first surface. Because for the two spheres the problem has radial
symmetry, we have

W = 2π

∫

∞

0

w(z)rdr (2.38)

The geometrical situation is depicted in Fig. 2.7b. For large R, the relation
between z and r follows as z ≈ D + r2/R. Therefore

W = πR

∫

∞

D

w(z)dz (2.39)

In principle, this expression is valid for any type of interaction w(z). Using
Eq. (2.34) for the van der Waals-interaction between two halfspaces, we find
for the van der Waals-interaction between two spheres at close approach:

W = −AR

12

∫

∞

D

1

z2
dz = − AR

12D
(2.40)

in agreement with Eq. (2.37). Another useful result follows if we use Eq. (2.39)
to obtain the force between the two spheres:

F = −∂W

∂D
= πRw(D) ⇒ w(D) =

F

πR
(2.41)

Therefore measuring the force for any kind of interaction between two spheres
immediately gives the corresponding interaction law between two flat sur-
faces. A related result for two crossed cylinders is the starting point for work
with the surface force apparatus.
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Figure 2.8: (a) Water can be regarded as a fluctuating network of orientation-
dependent hydrogen bonds (broken lines). (b) The phase diagram of water as a
function of temperature T and pressure p has an unusual negative slope of the
solid-liquid boundary, reflecting that for water, the liquid is denser than the solid.

2.4 Hydrophilic and hydrophobic interactions

Much of the complexity of soft matter and biological systems arises from the
peculiar properties of water. Unlike most other solvents, water should not be
regarded as an ensemble of identical spheres interacting through a simple pair
potential, but rather as a fluctuating network of hydrogen bonds, compare
Fig. 2.8a. The dominance of the hydrogen bonds in water arises because the
two O-H-bonds in a water molecule are proton donors, while the two electron
pairs are acceptors. Therefore four hydrogen bonds arise around one water
molecule in bulk water, with the energetically most favorable arrangement
being tetrahedral. In general, the structure of water is determined by the
tendency to maximize the number of hydrogen bonds. This tendency weak-
ens as temperature increases because the systems becomes more randomized
due to entropy. Like for other hydrogen-bonded liquids (HF, H2O2, HCN),
changes in electron density quickly propagate throughout the solvent, leading
to strong cooperativity.

The picture of water as a network of hydrogen bonds helps to understand
some of its peculiar properties:

• The high dielectric constant of ǫ = 80 arises because the hydrogen
bonds are easily polarized.

• The high cohesive energy stored in the network of hydrogen bonds
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Figure 2.9: Water is ordered in the presence of solute. (a) Water cannot establish
hydrogen bonds to a hydrophobic (oil-like) solute, so effectively it avoids it. (b)
Ions can enhance or weaken the structure of the surrounding water, depending on
molecular details and temperature.

results in high values for the material properties describing cohesion,
including melting temperature, boiling temperature, enthalpy of va-
porization, surface tension and heat capacity. In general, there is a
competition between hydrogen bonds favoring open structures and van
der Waals bonds favoring dense structures, which is strongly modulated
by temperature.

• The solid is less dense than the liquid (ice floats on water) because
the tetrahedral ordering results in an open, almost foam-like structure,
which is destroyed by temperature. This effect persists even in the liq-
uid, therefore heating increases density up to 4 degrees Celsius (above
4 degrees Celsius, entropy leads to the usual effect of thermal expan-
sion, therefore density has a maximum at 4 degrees Celsius). Because
pressure like heating effectively destroy the open structure of ice, it
can be used to melt the crystal, in contrast to most other solvents
(this is one of the reasons why one can skate on ice but not on glass).
Therefore the solid-liquid boundary has an unusual negative slope in
the p-T-diagram, compare Fig. 2.8b.

The hydrogen bonds of water are also responsible for its special prop-
erties as solvent. The most prominent effect here is the hydrophobic effect,
which means that oil and water do not mix. The main mechanism here
is that oil molecules immersed in water do not participate in the network
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of hydrogen bonds. Locally, this leads to a higher order around the solute,
which is entropically unfavorable, as shown schematically in Fig. 2.9a. Indeed
calorimetry shows that the aversion of oil for water is entropic at 25 degrees
Celsius (it becomes enthalpic at higher temperatures). Closely related is the
issue of hydrophobic interactions, which means that non-polar solutes aggre-
gate in water as if there was some attractive interaction, because in this way
the solutes reduce the surface area of contact with the network of hydrogen
bonds. For polar or ionic solutes, the situation is more complicated, that is
depending on the details, they can be favorable or unfavorable for the struc-
ture of water. This is shown schematically in Fig. 2.9b. The term hydrophilic
interactions refers to the fact that polar solutes prefer polar solvents since a
large dielectric constant lowers the self-energy.

2.5 Colloidal dispersions

Colloidal dispersions are mesoscopic particles in the size range from 10 nm
to 10 µm which are dispersed in solvent. For example, milk is a colloidal
dispersion of fat droplets in water and it is opaque because the droplet have
a size similar to optical wavelengths. In general, colloidal particles tend
to flocculate due to the ubiquitous van der Waals interaction. Therefore
colloidal dispersions have to be stabilzed. The two common mechanisms
to do so are electrostatic or steric repulsion between charged and polymer-
decorated surfaces, respectively.

Steric effects can lead to both attraction and repulsion between colloids,
compare Fig. 2.10. Due to the depletion interaction, large particles (e.g.
latex beads) in a sea of small particles (e.g. coiled polymers) attract each
other. The reason is that each large particle is surrounded by a zone which is
excluded to the centers of mass of the small particles due to their finite size,
compare Fig. 2.10a. If two large particles aggregate, the excluded volume de-
creases due to overlap of these zones, which is favorable for entropic reasons.
This implies that the interaction range is basically set by the size of the small
particles. Repulsion results between two colloids which are surface-grafted
with polymers. As the two surfaces approach, the polymers start to overlap,
compare Fig. 2.10b. This is unfavorable for entropic reasons, leading to a
repulsive force between the two surfaces.

The model systems for colloidal physics are polystyrene (PS) or poly-
methylmethacrylate (PMMA) spheres dispersed in water. Since the polymer
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(a) (b)

Figure 2.10: Colloidal interactions based on steric effects. (a) Depletion interac-
tion: small particles define exclusion zones around large particles. Overlap between
these exclusion zones (black) is favorable because it effectively increases the free
volume for the small particles. (b) Steric stabilization: polymers grafted to the
surfaces of the colloids prevent coagulation because overlap is sterically unfavor-
able.

brushes are much smaller than particle sizes and since the van der Waals in-
teraction can be suppressed by index matching between particles and solvent
(i.e. the dielectric constants are made equal by addition of salt), sterically
stabilized PMMA-spheres are a model system for hard spheres. Charge sta-
bilization requires some surface groups which dissociate counterions into the
solution, which is the case for e.g. PS-spheres in water. Typically there are
1000 elementary charges on such a macroion. Today the interactions in col-
loidal systems can be tuned to such a degree that they can be used as model
systems for the study of atomic and molecular systems.

The combined action of van der Waals attraction and double-layer re-
pulsion is described by the so-called DLVO-theory, named after Derjaguin,
Landau, Verwey and Overbek. Since the van der Waals-interaction diverges
with a power law at small separation, while the electrostatic interaction stays
finite, a primary minimum results for small separation. This leads to coagula-
tion and flocculation, e.g. at high salt when electostatic repulsion is screened
(an example mentioned before is precipitation of mineral particles in river
deltas). However, at low salt the electrostatic repulsion can dominate at
intermediate distances, leading to an energy barrier which provides kinetic
stability because particles become trapped in a secondary minimum. At large
separation, van der Waals dominates again. DLVO-theory has been nicely
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Figure 2.11: DLVO-theory describes the interplay between the attractive van der
Waals-interactions (lower curve) and the repulsive screened electrostatic interac-
tions between similarly charges colloids (upper curve). At very small separation,
the van der Waals-interaction always wins, leading to the primary minimum. For
certain parameter values (lower solid line), a barrier can arise at intermediate
distances, resulting in a secondary minimum.

confirmed with experiments with the surface force apparatus.
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Chapter 3

Simple and complex fluids

In this chapter, we will discuss the phase behaviour of simple and complex
fluids. We start with a review of the statistical mechanics of the ideal gas,
which is a good model for diluted gases. In order to deal with real gases, we
use the ideal gas as a reference state for a virial expansion. Already the first
order of this expansion is sufficient to predict the fluid-fluid phase transition
resulting for attractive interactions and the fluid-solid phase transition re-
sulting from excluded volume effects. Both transitions together explain the
phase behaviour of Lennard-Jones and square well systems. Finally we will
discuss the phase behaviour of more complex fluids such as multicomponent
fluids and liquid crystals.

3.1 Ideal gas

The ideal gas is a collection of N non-interacting point particles. It is one
of the most important examples for an exactly solvable statistical mechanics
model and its understanding provides the background for all work on simple
and complex fluids. We start with the partition sum

Z =
1

N !

∫

dNpdNr

h3N
e−βH(p,r) =

zN

N !
(3.1)

where H =
∑

i p
2
i /2m is the ideal gas Hamiltonian (only kinetic energy),

pi and ri are momenta and positions, respectively, of the different particles
(1 ≤ i ≤ N). β = 1/kBT and h is Planck’s constant. It enters here because
the different possible states are assumed to be squeezed together in phase
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space as closely as permitted by Heisenberg’s uncertainty principle, ∆p∆q ≥
h. The factor N ! accounts for the indistinguishability of the particles. z is
the partition sum for one particle:

z =

∫

dpdr

h3
e−β p

2

2m =
V

h3
(2πkBTm)3/2 =

V

λ3
(3.2)

where we have evaluated the Gauss integral
∫

dxe−ax2

= (π/a)1/2 and

λ =

√

h2

2πmkBT
(3.3)

is the thermal (de Broglie) wavelength. Then the free energy follows with the
help of Stirling’s formula ln N ! ≈ N ln N − N for large N as

F = −kBT ln Z = −kBT ln

(

zN

N !

)

= −kBTN

(

ln

(

V

λ3N

)

+ 1

)

(3.4)

From the result for the free energy F = F (N, V, T ), we can now calculate
the pressure p as

p = −
(

∂F

∂V

)

T,N

= kBT
N

V
⇒ pV = NkBT (3.5)

The result is known as the thermal equation of state or simply as the ideal
gas law. It can be understood in simple terms if one considers the momentum
transfer onto the wall of a box of dimension L3 per time and per area:

p = N(2mvx)(
vx

2L
)

1

L2
= mv2

x

N

V
= kBT

N

V
(3.6)

where he have used the fact that there is only kinetic energy which is directly
related to thermal energy through the thermal equation of state.

Next we calculate entropy S:

S = −
(

∂F

∂T

)

V,N

= −F

T
+

3

2
kBN = kBN

(

ln

(

V

λ3N

)

+
5

2

)

(3.7)

Then the internal energy U follows as

U = F + TS = F + T (−F

T
+

3

2
kBN) =

3

2
NkBT (3.8)
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This result is called the caloric equation of state. It states that the internal
energy of an ideal gas only depends on temperature. It is also an example
for the equipartition theorem: every quadratic term in the Hamiltonian con-
tributes a term kBT/2 to the internal energy, and here we have 3 translational
degrees of freedom.

Historically the thermal and caloric equations of state for the ideal gas
have first been found empirically for weakly interacting particles like He, Ar,
Ne, O2, NO or for real gases at low densities. In terms of density ρ = N/V ,
we can write our main results in a very compact way:

f =
F

V
= kBTρ

(

ln(ρλ3) − 1
)

(3.9)

p = ρkBT (3.10)

u =
U

V
=

3

2
ρkBT (3.11)

(3.12)

3.2 Virial expansion for real gas

The ideal gas is a non-interacting system and can be regarded as the small
density limit for real gases, in which the components interact with some
potential U . We now build up a perturbative scheme to treat density cor-
rections to the ideal gas. If momenta enter the Hamiltonian only through
the kinetic energy as above (that is if potential energy does not depend on
momenta), then the classical canonical partition function separates into an
ideal gas part and a configurational part:

Z = ZidealZinter (3.13)

where

Zideal =
V N

N !λ3N
(3.14)

as above and

Zinter =
1

V N

∫

dNre−βU(r) (3.15)

This term does not factor into single particle functions because the potential
U couples all coordinates. Yet all thermodynamic quantities separate into
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an ideal gas part and a correction due to the interactions. In particular, we
have

F = −kBT ln Z = Fideal + Finter (3.16)

p = −
(

∂F

∂V

)

T,N

= pideal + pinter (3.17)

The formulae for the ideal expressions have been given above and are valid
for dilute fluids. For the pressure, one expects that the correction terms
should scale at least in second order in ρ, because two particles have to
meet in order to give a contribution to this term. This suggests to make the
following ansatz of a Taylor expansion in ρ, the so-called virial expansion:

pinter = kBT

∞
∑

i=2

Bi(T )ρi (3.18)

where the Bi(T ) are called virial coefficients. For many purposes, it is suf-
ficient to consider only the first term in this expansion, that is the second
virial coefficient B2(T ). We then have

F = NkBT
[

ln(ρλ3) − 1 + B2ρ
]

(3.19)

p = ρkBT [1 + B2ρ] (3.20)

Next we discuss how B2(T ) depends on the interaction potential U(r). For
this purpose, we focus on the special case of isotropic and pairwise additive
potentials u(r), that is

U(r) =
∑

i<j

u(|ri − rj |) (3.21)

This class of potentials contains many important cases:

• hard spheres (e.g. sterically stabilized latex beads)

• square well potential (e.g. depletion interaction)

• Lennard-Jones potential (real gas with van der Waals-attraction and
Born repulsion)

• Coulomb potential for charged particles (with screening by counterions:
Yukawa potential)
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Figure 3.1: Colloids can be used to tailor model potentials from statistical me-
chanics. (a) Sterically stabilized colloids result in a hard sphere fluid. (b) If in
addition there is a depletion interaction, then a square-well potential with small
interaction range results.

• DLVO-potential for colloidal stability (van der Waals-attraction and
screened electrostatic repulsion)

It does not contain orientation-dependent interaction potentials like rods
forming liquid crystals or electric dipoles forming chains. Given the assump-
tion of an isotropic and pairwise additive potential, a general formula can be
derived for the second virial coefficient B2(T ) (given here without derivation):

B2(T ) = −1

2

∫

dr
(

e−βu(r) − 1
)

(3.22)

We now calculate B2(T ) for several cases of interest.

3.2.1 Hard spheres

For hard spheres with diameter d, compare Fig. 3.1a, we get

B2(T ) = 2π

∫ d

0

drr2 =
2π

3
d3 = 4Vs > 0 (3.23)

Thus B2 has no temperature dependance, is four times the eigenvolume Vs =
πd/6 of the spheres and is positive. Because then pinter = B2ρ

2kBT > 0,
pressure increases due to the excluded volume effect. It is important to
note that for hard systems, all thermodynamic effects are of entropic origin
and there is no temperature dependance at all because there is no finite
interaction energy.
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Figure 3.2: Smooth isotropic and pairwise interaction potentials common in col-
loidal physics. (a) The Lennard-Jones potential is the standard choice to model
the van der Waals-interaction between molecules and results in a similar phase
diagram as the square-well potential. (b) The DLVO-potentials describes the in-
teraction between charged colloids surrounded by an electric double layer.

3.2.2 Attractive energy

Next we consider an attractive well of depth −ǫ located between d and d+ δ.
Then

B2(T ) = −2π

∫ d+δ

d

drr2(eβǫ − 1) ≈ −2π(d2δ)
ǫ

kBT
(3.24)

where the approximation is valid for δ ≪ d and ǫ ≪ kBT . We conclude that
now the second virial coefficient is negative, that is pressure decreases due
to the attraction. This effect increases with increasing interaction energy ǫ,
decreasing temperature T or increasing interaction range δ.

3.2.3 Square well potential

We finally consider a square well potential with hard core repulsion for r < d.
In practise, this might be realized by combining sterically stabilized colloids
with a short-ranged depletion interaction resulting from the addition of poly-
mers to the solution, compare Fig. 3.1b. Now B2(T ) is simply the sum of
the two preceding ones:

B2(T ) =
2π

3
d3 − 2π(d2δ)

ǫ

kBT
= b − a

kBT
(3.25)
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where we have introduced two positive constants b (the repulsive eigenvol-
ume) and a (representing the attractive part). This general form of B2(T )
has been confirmed experimentally for many real gases. It now allows to
rewrite the gas law in the following way:

pV = NkBT (1 + B2
N

V
) (3.26)

= NkBT (1 + b
N

V
) − N2a

V
(3.27)

≈ NkBT

1 − bN
V

− N2a

V
(3.28)

thus

p =
kBT

(v − b)
− a

v2
(3.29)

where v = V/N = 1/ρ is the volume per particle. This is the van der Waals
equation of state: the volume per particle is reduced from v to v − b due to
excluded volume, and pressure is reduced by the attractive interaction, that
is less momentum is transfered onto the walls due to the cohesive energy.

3.3 Fluid-fluid phase transition

The van der Waals equation of state Eq. (3.29) is characterized by an insta-
bility. For a stable system, if a fluctuation occurs to higher density (smaller
volume), then a larger pressure should result, which can counteract the fluc-
tuation. Therefore thermodynamic stability requires

(

∂p

∂V

)

T,N

< 0 (3.30)

This criterion is equivalent to the statement that the free energy has to be
a convex function of volume, otherwise the system could gain free energy by
splitting into two. However, below the critical temperature Tc = (8a)/(27bk)
the van der Waals isotherms from Eq. (3.29) indeed have sections in which
this stability criterion is violated. This is shown in Fig. 3.3a. Therefore there
is a region of phase space in which the system is unstable and starts to de-
compose into two different fluid phases, each of which are located in stable
regions. The requirement of equal pressure and chemical potential at phase
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Figure 3.3: (a) The van der Waals equation of state contains an instability
because for T < Tc, there are sections where ∂p/∂v is positive. (b) An equal area
construction leads to a T − ρ phase diagram with coexistence between gas and
liquid phases at low temperature. The critical point marks a continuous (second
order) phase transition.

coexistence leads to the equal area construction. Fig. 3.3b depicts the result-
ing phase diagram. At T > Tc, only one fluid phase exists. At the critical
point with Tc, vc = 3b and pc = a/(27b2), a second order phase transition
takes place, that is the transition between the two fluids is continuous. At
T < Tc, the transition is 1st order, that is there is a jump in v. The low and
high density fluids correspond to gas and liquid, respectively.

3.4 Fluid-solid phase transition

The fluid-fluid phase transition is driven by the attractive part of the inter-
action potential. There is another phase transition described by the van der
Waals equation of state which in contrast is driven by the repulsive part. If
we consider the first term in the van der Waals equation of state Eq. (3.29),
we can define a free volume

V − Nb = V (1 − ρb) = αfV (3.31)

where
αf = 1 − ρ

ρ0
(3.32)

is the free volume fraction and ρ0 = 1/b = 3/(2πd3) is the maximal density
in the fluid phase. In order to estimate the free volume in the solid phase,
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Figure 3.4: The phase diagram of hard spheres as obtained from computer simu-
lations has no temperature-dependance and only depends on volume fraction. The
liquid-solid phase phase transition is driven by entropy. The glass transition and
the transition from random close packing to face centered cubic (fcc) close packing
are structural rather than thermodynamic in nature.

we consider a simple cubic arrangement of spheres. The cube dimension is
V 1/3 and it contains a smaller cube free of spheres with dimension V 1/3 − d.
Therefore

αsV ≈ (V 1/3 − d)3 ⇒ αs =

(

1 −
(

ρ

ρcp

)1/3
)3

(3.33)

where the maximal density in the solid phase can be chosen to be the close
packing density ρcp = 0.74(6/πd3) ≈ 3ρ0 (0.74 is the maximal volume fraction
in the closest sphere packing, which according to Kepler’s conjecture is the
face centered cubic arrangement, that is the famous cannon ball or orange
stacking). The different values of the maximal densities for fluid and solid
phases combined with the different scaling with ρ leads to the result that
the solid phase has a larger free volume at higher density. Because the free
energy

F = NkBT

[

ln

(

Nλ3

αV

)

− 1

]

(3.34)

directly follows from the free volume fraction α, there is a fluid-solid phase
transition with increasing density. Somehow surprisingly, the solid phase
is entropically more favorable at large densities because the ordering cre-
ates larger cavities of free volume than it is possible in a disordered fluid.
This shows that entropy, although in general it is the tendency to increase
disorder, can lead to local ordering. Because this effect does not require at-
tractive energy, it does not depend on temperature. It is nicely confirmed
for hard spheres by experiments on colloidal systems as well as by com-
puter simulation, which both locate the fluid-solid transition at the packing
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Figure 3.5: Typical phase diagram for a one-component system like a Lennard-
Jones fluid. Fluid-fluid and fluid-solid phase transitions together result in the
typical camel-shape phase diagram. The triple line at the triple temperature Tt

denotes a three-phase coexistence. In p − T space, it becomes a triple point.

fractions of 0.494 and 0.545. Note that there is no fluid-fluid transition for
hard spheres because there is no attraction. The phase diagram from Fig. 3.4
shows that in addition to this thermodynamic phase transition, there are also
two structural transitions (glass transition and the transition from random
close packing to face centered cubic close packing) at higher densities.

3.5 Simple fluids

Since the square well potential leads to the van der Waals equation of state,
both the fluid-fluid and the fluid-solid phase transitions are present in this
case. The best studied model for a simple one component fluid is the
Lennard-Jones fluid, compare Fig. 3.2a, which also has both excluded volume
and attraction:

u(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(3.35)

Here the attractive part represents the van der Waals interaction, while
the repulsive part represents Born repulsion. The potential minimum −ǫ
is reached at r = 21/6σ ≈ 1.12σ. For Argon, one has ǫ = 0.4 kBT and
σ = 0.34 nm. The big advantage of the Lennard-Jones fluid over the square
well potential is its continuous nature, which makes it very well suited for
computer simulations. In Fig. 3.5 we show the resulting phase diagram which
is typical for a one-component fluid. There are two phase transitions, the
gas-liquid phase transition driven by the attractive energy and the liquid-
solid phase transition driven by entropy. Together they result in a triple
line of gas-liquid-solid phase coexistence at the triple temperature Tt. If the
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Figure 3.6: (a) Typical phase diagram for a two-component system at con-
stant pressure. The eutectic point has three-phase coexistence (M=3) between
two solids and a liquid phase. The lines represent two-phase coexistence (M=2).
At high temperature, only one phase exists (M=1). (b) Typical phase diagram
of a three-component system at constant temperature and pressure. The Gibbs
triangle describes the concentrations of the three components A, B and C, which
represent for example water, oil and amphiphile. Here we assume A-B symmetry
for simplicity. At low concentration of C, A and B demix in a two-phase coexis-
tence region (delineated by the M=2 lines), but at high concentration of C, they
form a single phase (M=1). At intermediate concentrations of C, there is three
phase coexistence (3P), with the three points of the triangle corresponding to three
phase points (M=3).

typical camel-shape phase diagram is converted into p − T -space, the triple
line becomes a triple point.

3.6 Multiple component fluids

Phase diagrams of multicomponent systems can be very complicated, but
they are very common in physical chemistry and biological systems. For r
components and M phases, the Gibbs phase rule states that f = 2 − M + r
variables can be assigned freely. For a one compoment system, r = 1 and
f = 3 − M . Therefore coexistence of up to three phases is possible. Indeed
the phase diagram for the Lennard-Jones fluid leads to a triple point at
which gas, fluid and solid coexist. For a two component system, r = 2
and f = 4 − M , that is now up to four phases are possible. Fig. 3.6a
shows a typical phase diagram for constant pressure. Then up to three-
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Figure 3.7: (a) Hard spherocylinders are a model system for liquid crystals and
can form nematic and smetic phases. In a nematic liquid crystal, all molecules tend
to align in the same direction. In a smectic liquid crystal, in addition they order
into layers. (b) Phase diagram of hard spherocylinders as a function of aspect
ratio L/d. Two-phase regions are shaded. I isotropic, S solid, P plastic solid, Sm
smectic and N nematic.

phase coexistence is possible, which is realized here at the eutectic point
(M=3). For a three-component system, r = 3 and f = 5 − M . Fig. 3.6b
shows for a mixture symmetric in A and B that for constant temperature and
pressure, three-phase coexistence (3P) can occur. An important example of
such a system is a mixture of water (A), oil (B) and amphiphile (C). The
phase diagram shows that the amphiphile can induce water and oil to mix if
present at sufficiently high concentrations.

3.7 Liquid crystals

Other soft matter systems with well studied phase behaviour are lipid-water
mixtures, diblock copolymers and liquid crystals. In these kind of systems,
usually the components do not have simple spherical shapes. For example,
lipids and diblock copolymers are both elongated molecules with two differ-
ent parts (e.g. water-like and oil-like parts for lipids), leading to amphiphilic
phase behaviour characterized by a large amount of internal interface. The
tendency to spontaneously form internal interfaces is also typical for liquid
crystals, which already arise for relatively simple sytems like hard sphero-
cylinders, compare Fig. 3.7. The main classes of liquid crystal phases are
nematic and smectic phases. In nematic phases, rotational symmetry is bro-
ken and all molecules align in average in the same direction. In smectic
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phases, in addition positional ordering occurs, resulting in stacks of aligned
molecules. The transition between the isotropic and nematic phases is second
order and has been described first by Onsager’s analytical theory. Again it
is pure entropy which leads to an ordering phenomena.
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Chapter 4

Interfaces

In finite sized systems, two coexisting phases have to develop some inter-
face between them. In soft matter physics, often the physics of the bulk
phases is sufficiently simple that the system properties are determined by
its interfaces. In this chapter, we will introduce the concepts required to
deal with this situation. We start on the mesoscopic level with a Ginzburg-
Landau model and then take the limit to the effective interface model. We
introduce the basic tools from differential geometry required to deal with the
geometry of surfaces and then discuss the main features of surfaces under
tension, including thermally activated capillary waves on a flat surface and
the Rayleigh-Plateau instability of cylindrical surfaces. We also discuss a few
other tension-related issues, including soap bubbles, foams, wetting and cell
shapes.

4.1 φ4-model

Interfaces can be modeled on different length scales. On the scale of single
particles, one can either use off-lattice models like Monte Carlo simulations of
Lennard-Jones fluids or lattice models like the binary gas (Ising) model. On a
mesoscopic level one can use locally averaged densities. Since these densities
vary in space, here one essentially deals with field theories. In another coarse
graining step, one arrives at effective interface models, where the interface is
described approximated by a mathematical surface. Fig. 4.1 schematically
depicts these different scales.

We now start at the mesoscopic scale and at the vicinity of a critical
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coarsening coarsening

Figure 4.1: An interface between two different phases (like gas and liquid) can
be modeled on different scales. From left to right: particle level - level of density
fields - effective interface level.

point for a fluid-fluid phase coexistence. We assume that there exists an
order parameter φ which has different values in the two fluid phases below
Tc. Above Tc, only one phase exists and the order parameter can only obtain
one value, which we take to be 0. The simplest model for this szenario is the
free energy density

f(φ) =
r

2
Φ2 + sΦ4 (4.1)

If r ∼ (T − Tc), then for T < Tc a Mexican hat shape arises and two
minima coexist. Away from the phase boundary, one or the other minimum
dominates. For T > Tc, we have a simple parabola and φ = 0 is the only
minimum. Exactly at T = Tc, f becomes very flat and large fluctuations
arise. In Fig. 4.2, we show how the different potential shapes correspond to
different points in the phase diagram of a one-component fluid. In this case,
the order parameter Φ can be identified with the density different between
gas and liquid phase.

If interfaces exist, then we have to add a penalty to the free energy for
having an interface. Because an interface requires a spatially varying profile,
the free energy now has to be a functional of φ(r). The simplest assumption
possible is a gradient-squared term:

F [φ] =

∫

dr
{c

2
(∇φ)2 + f(φ)

}

(4.2)

This φ4-model is the best studied example of a Ginzburg-Landau theory and
can be derived from the Ising model (note the symmetry under φ → −φ).

We now consider one interface which extends in the z-direction only.
Then φ(z) varies from one minimum φ0 = (−r/4s)1/2 at one side to the
other minimum −φ0 at the other side. We define the energy per interfacial
area, the so-called surface tension, as

σ =
F

A
=

∫

dz
{ c

2
φ′2 + f̃(φ)

}

(4.3)
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Figure 4.2: The free energy density f as a function of order parameter Φ for
different regions of the on-component phase diagram.

where f̃ = f − f0 with f0 = −r2/16s is the free energy density measured
relative to the ground state.

We now calculate σ as a function of the parameters of the φ4-model.
Before we demonstrate the exact solution, we start with a scaling approach.
The energy barrier between the two minima scales as ǫ ∼ r2/s. The distance
between the two minima scales as ∆Φ ∼ (−r/s)1/2 (compare Fig. 4.3a). With
an interfacial width l, the surface tension then scales as

σ ∼ c

(

∆Φ

l

)2

l + ǫl (4.4)

The optimal interfacial width l0 is finite and results from the balance between
the gradient term (wants it large) and the energy penalty for not being in
the minimum (wants it small):

l0 ∼
(

c

−r

)1/2

(4.5)

By reinserting this into the free energy expression, we find the surface tension
as

σ ∼
(

cr3

s2

)1/2

(4.6)

Note that surface tension σ vanishes at the critical point r = 0, as it should.
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Figure 4.3: (a) Free energy density f as a function of the order parameter Φ
for the Φ4-model at phase coexistence. (b) Kink solution of the Φ4-model for the
one-dimensional interface.

Next we turn to the exact solution. The Euler-Lagrange equation for the
φ4-model reads

δF [φ]

δφ
= −cφ′′ + f̃ ′(φ) = 0 (4.7)

Multiplying with φ′ we see that there is an integral of motion:

φ′ − 2f̃

c
= B (4.8)

where B is a constant of integration. Another integration gives

z − z0 =

∫ φ(z)

φ(z0)

dφ

(2f̃
c

+ B)1/2
(4.9)

As boundary conditions we have φ(±∞) = ±φ0 and φ′(±∞) = 0. The latter
conditions leads to B = 0. Moreover we choose z0 = 0 and φ(z0) = 0. Noting
that one can write

f̃ =
−r

4

(φ2 − φ2
0)

2

φ2
0

(4.10)

we now can solve the integral:

z =

(

2c

−r

)1/2 ∫
φ0dφ

φ2 − φ2
0

=

(

c

−2r

)1/2

tanh−1 φ

φ0

(4.11)
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Figure 4.4: (a) Physical origin of surface tension: particles at the interface (I)
have lower coordination than in the bulk (B). (b) Thermal energy leads to interface
fluctuations (capillary waves).

Inversion gives the famous kink solution for the interfacial profile:

φ(z) = φ0 tanh
z

l0
(4.12)

with l0 = (c/ − 2r)1/2. A schematic plot is shown in Fig. 4.3b. Inserting the
kink solution into F gives an exact expression for the surface tension:

σ =

(−cr3

18s2

)1/2

(4.13)

Thus the exact solution nicely corraborates the scaling analysis.
In general, the physical origin of surface tension is that particles at the

interface have fewer favorable contacts with like particles than in the bulk,
compare Fig. 4.4a. Therefore the surface tension σ for a simple fluid can
be estimated to be the energy E per particle-particle interaction divided by
particle size a squared. For complex fluids, we have to replace this by typical
energy and length scales:

• simple fluid (eg water-oil): E = kT , a = 3A (molecular) → σ =
40 erg/cm2

• complex fluid (eg microemulsion): E = kT , a = 100A (mesoscopic)
→ σ = 0.04 erg/cm2
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Here erg/cm2 = mJ/m2 is a convenient unit for surface tension. Sensitivity
to size comes from quadratic dependance on the characteristic length scale a.
Earlier we have used a similar line of reasoning to argue that soft matter is
characterized by small energy scales and large length scales, because elastic
moduli scales as E/a3. Experimentally one finds that the water-air interface
has a surface tension of σ = 72 erg/cm2.

Usually σ is positive, otherwise the two bulk phases defining the interface
would mix, because σ < 0 corresponds to a proliferation of interfaces. This
situation can occur in systems with surfactants, if the chemical potential for
surfactants at the interface is sufficiently favorable. Then an interface insta-
bility called spontaneous emulsification occurs, which usually is counteracted
by the interfacial curvature energy. In order to understand why surfactants
lower the surface tension, we consider a molecule which is attracted to the
interface and then behaves like an ideal gas in the plane of the interface:

F = A(σ0 + kTρ(ln(ρa0) − 1)) (4.14)

where ρ = N/A is surfactant area density, N is number of surfactant molecules,
and a0 is some molecular area. The effective surface tension then follows as

σ =

(

∂F

∂A

)

N=const

= σ0 − kTρ (4.15)

that is the entropy of the ideal gas lowers the surface tension. The same
effect follows from excluded volume and repulsive interactions like charged
headgroup repulsion.

4.2 Differential geometry of surfaces

The Hamiltonian of the effective interface model looks deceptively simple:

H = σ

∫

dA (4.16)

However, the partition sum is the path integral over all possible configura-
tions of the interface. In general, these kinds of calcuations are not simple.
In order to proceed, one now has to deal with the geometrical properties of
mathematical surfaces. To this end, we have to introduce a few concepts
from differential geometry.
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Figure 4.5: Differential geometry of surfaces. (a) At any point on the surface, one
can construct a normal vector n. Any plane containing this normal vector defines
a direction θ on the surface, for which one can determine the radius of curvature R.
(b) R as a function of θ has a minimum R1 and a maximum R2. Mean curvature
is defined as H = (1/R1 + 1/R2)/2 and Gaussian curvature as K = 1/(R1R2),
respectively.

A two-dimensional surface in three-dimensional space is defined by the
position vector f(x, y) = (f1(x, y), f2(x, y), f3(x, y)), where x and y are the
internal coordinates. The two tangential vectors ∂xf and ∂yf span the tan-
gential plane, while the normal vector n = (∂xf × ∂yf)/|∂xf × ∂yf| points
perpendicularly to it. It we rotate a plane containing n around it, com-
pare Fig. 4.5a, for each angle of rotation θ a curve is cut out of the surface,
to which we can fit a circle with radius R(θ). The curvature is defined as
κ(θ) = 1/R(θ). Since κ(θ) is a smooth function on a compact carrier, it
must have a minimum and a maximum, compare Fig. 4.5b. This defines the
principal curvatures κ1 and κ2 at the given point on the surface. They cor-
respond to the two principal radii of curvature, R1 = 1/κ1 and R2 = 1/κ2.
The mean curvature H and the Gaussian curvature K are defined as

H =
κ1 + κ2

2
=

1

2

(

1

R1

+
1

R2

)

, K = κ1κ2 =
1

R1R2

(4.17)

The mean curvature H describes how strongly the surface bends on average.
At least equally important, the Gaussian curvature K denotes the kind of
geometry one is dealing with, as shown in Fig. 4.6:

• elliptic geometry represented by a sphere: R1 = R2 = R, H = −1/R,
K = 1/R2 > 0
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Figure 4.6: Three fundamentally different kinds of geometries can be distinguished
according to the Gaussian curvature K. (a) A sphere has K > 0. (b) A saddle
has K < 0. (c) A cylinder has K = 0.

• hyperbolic geometry represented by a saddle: R1 = −R2, H = 0,
K = −1/R2

1 < 0

• parabolic geometry represented by a cylinder: R2 = ∞, H = −1/2R,
K = 0

Note that the two minus signs for H are conventions, because we define
curvature to be negative if the surface bends away from the normal, which
we take to point outwards. The theorema egregium by Gauss states that K
depends only on the inner geometry of the surface, that is it does not depend
on the definition of a normal vector pointing in the surrounding space. The
Gauss-Bonnet theorem states that K integrated over a closed surface is a
topological constant:

∫

dAK = 2πχ (4.18)

where χ = 2(1 − G) and G are integer numbers called Euler characteristic
and genus, respectively. The genus denotes the number of holes in the object.
So for the sphere, we have G = 0 and χ = 2, and indeed Eq. (4.18) specified
to a sphere gives (4πR2)(1/R2) = (2π)2.

In order to evaluate integrals like the one in Eq. (4.18) for arbitrary
surfaces, we need formulae for the area element dA, the mean curvature H
and the Gaussian curvature K as a function of the internal coordinates x
and y. For this purpose, we introduce three 2x2-matrices:

gij = ∂if · ∂jf, hij = −∂in · ∂jf, a = hg−1 (4.19)

g is called the first fundamental form or the metric tensor, h is the second
fundamental form and a is the Weingarten matrix. The area element follows
from the metric tensor:

dA = |∂xf × ∂yf| dxdy = (det g)1/2 dxdy (4.20)

56



saddle-

like

cylinder-

like

sphere

like

Figure 4.7: A torus has saddle, cylinder and sphere-like parts, depending on the
internal coordinates.

and the curvatures follow from the Weingarten matrix:

H =
1

2
tr a K = det a =

det h

det g
(4.21)

We now can apply these concepts for any geometry of interest. For the
cylinder, we have x = ϕ and y = z with f = (R cos ϕ, R sin ϕ, z). This
leads to dA = Rdϕdz, H = −1/2R and K = 0. For the sphere, we have
x = ϕ and y = θ with f = R(sin θ cos ϕ, sin θ sin ϕ, cos θ). This leads to
dA = R2 sin θdϕdθ, H = −1/R and K = 1/R2. In these two examples, the
curvatures are constant over the surface. Therefore cylinder and sphere are
examples for surfaces of constant mean curvature (CMS-surfaces). There is
a theorem which states that the sphere is the only CMC-surface which is
compact.

As an example for a geometry with varying curvature, we consider the
torus, for which we have x = ϕ and y = θ with f = (t cos ϕ, t sin ϕ, r sin θ),
where t = a + r cos θ. Here r and a > r are the outer and inner radii of the
torus, respectively. This leads to

g =

(

t2 0
0 r2

)

, h =

(

−t cos θ 0
0 −r

)

, a =

(

− cos θ/t 0
0 −1/r

)

(4.22)

from which we get

dA = trdϕdθ, H = −1

2

(

cos θ

t
+

1

r

)

, K =
cos θ

tr
. (4.23)
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Because the torus is invariant under a rotation with ϕ, the results for the
curvatures only depend on θ. The Gaussian curvature now varies over the
surface. For θ = 0 we are on the outer side, which is sphere-like with K =
1/(ar + r2) > 0. For θ = π/2 and θ = 3π/2 we are on the top and bottom
sides, which are cylinder-like with K = 0. And for θ = π we are on the
inner side, which is saddle-like with K = −1/(ar − r2) < 0. Overall area
is
∫

dA = 4π2ar and
∫

dAK = 0, in accordance with the Gauss-Bonnet
theorem for χ = 0 (G = 1).

An important geometry for the following is the Monge parametrization for
a surface which can be described by a height function h(x, y) (that is there
should be no overhangs). Starting with f = (x, y, h(x, y)), one can derive
exact, but complicated formulae for dA, H and K. In the approximation of
a nearly flat surface (hx, hy ≪ 1), they simplify to

dA ≈
√

1 + h2
x + h2

y dxdy ≈ [1 +
1

2
(h2

x + h2
y)] dxdy (4.24)

H ≈ 1

2
(hxx + hyy), K ≈ hxx hyy − (hxy)

2 (4.25)

Finally it is instructive to consider small variations around a given surface:

ft = f + tϕn (4.26)

where t is a small parameter and ϕ(x, y) an arbitrary scalar field. Using the
concepts introduced above, we can calculate the resulting change in the area
element to first order in t:

dAt − dA = −2tϕ(x, y)H(x, y)(det g)1/2dxdy (4.27)

For this first variation to vanish, we must have H = (κ1 + κ2)/2 = 0 every-
where. A surface with vanishing mean curvature H is called a minimal sur-
face, because stationarity under surface variation is a necessary (but not suf-
ficient) condition for minimal surface area. From H = 0 we get κ1 = −κ2 and
K = −κ2

1 < 0, therefore minimal surfaces are saddle-like everywhere. From
this property it follows directly that minimal surfaces without boundaries
cannot be compact, because the saddle-like shape would cut any container
in which one tries to enclose the surface. Examples for non-periodic minimal
surfaces are the plane and the catenoid. Most minimal surfaces known how-
ever are periodic (including the singly-periodic helicoid, the doubly-periodic
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Scherk-surface and the triply-periodic gyroid). Another important conse-
quence of Eq. (4.27) is that surface and volume are related by curvature:
because

dV t − dV = tϕ(x, y)(det g)1/2dxdy (4.28)

we have dA/dV = −2H .

4.3 Capillary waves

We now consider the effective interface model in the Monge parametrization
for nearly flat surfaces, compare Fig. 4.4b. Using Eq. (4.24), we have

F = σ

∫

dA = σA0 +
1

2
σ

∫

dxdy (h2
x + h2

y) (4.29)

Since the second term is always positive, the interface is stable under capillary
waves. However, thermal fluctations will always be present, due to the gain
in entropy. We first change to Fourier space:

∆F =
1

2
σ

∫

dq q2|h(q)|2 (4.30)

Since the different q-modes decouple, the partition function can be calcu-
lated exactly (Gauss integral). The result is an example of the equipartition
theorem (each harmonic mode has the energie kT/2):

〈|h(q)|2〉 =
kT

σq2
(4.31)

We can now transform back to real space:

〈h(r)2〉 =
kT

σ

1

(2π)2

∫ 2π/a

2π/L

dq
1

q2
=

kT

2πσ
ln

L

a
(4.32)

Note that we deal with a two-dimensional system and that 〈h(r)2〉 does
not depend on position r due to translational invariance. Also we had to
introduce two cutoffs, a molecular length a and the system size L. The
interface is rough for all temperatures, since its mean thickness increases
logarithmically with system size. Yet, this divergence is relatively weak: for
σ = 100 erg/cm2, a = 3 A, L = 100 A, the rms fluctuation is just 1.5 A, and
for L = 1 cm, it increases to 7.5 A only.
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Figure 4.8: Rayleigh-Plateau instability: a cylinder under tension is unstable
under long wavelength modulations and breaks up into spherical droplets.

We now consider the effect of gravity on an interface under tension: the
gravitational energy per unit area is

∫ h

0
dz zgρ = gρh2/2. Therefore the free

energy now reads

∆F =
1

2
σ

∫

dxdy

{

(h2
x + h2

y) + (
h

ξ
)2

}

(4.33)

where ξ = (σ/ρg)1/2 is the capillary length. For water, it is of the order of
millimeter. The problem is still Gaussian, and we have

〈|h(q)|2〉 =
kT

σ(q2 + ξ−2)
(4.34)

Doing the inverse transform, we see that the logarithmic divergence is now cut
off by the capillary length, like before by the system size, 〈h(r)2〉 ∼ ln(ξ/a).

4.4 Rayleigh-Plateau instability

A cylinder is unstable under long-wavelength capillary waves and breaks up
into droplets, which have a lower surface/volume ratio. Consider a cylinder
oriented in z-direction with a small undulation added:

r =





r(z) cos φ
r(z) sin φ

z



 (4.35)

with
r(z) = R(1 + ǫ sin(kz)) (4.36)
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where k = 2π/L is the wavelength of the deformation. The unit cell volume
of this cylinder is

V = π

∫ L

0

dz r(z)2 (4.37)

= πL

∫ 1

0

dz′ R2(1 + ǫ2 sin2(2πz′)) (4.38)

= πLR2(1 +
ǫ2

2
) (4.39)

where a term linear in ǫ dropped out. If the initial radius is R0 and volume
is conserved, then

R2
0 = R2(1 +

ǫ2

2
) (4.40)

that is, since ǫ ≪ 1,

R = R0(1 − ǫ2

4
) (4.41)

It is easy to calculate the metric tensor:

gij =

(

r2 0
0 1 + r2

z

)

(4.42)

Therefore the surface energy is

F = σ

∫

dφdz
√

detg = 2πσ

∫ L

0

dzr
√

1 + r2
z (4.43)

= 2πσL

∫ 1

0

dz′R(1 +
R2ǫ2

2L2
cos2(2πz′)) (4.44)

= 2πσLR(1 +
R2ǫ2

4L2
) (4.45)

where again a term linear in ǫ dropped out and we expanded the square root.
The change in surface energy thus is

∆F = 2πσLR(1 +
R2ǫ2

4L2
) − 2πσLR0 (4.46)

= 2πσLR0
ǫ2

4
(
R2

0

L2
− 1) (4.47)

where we have used Eq. (4.41) and dropped higher terms in ǫ. We conclude
that ∆F becomes negative (that is the systems becomes unstable) for long
wavelength modulations, L > R0.
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Figure 4.9: Soap bubble versus vesicle. (a) Soap films are surfaces under tension.
Although the soap bubble is a closed object, area is not conserved due to variable
film thickness. The bubble is stabilized against collapse by internal pressure. (b)
Lipid bilayers are surfaces governed by bending energy. For a vesicle, area is
conserved because bilayer thickness is constant. In practise, the presence of dirt
leads to an effectively conserved volume.

4.5 Tension-related phenomena

The paradigm for a tension-dominated interface is the water-air interface.
A similar system are soap films, that is thin films of water where the two
water-air interfaces are stabilized by soap molecules. The overall system
again acts as a surface under tension. In a soap bubble, interfacial tension is
counterbalanced by increased pressure inside, therefore σdA = pdV . From a
thermodynamic point of view, this corresponds to minimization of the overall
energy, that is dF = σdA − pdV = 0. If radius R is changed by dR, area
changes by dA = 8πRdR and volume by dV = 4πR2dR. Thus we arrive at
the Laplace law for spherical objects:

p =
2σ

R
(4.48)

For arbitrary surfaces with curvatures varying over the surface, we can use
the general relation between variations in area and volume resulting from
Eq. (4.27). This leads to the general Laplace law:

dA

dV
=

p

σ
= −2H ⇒ p = −2σH (4.49)

For the sphere, H = −1/R and we recover Eq. (4.48). In general, Eq. (4.49)
predicts that soap films between regions with different pressures are CMC-
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surfaces. In mathematical terms, this corresponds to the statement that
surfaces with minimal surface area and under a volume constraint are CMC-
surfaces. Because the sphere is the only compact CMC-surface, liquid droplets
and soap bubbles are spherical. For soap films spanning open frames (like
a soap film connecting two opposing wire rings), the pressure difference p
vanishes, H = 0 and we deal with a minimal surface (like the catenoid for
the two rings).

Dry foams are ensembles of soap films meeting along edges, with the
edges meeting in vertices (wet foams are spherical gas bubbles in an aqueous
matrix). In contrast to the situation with soap bubbles, which are forced
to have Laplace pressure, here pressure can equilibrate with time by gas
diffusion over the water films. Therefore the faces are minimal surfaces. In
many cases, they are rather flat, leading to polyhedral arrangements. Foams
obey some fundamental rules which have been stated first by Plateau and
later have been proved rigorously:

• always three faces meet in an edge, with angles of 120◦

• always four edges (that is six faces) meet in a vertex, with the tetrahe-
dral angle of 109◦

Today foams can be made from nearly any kind of material (liquid, polymers,
metal, ceramics, glass, etc), but usually one sees the signature of these rules,
since the synthesis often is based on some liquid-evolving process.

Two-dimensional foams (between glass plates) lead to the honeycomb
structure, because it obeys the first rule by Plateau. In three dimensions, the
optimal solution, that is the equal-volume partitioning of space with minimal
surface area, is elusive (Kelvin problem). These are the main candidates
discussed until today:

• regular dodecahedron (12 pentagons): does not fill space

• rhombic dodecahedron (Wigner-Seitz cell for the face centered cubic
crystal): 12 faces meet at every vertex

• tetrakaidecahedron (Wigner-Seitz cell for body centered cubic crystal,
truncated octahedron): suggested by Kelvin in 1887

• Weaire-Phelan structure (six 14-sided Goldberg cells and 2 pentagonal
dodecahedra): was shown in 1994 to be better by few percents than
the Kelvin-foam
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Figure 4.10: (a) A liquid droplet on a solid substrate has the shape of a spherical
cap with a contact angle determined by the Young law. If the contact angle is
larger than 90◦, the liquid does not like the surface and we have dewetting (A).
Otherwise the liquid likes the surface and we have wetting (B). (b) Because sharp
bends are energetically unfavorable, a vesicle adhering to a solid substrate does
not have a well-defined contact angle (A), except if the contact energy becomes
very large (B).

In practise, it is very difficult to make three-dimensional monodisperse foams
and real foams always have a statistics dominated by pentagonal faces.

The interaction of liquid droplets with a substrate is called wetting, com-
pare Fig. 4.10a. A wetting situation involves three phases: the liquid in
coexistence with its vapor and a solid support. If the interaction between
liquid and solid is sufficiently favorable, complete wetting occurs and a thin
film forms on the surface. In the opposite case, dewetting occurs and a
droplet rounds up into a sphere. In the intermediate case of partial wetting,
a finite contact angle θ results. Since the system is tension-dominated, the
Laplace law still holds true at any free point of the free surface. Therefore
drops wetting a substrate are spherical caps. The contact angle is determined
by the boundary conditions. Force balance dictates

σSL + σV L cos θ = σSV (4.50)

leading to the Young equation:

cos θ =
σSV − σSL

σV L

(4.51)

where θ is the contact angle. Therefore increasing σV L decreases θ and thus
favors complete wetting. In practise, this is often counterbalanced by the

64



(a) (b)

Figure 4.11: Effect of tension in cell adhesion. (a) The shape of cells adhering
to a flat and rigid substrate is often characterized by a sequence of inward-curved
circular arcs resulting from a Laplace law modified for two dimensions. (b) When
the actin cytoskeleton is weakened by specific drugs, the cell envelope retracts and
the processes connecting the cell to the points of adhesion become cylinder-like.
Then a Rayleigh-Plateau instability can occur.

effect of the van der Waals interaction, which favors thickening of the film.
Effectively this leads to pancake-like droplet shapes, as does gravity.

The science of wetting is very advanced both in theoretical and experi-
mental terms and is also of very large technological importance. Important
subjects here are eg effects of van der Waals interactions and gravitation,
contact angle hysteresis, precursor films, line tension effects, spreading dy-
namics and wetting on topographically or chemically structured surfaces.
Other related subjects are capillary forces, which make the sap rise in trees,
and capillary bridges, which prevent sandcastles from falling.

One important application of the concept of tension are the shapes of bi-
ological cells. Cell shapes often appear to be dominated by surface tension:
cells tends to be round in solution, cell adhesion to a two-dimensional surface
often feature circular arcs connecting points of adhesion (two-dimensional
version of the Laplace equation), tissue cells often are polyhedral with a
dominance of pentagonal faces (three-dimensional foam) and often tubular
extensions of cells show a pearling instability (Rayleigh-Plateau instability).
The origin of the tension in the cell envelope is not clear. Most likely it is
a combination of several effects, including passive prestrain and active con-
tractility by myosin molecular motors in the actin cytoskeleton, tension in
the plasma membrane (possibly related to membrane reservoirs connected
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to the plasma membrane), and an effective tension arising from the inter-
action between actin cortex and plasma membrane. In Fig. 4.11 we show
schematically that when the actin cytoskeleton of a cell is disrupted by spe-
cific drugs, the cell envelope retracts, cylinder-like protrusions develop and a
Rayleigh-Plateau instability can result.
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Chapter 5

Membranes

The surfaces under tension discussed in the last chapter are the simplest
examples for an effective interface model. We now turn to a case of large
biological relevance, namely to lipid bilayers, which belong to the class of
fluid membranes. For example, vesicles are simply a piece of lipid membrane
closed into a spherical bag. The physics of fluid membranes is determined by
their bending energy. Due to thermal fluctuations, membranes tend to make
large excursions, which lead to steric interactions and scale-dependent renor-
malization of the bending rigidity. Finally we will explain how the concept
of bending energy can be applied to predict vesicle shapes and adhesion.

5.1 Bending energy

In general, a thin elastic sheet made from isotropic material has three funda-
mental modes of deformation as shown in Fig. 5.1: in-plane shear, in-plane
compression and out-of-plane bending. Examples for thin elastic sheet are
sheet of paper, thin polymer films, single graphite layers and the cell enve-
lope. Fluid membranes are thin films for which the shear modulus vanishes
because the material flows under mechanical stress. The most prominent ex-
ample for a fluid membrane is the lipid bilayer, which is the main structural
element of biological cells. Since lipid bilayers consist of densly packed hy-
drocarbon chains, their compression modulus is rather large. Together with
the vanishing shear modulus, this makes bending the only relevant deforma-
tion mode for fluid membranes. Because there are no natural coordinates
for a fluid surface, the bending energy should be a scalar under coordinate
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Figure 5.1: A thin film has three fundamental modes of deformation: in-plane
shear, in-plane compression and out-off-plane bending.

transformations. Therefore it can depend only on the local curvatures. In a
small curvature expansion, one thus gets the following bending Hamiltonian
(also known as Helfrich-Hamiltonian):

H =

∫

dA
{

σ + 2κ(H − c0)
2 + κ̄K

}

(5.1)

The tension σ in lipid bilayers always has to be below the rupture tension
of 10−3 J/m2. For vesicles, osmotic deflation can be used to remove tension
which has developed during vesicle preparation. In lamellar phases, usually
no tension exists because the area per lipid can adjust to its optimal value.
The spontaneous curvature c0 = 1/R0 results if a prefered radius of curvature
exists. For lipid bilayers, such an asymmetry might result from adsorption
of additional material to one side. For lipid monolayers, a spontaneous cur-
vature results from hydration effects and therefore is a strong function of
temperature. The bending rigidity κ describes the energy cost of cylindrical
deformations. Typical values are kBT for amphiphilic monolayers and 20kBT
for phospholipid bilayers. Due to the Gauss-Bonnet theorem

∫

dAK = 2πχ
with the Euler characteristic χ describing the topology, the Gaussian bending
rigidity κ̄ is related to the energy cost of topology changes.

The bending rigidity κ has to be positive, otherwise an instability of
spontaneous bending would occur. It can be measured experimentally in
many different ways. In contrast, it is very hard to experimentally determine
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the Gaussian bending rigidity κ̄. In order to gain more insight into the
physical meaning of κ̄, we rewrite the Helfrich-Hamiltonian for the case σ = 0
and c0 = 0 in the following way:

H =

∫

dA

{

1

2
(κ +

κ̄

2
) (κ1 + κ2)

2 − κ̄

4
(κ1 − κ2)

2

}

(5.2)

From this formula, it follows that for a stable topology, one needs to have
−2κ < κ̄ < 0. For κ̄ < −2κ, an instability with κ1 = κ2 → ∞ towards
infinitely many small droplets would result. For κ̄ > 0, an instability with
κ1 = −κ2 → ∞ towards a minimal surface with an infinitely small lattice
constant would result. Therefore we conclude that κ̄ should be small and
negative.

κ̄ is only relevant if topological changes can occur. Otherwise the Gauss-
Bonnet theorem states that this term in the Helfrich Hamiltonian is a topo-
logical constant. Therefore for closed or periodic surfaces, we basically deal
with solutions to the effective interface Hamiltonian

∫

dAH2. These solu-
tions are called Willmore surfaces. Since H = 0 is obviously a minimum
of this Hamiltonian, minimal surfaces are a special subset of the set of so-
lutions. In lipid-water mixtures, the most prominent phase therefore is the
lamellar phase, for which both mean and Gaussian curvatures vanish. An-
other prominent example are the cubic phases, for which the midplane of the
lipid bilayer has the shape of a triply periodic minimal surface with cubic
symmetry (eg the gyroid). As already mentioned, minimal surfaces cannot
be compact. However, Willmore surfaces can. Compact Willmore surfaces
are eg the sphere (G = 0), the Clifford torus (G = 1) and the Lawson surface
(G = 2). For a sphere, the Helfrich-Hamiltonian gives H = 8πκ, that is
the bending energy is independent of size. This result in fact reflects the
conformal invariance of the Helfrich-Hamiltonian, which for vesicles leads to
the interesting property of conformal diffusion in shape space.

5.2 Thermal fluctuations

Like for the interfaces under tension, we first consider thermal fluctuations
around a flat reference state. The bending Hamiltonian in the Monge para-
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metrization reads

F = 2κ

∫

dA H2 ≈ 2κ

∫

dxdy
√

1 + h2
x + h2

y

(

hxx + hyy

2

)2

(5.3)

≈ κ

2

∫

dxdy (hxx + hyy)
2 (5.4)

In Fourier space this gives

〈|h(q)|2〉 =
kBT

κq4
(5.5)

Going back to real space gives us

〈h(r)2〉 =
kBT

κ

1

(2π)2

∫

2π/L

dq
1

q4
=

1

16π3

kBT

κ
L2 (5.6)

where again the result is independent of position r due to translational invari-
ance. In contrast to the result for an interface under tension, now a molecular
cutoff is not needed. For system size L = 10 nm, we get a rms amplitude
of 0.1 nm. For L = 1 cm, it is already 100 µm. Thus we conclude that a
membrane makes much larger excursions than an interface under tension.

In order to study this issue in more detail, we can ask on which length
scale membranes loose their orientation due to thermal fluctuations. In the
Monge parametrization, the normal vector reads n = (−hx,−hy, 1)/

√
det g

with det g = 1+h2
x+h2

y. Then we find for the angle θ between surface normal
and z-axis:

cos θ ≈ 1 − θ2

2
= n · z =

1√
det g

≈ 1 −
h2

x + h2
y

2
(5.7)

For the thermal average of the orientation we therefore have

〈θ2〉 = 〈(h2
x + h2

y)〉 =
kBT

(2π)2κ
2π

∫ 2π/a

2π/L

qdq
q2

q4
=

kBT

2πκ
ln(

L

a
) (5.8)

Orientation is lost if 〈θ2〉 = π2, which defines a membrane persistence length

Lp = ae(2π3κ)/(kBT ) (5.9)

also known as the de Gennes-Taupin length. For lipid bilayers, we have
κ = 20kBT and Lp assumes the astronomical magnitude of ae400. There-
fore we conclude that although lipid bilayers make large excursions, they

70



do not loose orientation on realistic length scales and therefore the Monge
parametrization is a reasonable approximation. For amphiphilic monolayers
with κ = 1kBT , however, the persistence length Lp might become smaller
than sample size. Then the membrane undergoes a crumpling transition, de-
pending on the effect of self-avoidance, which cannot be treated in the Monge
parametrization.

Up to now, we have worked in the Monge parametrization only in the low-
est order of an expansion in small curvatures. If one includes higher orders,
one has to go beyond simple Gaussian integrals and to use the technique of
Feynmann diagrams. Then one finds that bending rigidity κ becomes length
scale dependent:

κ(l) = κ − 3
kBT

4π
ln

(

l

a

)

(5.10)

The prefactor −3 has been confirmed in Monte Carlo simulations. The per-
sistence length Lp can also be defined as the length l at which bending rigidity
κ vanishes, giving essentially the same result as before.

5.3 Helfrich-interaction

Since membranes make large excursions, steric hinderance (eg by close-by
walls or other membranes) leads to a large decrease in configurational en-
tropy. This results in a long-ranged steric interaction, the so-called Helfrich-
interaction. We first study this issue with scaling arguments. From Eq. (5.6)
we know that the membrane makes one hump per distance Lp, with height
h given by h2 ∼ (kBT/κ)L2

p. If this hump is suppressed by steric hinderance,
the membrane looses entropy per area ∼ kB/L2

p. The bending energy per
area stored in the hump is ∼ κ(h/L2

p)
2, because h/L2

p is an approximation
for the Laplace-term in Eq. (5.4). The overall change in free energy per area
follows as

∆F ∼ κ

(

h

L2
p

)2

− T

(−kB

L2
p

)

∼ (kBT )2

κ

1

h2
(5.11)

Therefore a long-ranged interaction ∼ 1/h2 with a strong temperature de-
pendance results. Although a rigorous derivation of the Helfrich-interaction
does not exist, it can be made more formal than in the simple scaling picture.
Consider a membrane fluctuating in a confined space, eg between two walls.
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The simplest way to model confinement is to introduce a harmonic potential:

∆F =
κ

2

∫

dxdy

{

(hxx + hyy)
2 +

h2

ξ4

}

(5.12)

where the confinement length ξ is a parameter which should be adjusted in
such a way that 〈h2〉 = µd2, with µ a geometrical constant of order unity
and d the distance to the wall. The fluctuation amplitude can be calculated
as above:

〈h2〉 =
kBT

κ

1

(2π)2
2π

∫

q dq
1

(q4 + ξ−4)
=

kBT

8κ
ξ2 (5.13)

Therefore

ξ =

(

8µκ

kBT

)1/2

d (5.14)

The free energy difference is

∆F =
kBT

(2π)2
2π

∫

q dq ln

(

q4 + ξ−4

q4

)

=
kBT

8ξ2
=

(kBT )2

64κµd2
(5.15)

In terms of scaling, we thus get the same result as before, ∆F ∼ (kBT )2/(κd2).
However, we now also get the prefactors. Simple geometrical arguments
and Monte Carlo simulations with triangulated surfaces give µ = 1/6 and
µ = 0.13, respectively.

5.4 Vesicles

Vesicles are closed bags of lipid membrane. Experimentally, they come in dif-
ferent sizes (small, 20-50 nm, large, 50-500 nm, giant, 500 nm - 100 µm) and
can be prepared with different techniques (ultrasonification, extrusion from
a porous membrane, electroformation in an AC-field). The main technique
to study vesicles is video microscopy, which reveals an amazing variety of dif-
ferent shapes. It also shows that their shape is constantly fluctuating due to
thermal activation. Theoretically, vesicle shapes represented by mathemati-
cal surfaces can be investigated with different techniques. For the equilibrium
shapes, one can either solve the Euler-Lagrange equations resulting from the
bending Hamiltonian or use energy minimization techniques, either on some
test parametrization or for triangulated surfaces. For fluctuations, one can
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either look at expansions around some well-defined reference state or use
Monte Carlo simulations of triangulated surfaces.

The physics of vesicles is determined by the bending energy introduced
above in combination with three very important additional constraints. First,
the area A of a vesicle can be considered to be constant, because the concen-
tration of free lipids in the surrounding water is negligible (1 - 100 molecules
per µm3). This introduces a length scale R0, namely the radius of the equiv-
alent sphere, by A = 4πR2

0. Second, also the volume V of a vesicle can be
considered to be constant. Although the lipid bilayer is permeable for water
molecules, this is not true for eg sugar molecules or ions, which are invari-
ably present in vesicle experiments. Therefore any flux of water would set up
an osmotic pressure which cannot be sustained by the vesicle and therefore
is strongly suppressed. The combination of constant area A and constant
volume V results in one important control parameter, the reduced volume
v = V/((4π/3)R3

0). Because the sphere has the largest reduced volume pos-
sible, v ≤ 1 always.

Third, the number of lipids in each monolayer can be taken to be constant,
too, because the propability for change from one monolayer to the other is
very low (for phospholipids, the timescale for flip-flop is hours, that is larger
than typical labaratory time scales). If the number of lipids in the different
leaflets is different due to the way the vesicle has formed, then this difference
will stay. Since each lipid has a prefered molecular area, this leads to a
prefered area difference ∆A0 between inner and outer leaflet and therefore to
a geometrical constraint. If the two leaflets are modelled as parallel surface
with distance d, then the area difference can be calculated to be

∆A = 2d

∫

dAH (5.16)

Therefore the larger ∆A, the stronger the vesicle will be curved. However,
since this is a global constraint, it is not clear a priori where this curvature will
be positioned. For the following, we non-dimensionalize the area difference
to m = ∆A/4dR0. Derivation from the prefered value m0 leads to a penalty
term in the Hamiltonian, which can be shown to be harmonic. This leads to
the area-difference-elasticity (ADE) model :

H

κ
= 2

∫

dAH2 +
α

2
(m − m0)

2 (5.17)

The stiffness of the area difference constraint α is a dimensionless material
parameter of the order of unity. In fact it follows from a detailed derivation as
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inward bud outward bud
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Figure 5.2: (a) Vesicle shapes as function of reduced volume v. Discocyte and
stomatocyte shapes are known from red blood cells, but the echinocyte shape
is missing. (b) Vesicle shapes as function of prefered area difference m0. The
echinocyte can be interpreted as a shape with many outward buds which are
prevented from forming thin necks due to additional effects.

α = 2kmd2/πκ, where km is the area compression modulus for a monolayer.
The ADE-model defined by Eq. (5.17) together with the two constraints of
constant area and constant volume has three parameters, namely reduced
volume v, prefered area difference m0 and the material parameter α.

One motivation for the extensive research of vesicle shapes is the hope
to explain the shape of red blood cells. In 1974, it has been suggested by
Sheetz and Singer that the stomatocyte - discocyte - echinocyte sequence
which can be observed for changes in different variables (like pH, salt con-
centration, cholesterol concentration or ATP supply) can be explained by
the effect of area difference (bilayer couple hypothesis). In order to compare
this expectation with the physics of vesicles, we start by considering vesicle
shapes without the area difference term. Then the only relevant parameter
is reduced volume v, which for a sphere attains its maximally possible value
1. As v is reduced to smaller values, the sphere changes first into a dumb-
ell, then into a discocyte and finally into a stomatocyte, compare Fig. 5.2.
Although this sequence does contain two of the three shapes in the main
sequence of red blood cells, it does not contain the echinocyte. If we now
turn to the ADE-model, we find that outward and inward budded shapes
are favorable for positive and negative values for the prefered area difference
m0, respectively. Although outward budded shapes resemble echinocytes,
there are markingly different because the thin necks, which do not cost much
bending energy (H ≈ 0), are not present in echinocytes.

In order to obtain this shape, modelling red blood cells as vesicles is not
sufficient. Instead, one has to include the elasticity of the polymer network
underlying the plasma membrane (basically a spectrin network with mesh-
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size 80 nm and an offset of 40 nm to the plasma membrane). At length
scales above 100 nm, this system can be treated as a continuum, namely
a thin (composite) shell surrounding a micron-sized bag of fluid (red blood
cells do not have a nucleus and are filled with a concentrated solution of
hemoglobin). The ADE-model is now augmented by a Hamiltonian for the
in-plane elasticity of the polymer shell. Several different material laws have
been suggested in the literature, for example

H =

∫

dA

{

µ
(λ1 − λ2)

2

2λ1λ2
+

K

2
(λ1λ2 − 1)2

}

(5.18)

where µ and K are two-dimensional shear and bulk moduli, respectively, and
λi = 1 + u(i) are the principal extension ratios. Note that in contrast to the
vesicle case, a model for an elastic capsule now requires a reference state with
an internal coordinate system, otherwise strain cannot be defined. For red
blood cells, this reference shape seems to be oblate. For small deformations,
Eq. (5.18) reduces to the linear isotropic elastic energy introduced before.
For large deformations, Eq. (5.18) makes a particular choice, which is hard
to test experimentally. However, the ADE-model Eq. (5.17) together with
the elastic model Eq. (5.18) now is able to predict the echinocyte, where
spicules now appear to be buds which are prevented from forming necks due
to the elasticity of the polymer shell.
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Chapter 6

Elasticity

On a short time scale, soft condensed matter under mechanical stress behaves
like an elastic body, although on a long time scale, it might start to flow like a
fluid. In this chapter we first introduce the fundamental concepts of elasticity
theory, which are stress, strain and elastic moduli. In particular we specify
them for the simplest elastic model, the Hookean body. Then we discuss some
important applications of interest, including simple situations like pure shear
as well as to more complicated situations like contact mechanics, which is
important for e.g. AFM-measurements on cells.

6.1 Strain tensor

Elasticity theory is part of continuum mechanics, since it described deforma-
tions of condensed matter bodies on a scale which is much larger than the one
of their building blocks. Here we are concerned with perfect elasticity, that
is we assume that bodies resume their initial form completely after removal
of the forces which cause the deformation.

Under deformation, the position vector of each body point is changed:

r → r′ = r + u(r) (6.1)

where u is the displacement vector field. We now consider two body points
which are infinitely close to each other with distance dl:

dl2 = dx2
1 + dx2

2 + dx2
3 (6.2)
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In the following we make use of the Einstein convention (summation over
repeated indices) and the Kronecker symbol:

dl2 = dx2
i = dxidxi = δikdxidxk (6.3)

The length element changes due to the deformation:

dl′
2

= (dxi + dui)
2 = (dxi +

∂ui

∂xk
dxk)

2 (6.4)

= dl2 + 2
∂ui

∂xk
dxidxk +

∂ui

∂xk

∂ui

∂xl
dxkdxl (6.5)

= dl2 +
∂ui

∂xk

dxidxk +
∂uk

∂xi

dxidxk +
∂ul

∂xk

∂ul

∂xi

dxidxk (6.6)

= dl2 + 2uikdxidxk (6.7)

where we have introduced the strain tensor uik:

uik =
1

2

(

∂ui

∂xk
+

∂uk

∂xi
+

∂ul

∂xk

∂ul

∂xi

)

≈ 1

2

(

∂ui

∂xk
+

∂uk

∂xi

)

(6.8)

The last approximation is justified as long as ∂ui/∂xk ≪ 1. Since the strain
tensor is symmetric, uik = uki, it can be diagonalized at every body point,
with eigenvalues u(i). If we use the corresponding coordinates, then

dl′
2

= (1 + 2u(i))dx2
i (6.9)

Thus the overall deformation can be decomposed into three independent
ones, which correspond to stretching/compressing the body along the three
orthogonal coordinate directions. The relative changes in length along these
directions are

√
1 + 2u(i)dxi − dxi

dxi

=
√

1 + 2u(i) − 1 ≈ u(i) (6.10)

Therefore the eigenvalues of the strain tensor represent the relative changes
in length caused by the deformation.

The change in volume follows as

dV ′ = dV (1 + u(1))(1 + u(2))(1 + u(3)) (6.11)

≈ dV (1 + u(1) + u(2) + u(3)) = dV (1 + uii) (6.12)
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Figure 6.1: (a) Linear elasticity assumes that force is transmitted locally, like
through an array of springs. (b) Definition of the stress tensor: σij is the i-th
component of the force acting on the area element Ak.

Note that the trace of the strain tensor, uii, is invariant under coordinate
transformations. Physically, it corresponds to the relative change in volume
caused by the deformation:

dV ′ − dV

dV
= uii (6.13)

Deformations with no volume change are called pure shear, uii = 0. The
opposite case is homogeneous compression, in which the body shape does not
change, uik ∼ δik. Each deformation can be decomposed into a shear and a
compression part:

uik =

(

uik −
1

3
δikull

)

+
1

3
δikull (6.14)

6.2 Stress tensor

The strain tensor describes the effect of a deformation. We now turn to its
cause, the forces. Under deformation, internal forces develop in the body,
which in elasticity theory are assumed to be short-ranged (imagine beads
connected by springs). Therefore they can act on a certain volume of a body
only over its surface. If the sum over all forces on a certain volume element
can be written as an integral over its surface, then there must exist a tensor
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of rank two, the so-called stress tensor σik, such that

∫

FidV =

∫

σikdAk =

∫

∂σik

∂xk
dV (6.15)

σikdAk (no summation) is the i-th component of the force acting on the area
element dAk from outside. For example, there is a force σxx acting normal to
the unit area which is orthogonal to the x-axis; the forces acting tangentially
on the same area are σyx and σzx. Note that −σikdAk is the force acting
from inside. In equilibrium, it has to cancel the force acting from outside.
There is a certain gauge freedom for the stress tensor which allows to write it
symmetric in any case, σik = σki. This ensures that also the angular moment
on a volume can be written as a surface integral.

In equilibrium without deformation, there are no internal forces and σik =
0. In equilibrium with deformation, all internal forces have to balance:

∂σik

∂xk
+ fi = 0 (6.16)

where fi are volume forces like gravity, ρgi. Usually deformations are caused
by forces Pi acting on the body surface. They enter here as boundary con-
ditions:

PidA − σikdAk = PidA − σiknkdA = 0 (6.17)

where nk is the surface normal, thus

Pi − σiknk = 0 (6.18)

has to be satisfied on the body surface. Special boundary conditions are
free (Pi = 0, that is σiknk = 0, no surface stresses) or clamped (ui = 0,
displacement fixed at boundary).

6.3 Elastic moduli

The free energy of a deformed body is a scalar and in linear elasticity theory
has to be a quadratic function of the strain tensor, thus

F =
1

2
Ciklmuikulm (6.19)
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Since the strain and stress tensors are symmetric, the tensor of the elastic
moduli has to have the following symmetries

Ciklm = Ckilm = Cikml = Clmik (6.20)

It can be shown that such a tensor has 21 independent components. The ac-
tual number for a given material depends on the crystal system. For example,
it is 21 for the triclinic system, 5 for the hexagonal system (like graphite)
and 3 for the cubic system.

For an isotropic elastic body, there are only two elastic moduli, because
there are only two ways to contract the strain tensor in second order into a
scalar:

F = µu2
ik +

λ

2
u2

ll = µ

(

uik −
1

3
δikull

)2

+
K

2
u2

ll (6.21)

This defines two equivalent pairs of elastic constants, (µ, λ) and (µ, K). The
first ones are called Lamé coefficients and correspond to Ciklm = (λ/2)δikδlm+
µδilδkm. In the second term of Eq. (6.21), we have used the decomposition
into shear and compression. Therefore µ is called the shear modulus and
K = λ + 2µ/3 the compression modulus; these two parameters have to be
positive for thermodynamic stability. Since the isotropic is the simplest case,
there is a minimum of two elastic constants for any material.

We now calculate the work per volume done by the internal forces against
a small change in displacement:

∂σik

∂xk

δui = −σik
∂δui

∂xk

= −σik
1

2

(

∂δui

∂xk

+
∂δuk

∂xi

)

= −σikδuik (6.22)

where we have used a partial integration, neglected the boundary term at
infinity (where the stress tensor is assumed to vanish), and used that the
stress tensor is symmetric. We now can conclude that the elastic contribution
to the free energy is

dF = σikduik (6.23)

and that for the isotropic case the stress tensor follows from the free energy
as

σik =
∂F

∂uik
= 2µuik + λδikull (6.24)

This equation can easily be inverted. First we note from Eq. (6.24) that

σll = (2µ + 3λ)ull = 3Kull (6.25)
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The two traces are related to each other only by the compression modulus.
Using again Eq. (6.24), we have

uik =
1

2µ
σik −

λ

2µ(3λ + 2µ)
δikσll (6.26)

Thus the strain tensor is a linear function of the stress tensor. In other
words, the deformation is proportional to the forces applied. This is simply
the tensorial form of Hooke’s law (Robert Hooke wrote in 1678: Ut tensio
sic vis, that is Force is proportional to elongation).

The relation between stress tensor and strain tensor, Eq. (6.24), and the
definition of strain, Eq. (6.8), allow to rewrite the equilibrium condition from
Eq. (6.16) in terms of displacement:

∂σik

∂xk
+ fi = µ

∂2ui

∂x2
k

+ (µ + λ)
∂2uk

∂xi∂xk
+ fi = 0 (6.27)

In vector notation, this equation reads

µ∆u + (µ + λ)∇(∇ · u) + f = 0 (6.28)

Note that this equation is similar to, but more complicated than the Laplace
equation. In particular, the second term couples the different components of
the displacement vector u. If boundary conditions can be written in terms of
displacement, one has to solve this differential equation. If they are written
in terms of stress, one has to make sure that the stress and strain tensors
found are compatible with a displacement field.

Due to linearity, displacement follows from force by convolution with a
Green function

ui(r) =

∫

dr′Gik(r − r′)Fk(r
′) (6.29)

where the Green function Gik follows from solving Eq. (6.28) for a point-like
force at the origin:

{µ∆ + (µ + λ)∇∇·}u = −Fδ(r) (6.30)

For the infinite isotropic elastic space, the result is the one given by Kelvin
in 1848:

Gik =
1

8πµ(2µ + λ)

{

(3µ + λ)δik + (µ + λ)
xixk

r2

} 1

r
(6.31)
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Figure 6.2: Three simple deformation experiments: (a) pure compression, (b)
pure shear and (c) uniaxial stretch.

Although we assumed that internal forces are only short-ranged, elastic ef-
fects propagate with 1/r and thus are long-ranged. It is quite remarkable
that such a strong result follows from relatively few and reasonable assump-
tions. In this sense, elasticity theory reminds of thermodynamics, which also
is very general because it is based on a few reasonable assumptions.

In summary, linear isotropic elasticity theory involves 15 unknown (ui,
uik, σik), which can be determined from the 15 equations resulting from
Eq. (6.8) (definition of strain tensor), Eq. (6.16) (condition for mechanical
equilibrium) and Eq. (6.24) (relation between stress and strain).

6.4 Some simple cases

6.4.1 Pure (hydrostatic) compression

Here a normal force towards the body interior acts on every volume element:

−pdAi = −pδikdAk = σikdAk (6.32)

therefore
σik = −pδik (6.33)

The free energy then follows as

dF = σikduik = −pdull = −pdV (6.34)

as it should. Since σll = 3Kull, we also find

ull =
σll

3K
= − 3p

3K
= − p

K
(6.35)
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that is
1

K
= − 1

V

∂V

∂p
(6.36)

Therefore 1/K is the isothermal compressibility.

6.4.2 Pure shear

We shear a rectangular body with tangential stress s = F/A on its upper
side with the lower side being fixed. Then σ12 = s. It follows that u12 = s/2µ
and u = (sy/µ, 0, 0). The angle of deformation will be α = u1/y = s/µ. This
explains why µ is called shear modulus.

6.4.3 Uniaxial stretch

Consider a dilation in z-direction of a rectangular slab due to forces per area
p acting on the upper and lower surfaces. Both strain and stress tensor will
be constant. At the sides, no forces act, thus there σiknk = 0. Thus only σzz

is non-vanishing. At the upper and lower surface, we have σzknk = σzz = p.
The strain tensor follows from Eq. (6.26):

uzz =
(λ + µ)p

µ(3λ + 2µ)
=

p

E
(6.37)

uxx = uyy = − λp

2µ(3λ + 2µ)
= −νuzz = −νp

E
(6.38)

Here we have defined two new elastic constants: Young modulus E and Pois-
son ratio ν:

E =
µ(3λ + 2µ)

(λ + µ)
, ν =

λ

2(λ + µ)
(6.39)

uzz describes the relative change in length, and uxx and uyy describe lateral
contraction. Since µ and K both have to be positive, −1 < ν < 1/2. For
most materials, ν is between 0 and 1/2. However, material with negative
Poisson ratio is also known, in this case the sample expands in the lateral
direction when being pulled (the simplest example for this case is crumpled
paper). The relative change in volume is

uii =
(1 − 2ν)p

E
(6.40)
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thus ν = 1/2 corresponds to the incompressible case (eg rubber). For the
displacement field we find

u =
p

E
(−νx,−νy, z) (6.41)

and the free energy is

F =
p2

2E
(6.42)

This form of the energy reminds of the harmonic spring. Indeed the elastic
slab under uniaxial stretch has an effective spring constant k = EA/L.

Note that in a real stretch experiment, one usually has displacement
rather than stress boundary conditions (usually the slap is clamped at both
sides and then the clamps are moved apart), but there is a general theorem
in elasticity theory (St. Venant’s principle) that states that the details of
the boundary do not matter as long as they are farer apart then the largest
dimension over which the load is applied.

If stress is applied simultaneously to different faces, the solution simply
follows by superposition, e.g.

uzz =
σzz

E
− νσxx

E
− νσyy

E
(6.43)

6.5 Beams and thin shells

For thin shells made from isotropic linear material, there are three funda-
mental modes of deformation: in-plane shear, in-plane compression and out-
of-plane bending.

6.6 Capsules

We consider a thin plate of thickness h which is bent into a sphere of radius
R in its unstressed state (shell). Consider a radial expansion by ζ . Then
the change in curvature is ζ/R2 and the change in strain is ζ/R. The elastic
constants for bending and stretching are Eh3 and Eh, respectively, there E
is Young modulus. Therefore we have

Fb = Eh3(
ζ

R2
)2, Fs = Eh(

ζ

R
)2,

Fs

Fb
= (

R

h
)2 ≫ 1 (6.44)

84



R

H

F

(a)

R

H

F

r
d

(b)

Figure 6.3: Capsule deformation. (a) For small force, the capsule behaves like a
linear spring. (b) For large force, inward buckling occurs.

and stretching is much more expansive then bending. Usually these systems
avoid stretching, eg when a cylinder with open ends is deformed. However,
if a sphere is deformed, stretching cannot be avoided. In membrane theory,
one neglects the bending energy and considers only stretching.

Now consider a sphere of radius R which is indented by a force f over a
lateral distance d. The elastic energy F = Fb + Fs has contributions from
bending Fb and stretching Fs:

Fb = Eh3(
ζ

d2
)2d2, Fs = Eh(

ζ

R
)2d2 (6.45)

where ζ/d2 is change in curvature and ζ/R is strain. Fb decreases with d,
while Fs increases with d. The balance occurs at

d ∼
√

Rh, F ∼ Eh2

R
ζ2 (6.46)

Since F = fζ , the indentation ζ resulting from force f is

ζ ∼ fR

Eh2
(6.47)

Thus the spring constant is Eh2/R.
If the force becomes larger, the shell can buckle inwards and the elastic

energy becomes localized along a ring of lateral size d and radius r. The
geometrical relation between indentation H and ring radius r is r =

√
RH .
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We now express the elastic energies in terms of r:

Fb = Eh3(
ζ

d2
)2(rd), Fs = Eh(

ζ

R
)2(rd) (6.48)

where now ζ = rd/R. Minimization for d again yields d ∼
√

Rh. Thus the
overall energy now is

F ∼ Er3(
h

R
)5/2 =

Eh5/2

R
H3/2 (6.49)

Note that there is a size-dependent line tension here, F/r ∼ r2. Comparing
Eq. (6.46) and Eq. (6.49) shows that buckling becomes more favorable at
H ∼ h, that is for

f ∼ Eh3

R
(6.50)

Since for large indentation H buckling occurs and the elastic energy scales
only with H3/2 rather than with H2, there exists a buckling instability with
regard to pressure p, since pressure has a stronger scaling with H :

Fp ∼ −pr2H ∼ −pRH2 (6.51)

The critical indentation, beyond which buckling grows, follows by adding
Eq. (6.49) and Eq. (6.51) and finding the maximum:

Hc ∼
Eh5

R4p2
(6.52)

Since buckling occurs for H ∼ h, we can estimate the critical pressure by
setting Hc = h and find

pc ∼ E(
h

R
)2 (6.53)

6.7 Contact mechanics

Contact mechanics describes the elastic deformations which occur when two
bodies are pressed onto each other. Examples include two colliding elastic
spheres, a sphere pressed onto a substrate by gravity, and an AFM-tip indent-
ing a sample. In the latter case, one usually measures the force-indentation
curve. Force-indentation curves depend sensitively on geometry. The case
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Figure 6.4: Contact mechanics: a hard object (e.g. the tip of an AFM) indents
a soft substrate by distance H. (a) Spherical indenter. (b) Conical indenter. (c)
Flat indenter.

of a spherical indenter has been solved by Hertz in 1881. The case of an
arbitrary axisymmetric indenter has been solved independently by Sneddon
in 1965 and Ting in 1966. In 1971, Johnson, Kendall and Roberts (JKR)
extended the Hertz analysis to include adhesion.

Consider an indenter which is pressed by a force F onto an elastic half-
space and indents it by h. The force-indentation curve will depend on the
indenter’s geometry. We consider three different geometries, the spherical,
conical and flat cylindrical indenters, which all have radial symmetry. There
are two general statements which we can make before doing any calculation.
First, the vertical displacement will fall off like 1/r in the far field. Second,
from the origin to some contact radius a, the elastic material has to follow
the shape given by the rigid indenter. However, the general problem is hard
to solve, in particular because we deal with mixed boundary conditions (fixed
displacement in the contact region, free surface away from it).

In order to obtain the force-indentation-relations, we first consider a scal-
ing approach. The elastic energy scales as U ∼ V Eu2, where V is the
volume of the part of the elastic medium which is deformed considerably, E
is an elastic modulus and u is dimensionless strain. For the spherical inden-
ter with radius R, indentation by h results in a deformation of lateral size
l ∼

√
Rh. With V ∼ l3 and u ∼ h/l, we find U ∼ ER1/2h5/2 and thus

F = dU/dh ∼ ER1/2h5/2. For a conical indenter, l = h/ tanα where α is
the angle between the substrate and the cone. Again V ∼ l3 and u ∼ h/l,
thus U ∼ Eh3/ tanα and F ∼ Eh2/ tanα. This result is consistent with
the fact that a cone does not have any intrinsic length scale, hence

√

F/E
is the only one present. For the flat cylindrical indenter, appreciable strain
can only occur near the indenters sharp edge. The edge length scales as the
cylinder radius a. The length over which the deformation decays from the
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edge has to be independent of a, thus it has to scale with h. Hence we have
V ∼ ah2 and u ∼ 1. Therefore U ∼ Eah2 and F ∼ Eah. Note that the flat
indenter is the only one for which force F scales linearly with indentation
h. At the same time we work within linear elasticity theory and use Hooke’s
law. Therefore the non-linearity of the force-indentation curves are purely of
geometrical origin.

Comparision with the full solution shows that the scaling approach was
correct (M = E/(1 − ν2)):

• Sphere with radius R:

H =

(

3

4

)2/3
1

R1/3

(

F

M

)2/3

(6.54)

• Cone with slope α:

H =
(π

2

)1/2

tanα

(

F

M

)1/2

(6.55)

• Cylindrical slab with radius a:

H =
1

2a

(

F

M

)

(6.56)

Finally we discuss the JKR-theory for elastic contact of a sphere in the
presence of adhesion. For the contact radius a, the Hertz-model gives

a3 =
3

4M
RF (6.57)

With a finite adhesion energy W per unit area, this relation changes to

a3 =
3

4M
R
{

F + 3πRW +
√

6πRWF + (3πRW )2
}

(6.58)

Therefore at vanishing loading (F = 0), a finite contact radius with a3
0 =

(9πR2W )/(2M) emerges. In order to detach the body, a critical force Fc =
−3WπR/2 is required, which surprisingly is independent of the elastic con-
stants. The critical contact radius turns out to be ac = a0/41/3 = 0.63a0.
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Chapter 7

Hydrodynamics

Hydrodynamics describes the flow of simple fluids, in contrast to the flow
of complex fluids, which are described by rheology. In this chapter, we in-
troduce the concept of a Newtonian fluid and apply it to some simple cases
of interest. Flow of Newtonian fluids is described by the non-linear Navier-
Stokes equation, but for most biological applications, one only needs the
special case of the linear Stokes equation (small Reynolds number regime),
because at the small length scale of biomolecules and cells, inertia is irrele-
vant. Because life at small Reynolds number is very different from our own
life at large Reynolds number, intuition might fail when discussing transport
issues at the scale of cells.

7.1 Fundamentals

The fundamental equations of fluid mechanics follow from conservation laws.
For most situations, one has to consider conservation of mass and momentum.
If there are no sinks or sources for mass, changes inside a given volume can
only occur by flux j = ρv over its boundaries, where ρ is density and v is
velocity:

∂

∂t

∫

V

ρdV =

∫

V

∂ρ

∂t
dV = −

∫

∂V

(ρv)dA = −
∫

V

∇(ρv)dV (7.1)

where we have used Gauss’ theorem. Since this relation has to hold for any
volume V , we arrive at the equation of continuity :

∂ρ

∂t
+ ∇ · (ρv) = 0 (7.2)
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For incompressible fluids, density ρ is constant and therefore ∇ · v = 0.
In regard to conservation of momentum mv, we can make use of Newton’s

2nd law:

ρ
dv

dt
= ρ

[

∂v

∂t
+ (v · ∇)v

]

= ∇ · σ + f (7.3)

where we have assumed that ρ is constant. On the left hand side we have
the total derivative of velocity for time (also called substantial derivative),
which follows from dv = v(r+vdt, t+dt)−v(r, t). σ is the stress tensor and
its gradient describes internal forces, e.g. due to shear. f describes external
body forces like gravity.

In linear approximation, the stress tensor is proportional to the rate of
the deformation tensor (that is to the time derivative of the strain tensor).
For isotropic material, one has

σik = −δikp + η

(

∂vi

∂xk

+
∂vk

∂xi

− 2

3
δik(∇ · v)

)

+ ζδik(∇ · v) (7.4)

The first term represents the state of stress if the fluid is at rest, then pressure
p is the only way to create some internal force. The two parameters η and
ζ are the analogues of the shear and bulk moduli in elasticity theory and
are called shear and bulk viscosities. Note that like in elasticity, the shear
contribution is made traceless (no change in volume). Fluids described by
this linear relation are called Newtonian fluids. Non-Newtonian fluids have
viscosities which depend on shear rate and history (e.g. polymer melts and
many biological materials like blood).

Using this form of the stress tensor in Eq. (7.3) yields:

ρ

[

∂v

∂t
+ (v · ∇)v

]

= −∇p + (ζ +
1

3
η)∇(∇ · v) + η∆v + f (7.5)

Note that the equation is non-linear due to the inertia terms. It has to be
solved always together with the equation of continuity. For an incompressible
fluid, ∇ · v = 0 and we obtain the Navier-Stokes equation:

ρ

[

∂v

∂t
+ (v · ∇)v

]

= −∇p + η∆v + f (7.6)

The Navier-Stokes equation and the equation of continuity, ∇v = 0, yield
four equations for the four unknowns v, p.

There are two important special cases:

90



• Inviscid flow: viscosity parts can be neglected, Euler equation:

ρ

[

∂v

∂t
+ (v · ∇)v

]

= −∇p + f (7.7)

In the special case of potential (or irrotational) flow, ∇ × v = 0 and
v = ∇Φ, the equation of continuity becomes the Laplace equation
∆Φ = 0. For incompressible inviscid flow, rotations cannot develop,
thus if flow is irrotational, it will remain irrotational.

• Creeping flow: inertia parts can be neglected, Stokes equation:

η∆v = ∇p − f (7.8)

In this case, it is usually pressure which drives the flow.

Since the inertia terms scale as ρv2/L and the viscosity terms as ηv/L2,
where L is a typical length of the system, the relative magnitude of inertia
and viscosity can be described by a dimensionless number, the Reynolds
number Re:

Re =
ρvL

η
(7.9)

For Re ≪ 1 and Re ≫ 1, Stokes and Euler flow, respectively, applies. For
water, ρ = g/cm3. At 20◦C, water has η = 10−3Pas = 1cP . Blood is not
a Newtonian fluid, but blood plasma is, with a viscosity essentially that of
water. Glycerin has η = 1500cP , a cell η = 107cP , and glass η > 1015cP .
Turbulence usually occurs for large Re, but for special cases has been ob-
served down to values in the order of 10; otherwise flow is laminar.

It is instructive to compare the Reynolds numbers for fish and cells. For
a big and fast swimming fish, we have

Re =
(g/cm3)(m/s)m

cP
= 106 (7.10)

For a cell in blood flow in capillary venules we have

Re =
(g/cm3)(mm/s)(10µm)

cP
= 10−2 (7.11)

Therefore the fish and the cell live in very different hydrodynamic worlds.
The fish world is Newtonian (acceleration vanishes with force, but inertia will

91



u
h

u
h

Δp

2R

Δp

Figure 7.1: Three simple flow situations. (a) Linear shear flow between two par-
allel walls with relative motion (Couette flow). (b) Pressure-driven flow between
two parallel walls (plane Poiseuille flow). (c) Pressure-driven flow in a capillary
(cylindrical Poiseuille flow).

keep it going), the cell world is Aristotelian (velocity vanishes with force, the
cell will stop if force is removed). Being a cell means living in a syrup.

In the presence of surfaces, usually one has to implement no-slip bound-
ary conditions, that is velocity should vanish at the walls, due to attractive
interactions between walls and fluid. This implies that Re is always small
near surfaces. In order to deal with this problem in Euler flow, Prandtl has
introduced the concept of boundary layers, that is thin layers in which the
effect of viscosity is important no matter how high Re might be in the bulk
(although its thickness vanishes as Re → ∞). If outside the boundary layers
one has potential flow, then rotation (turbulence) can only be generated by
the boundary layer.

7.2 Simple examples

We now consider steady state solutions (no partial derivative for time) of the
Navier-Stokes equation for situations in which the non-linear term disappears
because there is no variation in velocity along the direction of flow. Therefore
the same solutions also result if one starts from the Stokes equation.

7.2.1 Shear (Couette) flow

Two parallel surface with distance h are placed perpendicular to the z-
direction. The lower one is held fixed, while the upper one is moved in
x-direction with velocity u. By symmetry, vy = vz = 0 and vx = vx(z). In
this situation, the pressure gradient vanishes and the Stokes equation reads

∂2vx

∂z2
= 0 (7.12)

92



The solution with the correct boundary conditions is simply

vx =
zu

h
(7.13)

so the flow profile is linear. This result provides an operational definition for
the viscosity: the external force has to balance the internal force, which from
the above definition of the stress tensor is

F = ηA

(

∂vx

∂z

)

z=h

(7.14)

thus

η =
Fh

Au
(7.15)

Shear stress is defined as

τ =
F

A
= η

dvx

dz
= ηγ̇ (7.16)

where γ̇ = dvx/dz is called shear rate. The volume flowing through the
channel per time is

Q =
∂V

∂t
= Ly

∫ h

0

vxdz = Ly
1

2
uh (7.17)

where Ly is the width of the channel.

7.2.2 Plane Poiseuille flow

Two parallel surface with distance h are placed perpendicular to the z-
direction. Fluid flows along the positive x-direction driven by a homogeneous
pressure gradient ∂p/∂x = −G (note that the gradient has to be negative
for the fluid to flow to the positive z-direction). By symmetry, vy = vz = 0
and vx = vx(z). The Stokes equation now read

η
∂2vx

∂z2
= −G (7.18)

The solution which disappears at the boundary is

vx(z) =
G

8η

[

h2 − 4(z − h

2
)2

]

=
G

2η
z(h − z) (7.19)
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and the flow profile is parabolic. The volume flow rate is

Q = Ly

∫ h

0

vxdz = Ly
Gh3

12η
(7.20)

thus showing a strong scaling with h.

7.2.3 Cylindrical Poiseuille flow

We use cylindrical coordinates: the pipe direction is taken to be the z-
direction, and perpendicular to it we have the radial variable r. By sym-
metry, the velocity field can only have a z-component vz = vz(r). The Stokes
equation now reads

η

(

∂2

∂r2
+

1

r

∂

∂r

)

vz = −G (7.21)

where G is the pressure gradient in positive z-direction (note that the gradient
has to be negative for the fluid to flow to the positive z-direction). The
solution which disappears at the boundary is

vz(r) =
G

4η
(R2 − r2) (7.22)

The volume flowing per time through the crossection is

Q = 2π

∫ R

0

dr r vz(r) =
πGR4

8η
(7.23)

This result is also known as the Hagen-Poiseuille law. Note the very strong
scaling with R.

7.3 Stokes flow

We now turn to some important results which result only if one start from
the Stokes equation for viscous flow.

7.3.1 Hydrodynamic lubrication

In lubrication, one uses thin liquid films to prevent contact of fast moving
bodies. Consider a body with a mildly sloped surface, h(x) = h0 − αx,
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which extends from x = 0 to x = L. The lower surface moves to the right
with velocity V . Since h is much smaller than L, pressure variation across
the gap can be neglected, p = p(x). Thus the lubrication approximation is
assuming that locally one has Couette-Poiseuille flow. Velocity only varies
in z-direction, thus the Stokes equation reads

η
∂2vx

∂z2
=

∂p

∂x
(7.24)

which can be integrated to

vx = V
(h − z)

h
− 1

2η

∂p

∂x
z(h − z) (7.25)

which is obviously a superposition of Couette and Poiseuille flow. Corre-
spondingly, the volume flow rate at position x reads

Q(x) = Ly(
1

2
V h(x) − ∂p

∂x

h(x)3

12η
) (7.26)

Conservation of mass requires Q not to depend on x and we can solve this
equation for the pressure gradient:

∂p

∂x
=

6ηV

h(x)2
− 12ηQ

h(x)3
(7.27)

As boundary conditions, we set p0 = pL = pa, the ambient pressure. We
determine Q by using

∫ L

0

dx
∂p

∂x
= pL − p0 = 0 (7.28)

which gives

Q = V
h0hL

h0 + hL
(7.29)

We now integrate the differential equation directly:

p(x) = pa +
6ηV α

h0 + hL

x(L − x)

(h0 − αx)2
(7.30)

Thus pressure is a parabolic function, with a maximum between x = 0 and
x = L. This leads to a lift force on the upper body, which in principle can
balance its body weight:

FL = Ly

∫ L

0

pdx = paLyL +
6ηV L2Ly

h2
0

G(k) (7.31)
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with the geometrical parameter k = h0/αL, 1 ≤ k ≤ ∞, and

G(k) = k2(ln
k

k − 1
− 2

2k − 1
) (7.32)

which diverges for k → 1 and decays to smaller values with increasing k. Note
that if the lower surface moves in the opposite direction, the lubrication force
will pull the object down.

7.3.2 Viscous adhesion

An important application of the lubrication approximation is viscous ad-
hesion, eg between a surface and an adhesive tape. Consider two disks of
radius R each which approach each other with velocity V , thereby squeez-
ing out fluid to the sides. We use cylindrical coordinates and again use the
approximation of a thin film. Then the Stokes equation gives

η
∂2vr

∂z2
=

∂p

∂r
(7.33)

and the equation of continuity reads

1

r

∂(rvr)

∂r
+

∂vz

∂z
= 0 (7.34)

The boundary conditions are vr = vz = 0 at z = 0, vr = 0, vz = −V at z = h
and p = p0 at r = R. Integrating the Stokes equation gives

vr =
1

2η

∂p

∂r
z(z − h) (7.35)

Using the continuity equation gives
∫ h

0

dz
∂vz

∂z
= V = −1

r

∂

∂r
r

∫ h

0

dzvr =
−h3

12ηr

∂

∂r
(r

∂p

∂r
) (7.36)

This can be integrated to give

p = p0 +
3ηV

h3
(R2 − r2) (7.37)

The increased pressure inside leads to a viscous force resisting the imposed
movement:

F = 2π

∫ R

0

rdrp = πR2p0 +
3πηV R4

2h3
(7.38)

Note the strong scaling with h. This explains why it is much easier to peel
an adhesive tape rather than to pull it off vertically.
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7.3.3 Stokes drag for a sphere

The translating sphere in a resting fluid is equivalent to the resting sphere
in a moving fluid. Consider the fluid moving along the negative z-direction
with velocity v. This problem was solved by Stokes in 1851:

vr = v cos θ

(

1 − 3R

2r
+

R3

2r3

)

(7.39)

vθ = −v sin θ

(

1 − 3R

4r
− R3

4r3

)

(7.40)

p = p0 −
3ηR

2

v cos θ

r2
(7.41)

We now calculate the Stokes force

FS =

∫

dA(−p cos θ + σrr cos θ − σrθ sin θ) (7.42)

where the integral is over the sphere surface and the force is projected onto
the z-direction. The stress tensor can be calculated from the velocity field.
We specifiy it together with the pressure for the sphere surface:

σrr = 0, σrθ = − 3η

2R
v sin θ, p = p0 −

3η

2R
v cos θ (7.43)

Then we get

FS =
3ηv

2R

∫

dA = 6πηRv (7.44)

Note that the scaling is unique and therefore is also obeyed by non-spherical
bodies; then R is the dominant linear extension, for example the long axis
of an ellipsoid. Also note that the Stokes solution is only valid in the limit
Re = 0. For finite Reynolds number it is not valid in the far field, and one
can calculate corrections as an expansion in small Reynolds number.

We briefly comment on the relation between the Stokes drag and the dif-
fusion constant of colloids. From the Stokes drag, we get a friction coefficient
Γ = F/v = 6πηR. Its inverse is the mobility, M = 1/Γ = 1/6πηR, because
v = MF . Einstein proved that this dynamic response should also show up
in equilibrium, namely as a diffusion constant (this is a special case of the
fluctuation-dissipation theorem, which connects the dissipative response to
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an external force with the fluctuations in equilibrium). We start by noting
that in equilibrium the overall flux has to vanish:

j = −D∇c + vc = 0 (7.45)

where the first and second term represent diffusion and convection, respec-
tively. For velocity we have v = MF = −M∇U with some potential U .
Therefore we get

D∇c = −cM∇U ⇒ c = e−MU/D (7.46)

Because the equilibrium distribution should at the same time be the Boltz-
mann distribution e−U/kBT , we get the famous Einstein relation:

D = MkBT =
kBT

6πηR
(7.47)

In anisotropic situations, e.g. for a sphere in front of a wall, mobility becomes
direction-dependent, that is scalar mobility is replaced by a mobility matrix.
In the general case one also has rotational degrees of freedom, which can be
treated in the same hydrodynamic framework.
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