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Chapter 1

Stochastic variables

In physics, there are basically three fields in which it is impossible to predict the exact
outcome of a process: (1) for complex systems, where not all degrees of freedom can
be controled, (2) for quantum systems, which are intrinsically non-deterministic,
and (3) for deterministic chaos, when in principle the system evolves according to
deterministic rules, but in such a way that even very small perturbations have large
effects. Here we are concerned with the first case, that is we consider statistical
systems where random processes result from fast time and small length scales which
are not explicitly considered. The typical example is a large particle in contact with a
bath of many small particles at finite temperature. We start with a discussion of the
concept of probability and introduce stochastic variables. We then discuss important
probabilities distributions and how to generate random variables from them. Finally
we discuss the random walk on a line as a first step toward stochastic processes.

1.1 Axioms for probability

We start with an introduction into the basic concept of probability. Historically,
problems involving probabilities have resulted in much confusion. A rigorous frame-
work was presented by Kolmogorov in 1933, who introduced the axiomatic approach.
Let us consider the set of all possible events Ω. We call A a particular set of events
(A ⊂ Ω) and ω ∈ Ω a particular single event. The symbol ∅ denotes the set of no
events.
For instance, when throwing a dice, ω could be getting a certain number, A getting
an even number and Ω simply getting a number. Events can also be of a continuous
nature like, for example, a Brownian particle being in volume ∆V around a certain
position.
We assign a probability for A to happen, p(A), that satisfies the following three
axioms:

1. p(A) ≥ 0 ∀A

2. p(Ω) = 1

3. If Ai (i = 1, 2, 3...) is a countable collection of non-overlapping sets
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Ai ∩Aj = ∅ for all i 6= j

then

p(
⋃
iAi) =

∑
i p(Ai)

Consequently, we have:

1. if Ā is the complement of A, i.e. the set of all events not contained in A, then

p(Ā) = 1− p(A)

2. p(∅) = 0

Relation to experiments

Assuming we can repeat an experiment as many times as we want, the probability
for a certain outcome is identified with the frequency with which we measure this
outcome in these independent experimental realizations.
A simple example is to consider a throwing dice experiment. If our six-sided-dice
is perfectly symmetric, the probability of getting one of the six numbers is 1/6.
Hence, after throwing the dice many times (N) we should obtain each number with
approximately the same number of times (M), with M/N being very close to 1/6.
And the higher N is, the closer it will be.
In order to measure probabilities experimentally, we have to construct an apparatus
which gives frequencies in agreement with the axioms. Note that this implies a
certain circularity of the procedure: a measurement process qualifies as random if
it satisfies the axioms for random processes. Similar circularities are contained in
all physical theories (e.g. Newtonian mechanics: a system is accepted as an inertial
reference system if it obeys the laws of inertia).
Kolmogorov assumes the existence of a priori probabilities. Examples of such a priori
probabilities are, for instance, the previous example (based on symmetry arguments)
or a system in equilibrium, where within the context of statistical mechanics one
assigns equal probabilities to equal volumes of the phase space. Then, one deduces
the results from this reasonable a priori probabilities assigned and from the structure
of the probability space (which is known as σ-algebra in mathematics).

1.2 Probability distributions

A stochastic or random variable is the outcome of a process that occurs with a certain
probability. The mapping between the possible events and the probabilities defines
a probability distribution. If the experimental results can be labelled with a discrete
index i ∈ {1, 2, ...}, we will call the probability distribution discrete, while we will
call it continuous if the experimental results correspond to points x ∈ < on the real
axis.
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Discrete distributions

Throwing six-sided-dice: i ∈ {1, ..., 6}. Honest dice =⇒ pi = 1/6 ∀i. The axioms
are trivially satisfied.
Flipping coin N times: Let’s assign the probabilities p for the head and q = 1 − p
for the tail. The probability to get k ∈ {0, ..., N} heads is given by the binomial
distribution

pk =

(
N

k

)
pkqN−k (1.1)

where
(
N

k

)
= N !

k!(N−k)! is the usual binomial coefficient. The binomial coefficient

gives you the number of possible ways to obtain k heads. The factor pkqN−k follows
from the third axiom by considering the probability for a fixed sequence to occur.
The probabilities are manifestly positive. We can easily check the normalization
condition using the binomial formula:∑N

k=0 pk =
∑N

k=0

(
N

k

)
pkqn−k = (p+ q)N = 1.

As in the total set of events we have events with every value of k, the total number
of outcomes is given by the sum∑N

k=0

(
N

k

)
= (1 + 1)N = 2N

as it should be.

Figure 1.1: Binomial distribution for N = 10 and q = 1/2

Continuous distributions

The distribution function is given by a function p(x) such that p(x) ≥ 0 and∫∞
−∞ dxp(x) = 1 (axiom number 3 automatically satisfied by the linearity of the
integral). This enables us to compute any other probability. For example, the prob-
ability of having x ∈ [x1, x2] is

p(x1 ≤ x ≤ x2) =
∫ x2
x1
dxp(x)
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and the probability of being around the point x1 is

p(x1 ≤ x ≤ x1 + dx) = p(x1)dx

We can easily recover the discrete case taking p(x) =
∑

i piδ(x− xi) for the discrete
values {xi} that x can take.
Example: particle diffusing along a line: with diffusion constant D and released at
x(t = 0) = µ. In this case we have the Gaussian distribution:

p(x) =
1√

4πDt
exp−(x−µ)2/4Dt (1.2)

We can see that it satisfies the initial condition (δ(x − µ) as t → 0) and that it is
normalized (by using the Gauss integral,

∫∞
−∞ dx exp−ax

2
=
(
π
a

)1/2).

Figure 1.2: Gaussian distribution for a particle diffusing on a line. Dt = 1/4 for the
red line and 1/2 (later time) for the black one.

Given a probability distribution function, expectation values of an observable A can
be calculated. For continuous probability densities we have

〈A〉 =

∫ ∞
−∞

dxA(x)p(x) (1.3)

while for the discrete case we have

〈A〉 =
∑
i

Aipi (1.4)

1.3 Characterising probability distributions

There are several quantities that are useful to characterize a given probability dis-
tribution and that we proceed to define (for continuous probability densities).

a) Moments

The moments are the quantities µn = 〈xn〉. They are often easily calculated and are
useful to express other quantities of interest as we will see. The first moments are:
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zero moment: µ0 = 1 (normalization)

first moment: µ1 = µ (mean or average)

second moment: µ2 = 〈x2〉

b) Variance

The variance or mean squared deviation (MSD) is defined as σ2 = 〈(x − µ)2〉 =
〈x2〉− 2〈x〉µ+µ2 = 〈x2〉−µ2 and thus can be expressed in terms of the moments as
σ2 = µ2 − µ2

1. It measures how widely the distribution is spread around its average.
The standard deviation or root mean square deviation (RMSD) is defined as σ =√
σ2.

c) Measures similar to mean

There are other quantities that do not give the mean value but, in some cases where
getting the µ is difficult, they can be a very useful. Those are:

µmax: most probable value of x

µ1/2: median defined by
∫ µ1/2
−∞ dxp(x) =

∫∞
µ1/2

dxp(x) = 1/2

For a distribution with one dominating peak, µ, µmax and µ1/2 take similar values.

d) Characteristic function

The characteristic function is defined as the Fourier transform of the probability
density:

G(k) = 〈expikx〉 =

∫
dx expikx p(x). (1.5)

If all moments exist, we can expand the exponential:

G(k) =

∞∑
n=0

(ik)n

n!
〈xn〉 (1.6)

Therefore the characteristic function generates the moments:

µn = 〈xn〉 =
1

in
dnG(k)

dkn

∣∣∣
k=0

(1.7)

We say that G(k) is the generating function of the moments.
Another further useful quantities that we introduce are the cumulants κn. We define
them through their generating function lnG(K):

lnG(k) =

∞∑
n=0

(ik)n

n!
κn (1.8)

κn =
1

in
dn(lnG(k))

dkn

∣∣∣
k=0

(1.9)

The firsts cumulants are:
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zero cumulant: κ0 = lnG(k = 0) = ln 1 = 0

first cumulant: κ1 =
1

i

G′

G

∣∣∣
k=0

= µ (mean)

second cumulant: κ2 =
1

i2
G′′G−G′2

G2

∣∣∣
k=0

= µ2 − µ2
1 = σ2 (variance)

third cumulant: κ3 =
1

i3
(G′′′ − 3G′G′′ + 2G′3)

∣∣∣
k=0

= µ3 − 3µ2µ+ 2µ3

By continuing this scheme, one gets a one-to-one mapping between moments and
cumulants.

1.4 Moments of the binomial distribution

As we have seen, the binomial distribution is given by

pk =

(
N

k

)
pkqN−k (1.10)

where k ∈ {0, ..., N} and p + q = 1. Let’s calculate the first moments of this
distribution:

〈k〉 =
N∑
k=0

k
N !

k!(N − k)!
pkqN−k = Np

N∑
k=0

(N − 1)!

(k − 1)!(N − k)!
pk−1qN−k (1.11)

= Np

S∑
m=0

S!

m!(S −m)!
pmqS−m = Np (1.12)

where we did the change of variables S = N − 1 and m = k − 1.
There is a more elegant way to get this result that will be useful for future calcula-
tions:

〈k〉 =
N∑
k=0

(
N

k

)(
p
d

dp

)
(pkqN−k) =

(
p
d

dp

)
(p+ q)N = Np(p+ q)(N−1) = Np (1.13)

It is important to treat p and q as independent variables while we do the derivative.
Otherwise, the first step would already be wrong. Only at the very end, when the
derivative has been performed, we are allowed to substitute q = p− 1.
We use this trick to calculate the second moment:

〈k2〉 =
∑N

k=0

(
N

k

)(
p
d

dp

)2
(pkqN−k) =

(
p
d

dp

)2
(p+ q)N = Np+N(N − 1)p2

=⇒ σ2 = 〈k2〉 − 〈k〉2 = Np−Np2 = Npq
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In summary, we found
〈k〉 = Np, σ2 = Npq (1.14)

Another interesting quantity that we may be interested in is the relative width, σ/µ,
of the distribution:

σ

〈k〉
=

√
Npq

Np
=

√
p

q

1

N1/2
→ 0 as N →∞

We see that the relative width goes to zero for many realizations, that is, in the limit
N →∞ (self-averaging).
The continuous limit (N →∞) of the binomial distribution can be taken in different
ways. We will next see how we obtain the Gaussian and the Poisson distribution
from those different limits.

1.5 Gaussian distribution

We first take the limit N → ∞ of the binomial distribution with the probability p
kept constant. One of the immediate observations is that the average 〈k〉 = Np→∞
diverges. We are displacing the peak of the distribution to higher values of k. As we
will see, the asymmetry of the original binomial distribution will vanish and we will
obtain a perfectly symmetric distribution.
We will find the Gaussian distribution by expanding the binomial distribution around
the value of k, km, that maximizes the probability (method of steepest decent). For
convenience, we do not expand the pk but its logarithm ln pk. Since the logarithm is
a monotonic function, the maximum will not change.

ln pk = lnN !− ln(N − k)!− ln k! + k ln p+ (N − k) ln q

Using the Stirling’s formula lnN ! = N lnN −N + 1
2 ln(2πN) +O(1/N) we find

0
!

=
d ln pk
dk

=
d

dk
[− ln(N − k)!− ln k!] + ln p− ln q =

= − d

dk
[k ln k − k + (N − k) ln(N − k)− (N − k)] + ln(pq ) =

= −[ln k − ln(N − k)] + ln(pq ) = ln
((N − k)p

kq

)
=⇒ km = Np = 〈k〉

So the maximum occurs at the average. We now expand around this maximum to
harmonic order (2nd):

ln pk ≈ ln pk

∣∣∣
k=km

+ 1
2

d2

dk2
ln pk

∣∣∣
k=km

(k − km)2

A linear term is absent around the extremum.
Using again the Stirling’s formula (this time with the ln(2πN) term included), we
find
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ln pk

∣∣∣
k=km

≈
(
N lnN −N − k ln k + k − (N − k) ln(N − k) + (N − k) + k ln p+

(N − k) ln q + 1
2 ln

2πN

2πk2π(N − k)

)∣∣∣
k=km=Np

= N lnN −Np ln(Np)−Nq ln(Nq) +

Np ln p+Nq ln q+ 1
2 ln

1

2πNpq
= (N−Nq−Np) lnN+ 1

2 ln
1

2πNpq
= ln(2πNpq)−1/2

and, using previous results,

d2

dk2
ln pk

∣∣∣
k=km

=
d

dk
ln

(N − k)p

kq

∣∣∣
k=km

= − 1

Npq

Therefore, we get

ln pk ≈ ln(2πNpq)−1/2 − 1

2Npq
(k −Np)2 (1.15)

Taking the exponential and using µ = pN and σ2 = Npq, we finally obtain the
Gaussian distribution

pk =
1√

2πσ2
e−(k−µ)2/2σ2

(1.16)

Note that this distribution is now perfectly symmetric around the mean and defined
for all values of k. Moreover the distribution is normalized to 1. Comparison with
equation 1.2 shows that for continuous diffusion on a line, the variance grows linear
in time, σ2 = 2Dt, which is a prominent feature of a random walk.

1.6 Poisson distribution

The second limit in the binomial distribution that we can take is N → ∞ but this
time p→ 0 ("rare events") in such a way that µ = Np = constant (in accordance to
the literature we call that constant λ). Hence, unlike in the other limit, here we keep
the position of the mean constant. The choice of p = λ

N satisfies the requirement.
Plugging it in the binomial distribution and taking the limit N → ∞ gives us the
Poisson distribution.

pk =
N !

(N − k)!k!
pkqN−k =

N(N − 1)...(N − k + 1)

k!

( λ
N

)k(
1− λ

N

)N(1− λ
N

)−k
= 1
(

1− 1

N

)
...
(

1− k − 1

N

)(λk
k!

)(
1− λ

N

)N(1− λ
N

)−k
→ λk

k!
e−λ

where we have used that in the limit N →∞

1
(

1− 1

N

)
...
(

1− k − 1

N

)
→ 1(1− λ

N

)−k
→ 1(

1− λ

N

)N
→ e−λ
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Therefore,

pk =
λk

k!
e−λ (1.17)

Normalization can be checked as follows

∑∞
k=0 pk =

∑∞
k=0

λk

k! e
−λ = e−λeλ = 1

The first moment is:

〈k〉 =
∑∞

k=0 k
λk

k! e
−λ = λe−λ

∑∞
k=1

λk−1

(k−1)! = λ

Higher moments can be derived recursively:

λ d
dλ〈k

n〉 =
∑∞

k=0
kn

k! e
−λkλk − e−λkλk+1 = 〈kn+1〉 − λ〈kn〉

=⇒ 〈k2〉 = λ+ λ2 =⇒ σ2 = λ The variance and average are identical!
=⇒ 〈k3〉 = λ( d

dλ + 1)(λ+ λ2) = λ+ 3λ2 + λ3 etc
The Poisson distribution is completely determined by its first moment λ.

1.7 Central limit theorem

By analysing the properties of the Gaussian distribution we will find a very important
result known as the central limit theorem.
First, we calculate its characteristic function and its cumulants. The characteristic
function is given by:

G(k) =
∫
dxeikxp(x) =

∫
dx 1√

2πσ2
e−

1
2σ2

[x−(µ+ikσ2))2−(µ+ikσ)+µ2] =
√

2πσ2√
2πσ2

eikµ−
k2σ2

2

=⇒ lnG(k) = ikµ− k2

2 σ
2

We already see that we will only have two cumulants, since the generating function
is of order two.
=⇒ κ1 = 1

i
d
dk lnG(k)

∣∣∣
k=0

= µ; κ2 = 1
i2

d2

dk2
lnG(k)

∣∣∣
k=0

= σ2; κi = 0 ∀i ≥ 2

This is an important result. All probability distributions are completely characterized
by their cumulants. Any distribution that has the first two cumulants non-vanishing
and the other ones zero will be a Gaussian distribution. We will use this to prove
the following:

Central limit theorem: If a random variable is the sum of many independent
random variables, then it has a Gaussian distribution.
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Proof:

Consider the random variable composed by sum of two independent random vari-
ables: Y = X1 + X2 Knowing the probability distributions px1 and px2 we can
construct py as follows:

py(y) =
∫
dx1px1(x1)px2(y − x1) =⇒ Gy(k) = Gx1(k)Gx2(k)

=⇒ lnGy(k) = lnGx1(k) + lnGx2(k) =⇒ κyn = κx1n + κx2n

Where, in the first line, we used the operation "convolution" and the fact that the
Fourier transform of the convolution is the product of the Fourier transforms. This
scheme can be iterated. If Y = X1 +X2 +X3 =⇒ κyn = κx1n + κx2n + κx3n
If we consider the random variable Z = 1

N

∑N
i=1Xi, then

κzn = 1
Nn

∑N
i=1 κ

xi
n

where the 1/Nn comes from the fact that a cumulant like a moment involves a power
of n for any scalar factor. Now consider that all the Xi random variables are the
same process, i.e Xi = X ∀i, and 〈X〉 = µ = 0 and 〈X2〉 = σ2. Then, the variable
Z is the average of N realizations of the process given by X and its cumulants are

κz1 = 〈Z〉 = 〈X〉 = 0

κz2 =
1

N2
Nσ2 =

1

N
σ2

κzn ∼
1

Nn−1

In the limit N →∞, only the first and second cumulants matter → Gaussian!

1.8 Generating probability distributions

Gaussian distribution from the central limit theorem

A common random number generator has the uniform probability distribution

p(x) = 1 for x ∈ [0, 1]

Remember that the probability of of getting the value x (plus a differential interval)
is not p(x) but p(x)dx. The mean and the variance are:

µ = 1/2

σ2 =
∫ 1

0 x
2dx− µ2 = 1/12

From this random number generator we can construct the following random variable
x′:

x′ = (x− 1/2)
√

12σ
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which has mean µ = 0 and variance σ. It is equally distributed in the interval
[−1

2

√
12σ, 1

2

√
12σ].

Then, the random variable Z = 1√
N

(X ′1 + ... + X ′N ) is Gaussian distributed with
mean µ = 0 and variance σ2:

κz1 = 1√
N

∑N
i=1 κ

x′i
1 = 0

κz2 =
(

1√
N

)2∑N
i=1 κ

x′i
2 = κx2 = σ2

κzn = O( 1√
N

) ∀ n ≥ 3

In practice, N = 12 is a sufficiently good approximation.
This way of generating probability distributions by doing a coordinate transformation
is a very general and useful technique.

Using coordinate transformations

Consider a coordinate transformation x→ y(x) and its inverse y → x(y). Then their
probability distributions are related as follows:

py(y) = px(x(y))
∣∣∣dx
dy

∣∣∣ (1.18)

where
∣∣∣dxdy ∣∣∣ is the Jacobian of the transformation1. We can see it as follows

1 =
∫
dxpx(x) =

∫
dy
∣∣∣dxdy ∣∣∣px(x(y)) =

∫
dypy(y)

Let py(y) be given and assume px(x) to be uniformly distributed in [0, 1]. Then,
these three steps have to be followed in order to get the appropriate coordinate
transformation:

(i) dx
dy = py(y) ODE to be solved2.

(ii) x =
∫ y

0 dy
′py(y

′) Integration

(iii) y = y(x) Inversion

Example 1: Exponential distribution

We want to find a coordinate transformation that generates a exponential distribu-
tion out of an equally distributed one.

py(y) = we−wy ; y ∈ [0,∞] =⇒ x =
∫ y

0 dy
′we−wy

′
= 1− e−wy

=⇒ y = − 1
w ln(1− x)

Equivalently, since (1−x) is also a equally distributed number between 0 and 1, one
can use

y = − 1
w ln(x)

1which for scalar transformation it’s the modulus of the derivative of x respect to y.
2note that dx/dy ≥ 0 as x(y) is a distribution function
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Example 2: Lorentz distribution

py(y) =
1

π

1

1 + y2
=⇒ x =

1

π
arctan y =⇒ y = tan(πx)

Example 3: Box-Müller procedure for Gaussian distribution

The method given above to generate a Gaussian probability distribution using the
central limit theorem results to be slow to numerically compute. The Box-Müller
procedure is a much faster way and one of the best procedures to create such a
distribution.
Let x1, x2 be two random numbers uniformly distributed in [0, 1]. Consider the
change of variables

y1 =
√
−2 lnx1 cos(2πx2)

y2 =
√
−2 lnx1 sin(2πx2)

⇐⇒
x1 = exp

(
− 1

2(y2
1 + y2

2)
)

x2 = 1
2π arctan

(y2

y1

)
=⇒ detJ =

∣∣∣∂(x1, x2)

∂(y1, y2)

∣∣∣ =
1√
2π
e−

1
2
y21

1√
2π
e−

1
2
y22

So y1 and y2 are Gaussian distributed!

1.9 Random walk on a line

The walker starts at lattice position m = 0 at t = 0. After a time ∆t the walker
jumps a distance ∆x to the right with probability p and to the left with probability
q = 1 − p. What is the probability pm to be at the position m after N jumps? If
the walker jumps r times to the right and l times to the left, we have r− l = m and
thus r = m+ l. Moreover, N = r + l = m+ 2l. Therefore, we have

l =
N −m

2
, r =

N +m

2

The desired probability is then given by

pm =
N !

r!l!
prql =

N !

(N − r)!r!
prqN−r (1.19)

From the properties of the binomial distribution, we get immediately:

〈r〉 = Np, σ2
r = Npq (1.20)

〈m〉 = 2〈r〉 −N = 2N(p− 1/2) (1.21)

〈m2〉 = 4〈r2〉 − 4〈r〉N +N2 = 4(Npq +N2p2)− 4N2p+N2 (1.22)

= 4Npq + 4N2(p− 1/2)2 (1.23)

σ2
m = 4Npq (1.24)
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For a symmetric jump (p = 1/2) we have 〈m〉 = 0 and 〈m2〉 = σ2
m = N , that is the

variance grows linear with the number of jumps.
Now we take the continuous limit, that is ∆x and ∆t are sent to cero and the number
of steps N to infinity. Then space and time become real numbers: x = m∆x,
t = N∆t.
The drift velocity is defined as

v =
〈m〉∆x
N∆t

= 2(p− 1
2)

∆x

∆t
= −2(q − 1

2)
∆x

∆t

For ballistic motion: p = 1 =⇒ v =
∆x

∆t
as it should be.

For a symmetric random walk: p = 1/2 =⇒ 〈x〉 = 0 and 〈x2〉 = ∆x2N =

2
∆x2

2∆t
t = 2Dt where D =

∆x2

2∆t
is the diffusion constant. This corresponds to the

result σ2 = 2Dt which we got before for continuous diffusion on a line, compare
equation 1.2.
An important question is how far a particle can get in a given time t. For ballistic
motion, this is r = vt, while for diffusive motion this is given by the RMSD r =√
〈x2〉 =

√
2Dt. Thus this distance grows linear and like a square root for ballistic

and diffusive motion, respectively, compare the plot.

1 2 3 4 5

0.5

1

1.5

2

2.5

Figure 1.3: Behaviour of r =
√
〈x2〉 as a function of time. In red the ballistic motion

(linear) and in black the symmetric random walk (square root). Arbitrary units.

In general, the diffusion constant is given by

D = 2
∆x2

∆t
pq (1.25)

and the second moment by

〈x2〉 = 2Dt+ (vt)2 (1.26)

Rate equation approach

The same problem can be approached through a rate equation (later master equa-
tion). From the requirement that the walker has to jump to the position m either
from the left or the right, we can write
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p(m,N + 1) = p(m− 1, N)p+ p(m+ 1, N)q (1.27)

We next replace p and q by v and D.

D = 2
∆x2

∆t
pq = (2p− 1)(1− p)∆x2

∆t
+ (1− p)∆x2

∆t
= vq∆x+ q

∆x2

∆t

Similarly for p:

D = 2
∆x2

∆t
pq = (2q − 1)(1− q)∆x2

∆t
+ (1− q)∆x2

∆t
= −vp∆x+ p

∆x2

∆t

Therefore we obtain

q = (D − vq∆x) ∆t
∆x2

p = (D + vq∆x) ∆t
∆x2

Plugging p and q in, we get

p(m,N + 1)− p(m,N)

∆t
=

vp

∆x
p(m− 1, N)− vq

∆x
p(m+ 1, N) (1.28)

+
D

∆x2

(
p(m+ 1, N) + p(m− 1, N)− 2p(m,N)

)
+
( 2D

∆x2
− 1

∆t

)
p(m,N) (1.29)

= −vpp(m,N)− p(m− 1, N)

∆x
− vq p(m+ 1, N − p(m,N))

∆x
(1.30)

+
D

∆x2

(
p(m+ 1, N) + p(m− 1, N)− 2p(m,N)

)
(1.31)

+
( 2D

(∆x)2
− 1

∆t
+
vp

∆x
− vq

∆x

)
p(m,N) (1.32)

The last term vanishes since( 2D

(∆x)2
− 1

∆t
+
vp

∆x
− vq

∆x

)
=

4pq

∆t
− 1

∆t
− 2p(q − 1/2)

∆t
− 2q(p− 1/2)

∆t
= 0

In the continuum limit one obtains the diffusion equation with drift (Fick’s equation
and later Fokker-Planck equation)

∂p(x, t)

∂t
= −v∂p(x, t)

∂x
+D

∂2p(x, t)

∂x2
(1.33)

For the initial condition p(x, 0) = δ(x), this equation is solved by the Gaussian
distribution

p(x, t) =
1√

4πDt
exp

(
− (x− vt)2

4Dt

)
(1.34)

as obtained before in equation 1.2 without drift (v = 0). We conclude that the
Gaussian with drift is the continuum limit for the jump problem on the line and that
both give the linear increase of variance with time which is typical for random walks.
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1.10 Summary

• Axioms:

1. p(A) ≥ 0 ∀A
2. p(Ω) = 1

3. If Ai (i = 1, 2, 3...) is a countable collection of non-overlapping sets

Ai ∩Aj = ∅ for all i 6= j

then

p(
⋃
iAi) =

∑
i p(Ai)

• Binomial distribution:
pk =

(
N

k

)
pkqN−k (1.35)

where
(
N

k

)
= N !

k!(N−k)! .

• Gaussian distribution:

pk =
1√

2πσ2
e−(k−µ)2/2σ2

(1.36)

• Poisson distribution:

pk =
λk

k!
e−λ (1.37)

• Moments:
µn = 〈xn〉 (1.38)

• Variance:
σ2 = µ2 − µ2

1 (1.39)

• Characteristic function:

G(k) = 〈expikx〉 =

∫
dx expikx p(x) (1.40)

• Cumulants:
κn =

1

in
dn(lnG(k))

dkn

∣∣∣
k=0

(1.41)

• Central limit theorem: If a random variable is the sum of many independent
random variables, then it is Gaussian distributed.

• Coordinate transformations:

x→ y(x) invertible. Probability distributions related as:

py(y) = px(x(y))
∣∣∣dx
dy

∣∣∣ (1.42)
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• Random walk on a line:

Probability of being at the (discrete) position m after N jumps

pm =
N !

r!l!
prql =

N !

(N − r)!r!
prqN−r (1.43)

where

l =
N −m

2
, r =

N +m

2
.

Drift velocity:

v =
〈m〉∆x
N∆t

= 2(p− 1

2
)
∆x

∆t
(1.44)

Diffusion constant:

D = 2
∆x2

∆t
pq. (1.45)

Second moment:

〈x2〉 = 2Dt+ (vt)2 (1.46)

where t = N∆t and x = m∆x.

• Drift-diffusion equation:

∂p(x, t)

∂t
= −v∂p(x, t)

∂x
+D

∂2p(x, t)

∂x2
(1.47)

20



Chapter 2

Stochastic processes

In the last chapter we dealt with stochastic (or random) variables X, which had a
realization x and a probability distribution p(x). Here, we will go one step further and
study stochastic processes, that are sequences of random variablesXt1 , Xt2 , ..., Xti , ....
Each time point ti (that can be discrete or, dropping the sub-index, continuous) can
have a different distribution function pti(x) = p(x, ti). Even though we write x and
t as the argument of p, they are completely different variables. x is a stochastic
variable, while t is the time variable that plays the role of a parameter. The different
realizations x of the random variable X as a function of time are called trajectories.
The overriding aim of this chapter is to derive equations of motions for stochas-
tic processes, like Newton’s 2nd law in classical mechanics or Schrödinger’s equa-
tion in quantum mechanics. Interestingly, there exists an integral equation (the
Chapman-Kolmogorov equation) which is more general and from which we can de-
rive the desired differential equations with the help of a few clear physics ideas. The
Chapman-Kolmogorov equation is based on the central concept of a Markov process
and we will start from here.

2.1 Markov processes and Chapman-Kolmogorov equa-
tion

Different physics will lead to different relations between the Xti . It is natural to
introduce the joint probability of getting the trajectory {x1, t1; ...;xn, tn} that we
call pn(x1, t1; ...;xn, tn) (where the sub-index n is convenient to know that we are
talking of a n-point (or n-time) probability distribution). Alternatively, we may write
the same in a shorter way as pn(1; ...;n), where i = (xi, ti).

Example: p2(1; 2)dx1dx2 is the probability to be at position x1 at time t1 and at
x2 at time t2.

Like before, from the joint probabilities we can define marginal and conditional
probabilities. The simplest case of time correlations is the Markov1 process, which

1Andrei Markov, 1856-1922.
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is defined through the following requirement for a conditional probability:

pn(n|(n− 1); ...; 1) = p2(n|(n− 1)) (2.1)

It says that the transition (n − 1) → n is independent of the previous history. One
says that the future is determined by the present (and not by the past) or that the
Markov process has no memory.
The two-point conditional probability p2(n|(n− 1)) is called transition probability or
propagator.
A Markov process is called stationary or homogeneous if p2(x, t;x′, t′) depends on
time only through (t− t′).
A central property of Markov processes is that all n-point joint probabilities can be
reduced to products of one and two-point probability distributions, e.g.

p3(3; 2; 1) = p3(3|2; 1)p2(2; 1) = p2(3|2)p2(2|1)p(1). (2.2)

Thus p1 and p2 are sufficient to determine a Markov process.
Using the definition of marginal probability and Markov process we can write

p2(3; 1) = p2(3|1)p1(1) =

∫
dx2p3(3; 2; 1) =

∫
dx2p2(3|2)p2(2|1)p1(1) (2.3)

From here, it follows the Chapman-Kolmogorov equation (CKE):

p2(3|1) =

∫
dx2p2(3|2)p2(2|1) (2.4)

which is an integral law of motion. The time evolution from t1 to t2 and subsequently
from t2 to t3 is identical to the evolution from t1 to t3. Later in this course we will
show how the master, Fokker-Planck and Langevin equations follow as differential
forms of the CKE.
Integrating the CKE times p1(1) over x1 we obtain the second form of that equation,
namely

p1(3) =

∫
dx2p2(3|2)p1(2) (2.5)

This equation shows that p1 and p2 are related to each other and one needs both to
define a Markov process. This relation between p1 and p2 has to be satisfied for a
stochastic process to be Markovian.
In the stationary limit, where time doesn’t play any role, we have

pstat(x) =

∫
dx2p2(x, t3|x2, t2)pstat(x2) (2.6)

which can be interpreted as a kind of eigenvalue problem.
On a microscopic scale, physical process have memory. The Markov process property
for the macroscopic scale is an idealization that makes it possible to define the entire
process in terms of a few quantities. A process is non-Markovian when some essential
element is missing. "The art of the physicist is to find those variables that are needed
to make the description Markovian" (van Kampen).

22



2.2 Examples of Markov processes

Here the most fundamental stochastic processes are introduced. As they are Markov
processes, they can be defined by the one and two-point correlation function.

Wiener process

This is an homogeneous process and, therefore, the two-point correlation function
depends on time via τ ≡ t− t′.

p2(x, t|x′, t′) =
1√
2πτ

e−(x−x′)2/2τ (2.7)

p1(x, t) =
1√
2πt

e−x
2/2t (2.8)

Figure 2.1: p1 for different times (tblack > tred).

The Wiener process can be interpreted as the diffusion of heat or the Brownian
motion of a particle. A stationary probability pstat does not exist.

Ornstein-Uhlenbeck process

p2(x, t|x′, t′) =
1√

2π(1− e−2τ )
exp

(
− (x− x′e−τ )2

2(1− e−2τ )

)
(2.9)

p1(x, t) =
1√

2π(1− e−2t)
exp

(
− (x− x0e

−t)2

2(1− e−2t)

)
(2.10)

where x0 is the initial condition. The stationary probability has the form:

pstat =
1√
2π
e−x

2/2 (2.11)

and the time-dependent mean and variance of this process are
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µ = x′e−τ (2.12)

σ2 = 1− e−2τ (2.13)

-4 -2 2 4
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Figure 2.2: In black p1 as a function of x for two different times. In red, an harmonic
potential.

This process can be interpreted as the diffusion of a particle in a harmonic potential.

Poisson process

Here we have a discrete variable nti = 0, 1, ... which increases in time with a constant
rate for the waiting time. Examples of such a process are the firing of a neuron, arrival
of customers, impact of a rain drop, mutation in a population, etc.

Figure 2.3: Sample path N(t) of the Poisson process.

With n ≡ n2 − n1 > 0 and τ ≡ t2 − t1 > 0, the process is defined by

p2(n2, t2|n1, t1) =
(ατ)n

n!
e−ατ (2.14)

p1(n1, t1) =
(αt1)n1

n1!
e−αt1 (2.15)
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p1 gives you the probability that exactly n1 events have occurred in [0, t1].
If we compare it with the Poisson distribution

pn =
λn

n!
e−λ (2.16)

we can identify λ = αt. The mean grows linearly in time and α is the growth rate.
For small τ , the jump probability is

p2(n+ 1, t+ τ |n, t) = ατ +O(τ2) (2.17)

Therefore, α gives you the jump rate.
The Poisson process can also be interpreted as a "one-sided" random walk, in which
the walker steps to the right only with probability per unit of time equal to α.

2 4 6 8 10

0.05

0.1

0.15

0.2

0.25

Figure 2.4: Poisson distribution as a function of time for n = 2 (red) and n = 4
(black). The maximum occurs at t = n/α = 2 and t = 4 respectively.

2.3 Fokker-Planck equation

We can proceed from the Chapman-Kolmogorov equation to derive the central equa-
tion for continuous processes with diffusion, namely the Fokker-Planck equation
(FPE). In order to obtain a differential equation from the CKE, we need to add
statements on local properties. Here these local requirements are motivated by the
short-time behaviour derived earlier for the random walk on a line. They are:∫

dx2(x2 − x1)p2(x2, t+ ∆t|x1, t) = A(x1, t)∆t+O(∆t2) (2.18)∫
dx2(x2 − x1)2p2(x2, t+ ∆t|x1, t) = 2D(x1, t)∆t+O(∆t2) (2.19)

Higher moments of the transition probabilities are assumed to vanish in linear order.
Thus, for small times we deal with a normal distribution with mean A and variance
2D. The coefficient A is the "drift coefficient" and D the "diffusion coefficient"
(although they are actually functions)2 The factor 2 in the second equation is a
convention (some books like Gardiner or Honerkamp do not use it, but most modern
treatments do).

2for higher dimension they become the "drift vector" and the "diffusion matrix".
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We consider x ∈ I ⊂ < and a test function R(x) that vanishes together with its first
derivative at the boundaries of the interval I.∫

I
dyR(y)

∂p2(y, t|x′, t′)
∂t

= lim
∆t→0

1

∆t

∫
dyR(y)

[
p2(y, t+ ∆t|x′, t′)− p2(y, t|x′, t′)

]
CKE

= lim
∆t→0

1

∆t

∫
dyR(y)

[ ∫
dzp2(y, t+ ∆t|z, t)p2(z, t|x′, t′)− p2(y, t|x′, t′)

]
Now, since y and z are close (because ∆t is small), we expand R in y − z up to
second order according to the requirements stated above:

lim
∆t→0

1

∆t

{∫
dydz

(
R(z) + (y − z)∂R(z)

∂z
+

1

2
(y − z)2∂

2R(z)

∂z2
+ ...

)
p2(y, t+ ∆t|z, t)p2(z, t|x′, t′)

−
∫
dyR(y)p2(y, t|x′, t′)

}
=

∫
dzp2(z, t|x′, t′)

{
A(z, t)

∂R(z)

dz
+D(z, t)

∂2R(z)

∂z2

}
where for the last step we used that the first and last terms cancel and the require-
ment on the moments. Note that the linear assumption in ∆t for the moments
exactly cancels with the ∆t from the time derivative.
In order to get rid of the derivatives of R, we use partial integration:

=

∫
dzR(z)

[
− ∂

∂z

(
A(z, t)p2(z, t|x′, t′)

)
+

∂2

∂z2

(
D(z, t)p2(z, t|x′, t′)

)]
Comparing this with the first expression, the test function drops out and we obtain
the Fokker-Planck equation (FPE), also known as Kolmogorov equation or Smolu-
chowski equation:

∂p2(x, t|x′, t′)
∂t

=
(
− ∂

∂x
A(x, t) +

∂2

∂x2
D(x, t)

)
p2(x, t|x′, t′) (2.20)

Since it is a partial differential equation (PDE), one needs initial and boundary
conditions to solve it.

Comments on FPE

1. The derivatives act not only on A and D, but also on p2. Therefore there might
be more than two terms on the right hand side. If A and D are constants, there
are only two terms and the FPE can be written as ṗ2 = (−A∂x +D∂2

x)p2.

2. We can also write an equation for p1. Multiplying the FPE on the right for
p1(x′, t′) and integrating over x′ we get:

ṗ1(x, t) = (−∂xA+ ∂2
xD)p1(x, t) (2.21)

Thus the FPEs for p1 and p2 are formally the same.

3. The FPE can be written as a continuity equation:

ṗ1 + ∂xJ = 0 (2.22)
J ≡ (A− ∂xD)p1 (2.23)

with J being the probability current. Thus the FPE describes the flow of
probability. Important boundary conditions are:

26



(i) Reflecting: J |boundary = 0.
A = 0 and D = constant =⇒ ∂xp1 = 0

(ii) Absorbing: p1|boundary = 0

4. If viewed as a function of (x′, t′), p2(x, t|x′, t′) satisfies the adjoint or backward
FPE :

∂t′p2(x, t|x′, t′) =
(
−A(x′, t′)∂x′ −D(x′, t′)∂2

x′
)
p2(x, t|x′, t′) (2.24)

Note that there is no sign difference anymore and that derivatives do not act
on A and D but only on p2. That makes it a simpler equation than the FPE.

5. The derivation used here uses similar concepts (test function, integral, partial
integration) as the weak formulation of the finite element method (FEM) for
PDEs. Like the Schrödinger equation or the equations of continuum mechan-
ics (Navier-Stokes equation, diffusion equation, Navier-Cauchy equation, etc)
the FPE can be solved numerically by FEM-software (e.g. ANSYS, ABAQUS,
Comsol Multiphysics, FEniCS, deal.II, DUNE, HighFlow3, etc).

Generalization to higher dimensions

Let ~x be a d-dimensional vector of random variables ~x = (x1, ..., xd). The require-
ments on the CKE for small times now read

∫
d~x2(~x2 − ~x1)ip(~x2, t+ ∆t|~x1, t) = Ai(~x1, t)∆t+O(∆t2) (2.25)∫
d~x2(~x2 − ~x1)i(~x2 − ~x1)jp(~x2, t+ ∆t|~x1, t) = 2Dij(~x1, t)∆t+O(∆t2) (2.26)

which define the drift vector Ai and the diffusion matrixDij . Proceeding analogously
to the derivation of the one-dimensional FPE, one gets the multivariate FPE

ṗ1(~x, t) =
(
−

d∑
i=1

∂xiAi(~x, t) +

d∑
i,j=1

∂xi∂xjDij(~x, t)
)
p1(~x, t) (2.27)

which can again be written as a continuity equation ṗ1 + ~∇ ~J = 0 with the probability
flux ~J defined as

Ji = Ai −
d∑

J=1

∂xjDij (2.28)

The continuity equation tells us that the change in probability in a volume V is
determined by the flux across the boundary in analogy to fluid dynamics. We can
see it by integrating the continuity equation for p1(x, y, z, t) over a volume element
V

0 =

∫
V
dV

dp1

dt
+

∫
V
dV ~∇ ~J =

∂

∂t

∫
V
dV p1 +

∫
A=∂V

dA~n · ~J (2.29)

where we have used Gauss’ theorem to convert the volume into a surface integral.
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2.4 Examples for the FPE

Deterministic system

Consider a deterministic system and its trajectory x(t) given by solving a differential
equation of the form ẋ = f(x). Here are two examples for such deterministic systems.

Example: Logistic growth ẋ = x(1− x/k)

Logistic growth is the most popular model for population growth. A population
without limitations in resources would grow exponentially. However, in a more
realistic example, there is an upper limit to the number of individuals that the
environment can support. The logistic growth shows an initially exponential be-
haviour but, then, a saturation begins and the growth slows down until it stops.

0.5 1 1.5 2
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-0.5

(a) ẋ(x) for k = 1

2 4 6 8 10 12 14
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0.4

0.6
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1

(b) x(t) for k = 1

Figure 2.5: Logistic growth

In order to get the deterministic limit for the FPE we need to take

p1(y, t) = δ(y − x(t)) (2.30)
p2(z, t|y, t′) = δ(z − x(t)) with x(t′) = y (2.31)

Thus, the drift and diffusion constants are

A(x, t′)∆t =

∫
dz(z − x)p2(z, t′ + ∆t|x, t′) =

∫
dz(z − x(t′))δ(z − x(t′ + ∆t)) =

= x(t′ + ∆t)− x(t′) = ẋ(t′)∆t =⇒ A(x, t′) = ẋ(t′) = f(x)

D(x, t′)∆t =

∫
dz(z − x)2p2(z, t′ + ∆t|x, t′) =

(
x(t′ + ∆t)− x(t′)

)2
=

(ẋ∆t)2 = O(∆t2) =⇒ D = 0

Therefore, drift A(x, t) is the deterministic part of the FPE (which we can also
identify with the velocity) and diffusion D(x, t) the noisy part. Therefore the FPE
can be considered to be a drift-diffusion equation.

Wiener process

As previously stated, the two-point probability for the Wiener process is given by

p2(x, t+ ∆t|x′, t) =
1√

2π∆t
e−(x−x′)2/2∆t (2.32)
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which is the solution of the FPE for A = 0 and D = 1/2 (diffusion equation)

ṗ2 =
1

2
∂2
xp2 (2.33)

Note that p2 is not polynomial in ∆t. If both diffusion and drift are present, we get
the picture of a particle moving with velocity v = A on which a Gaussian fluctuation
with variance 2D is superimposed.

=⇒ x(t+ ∆t) = x(t) +A(x(t), t)∆t+ (2D∆t)1/2

Conclusions:

(i) Trajectories are continuous, x(t+ ∆t)
∆t→0→ x(t).

(ii) Trajectories are nowhere differentiable (due to the ∆t1/2)

Diffusion in a gravitational field

Consider particles in a container with a viscous fluid with friction coefficient ξ = 1.
We again consider the overdamped limit. The probability to find a particle at a
height x is given by

ṗ1 = ∂x(Gp1) +D∂2
xp1 (2.34)

where G is the gravitational constant. In the stationary case,

∂xps
ps

= ∂x ln ps = −G
D

=⇒ ps ∼ e−Gx/D = e−Gx/kBT (2.35)

where in the last step we used the Einstein relation. This last expression is known
as the barometric formula.

Ornstein-Uhlenbeck process

This is the first example with both diffusion and drift. It is the result of adding a
linear term to the Wiener process. The FPE for this process is

ṗ1 = ∂x(ξkxp1) +D∂2
xp1 (2.36)

The drift part can be physically interpreted as follows. Consider a spring submerged
in a viscous fluid. The equation of motion is

F = mẍ = −kx− 1

ξ
v (2.37)

where k is the spring constant and ξ the friction coefficient. In the over-damped
limit (in which one roughly sends m→ 0)

v = −ξkx = A (2.38)

The stationary solution (ṗs
!

= 0) is given by

∂x (ξkxps +D∂xps)︸ ︷︷ ︸
=J

= 0 (2.39)
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Due to boundary conditions J = const = 0. Hence,

∂xps
ps

= −ξkx
D

= ∂x ln ps =⇒ ps =
( ξk

2πD

)1/2
e−ξkx

2/2D (2.40)

Note that this is the same result that we obtain in statistical physics when we con-
sider a particle in an harmonic potential in a temperature bath, i.e the Boltzmann
distribution pB(x) ∼ e−V (x)/kBT = e−

1
2
kx2/kBT . Comparing the two we obtain the

Einstein relation

D =
kBT

ξ
(2.41)

This is an example of the fluctuation-dissipation theorem. It connects two seemingly
very different quantities, the diffusion constant D (fluctuation) with the friction
coefficient ξ (dissipation).

Harmonic oscillator with damping

The equation of motion reads mẍ = −kx − γẋ. Using the velocity v = ẋ we can
write it as a vectorial differential equation ~̇x = ~f(~x):(

ẋ
v̇

)
=

(
0 1

− k
m
− γ
m

)(
x
v

)
(2.42)

We obviously deal with a multivariate FPE. From the deterministic equation, we can
read off the drift vector. We rewrite it as a matrix multiplication to see the linear
character:

~A =

(
0 1

− k
m
− γ
m

)
~x (2.43)

What will be our diffusion matrix ? Here we note that the noise appears on the level
of the second derivative, so we write

D =

(
0 0
0 Dv

)
(2.44)

In contrast, for an overdamped system we would write a diffusion constant Dx on
the level of the first derivative.
Our multivariate FPE (also known as Kramers equation) now reads

ṗ = ∂x(−vp) + ∂v(
k

m
xp+

γ

m
vp+Dv∂vp) (2.45)

The stationary solution is given by

ps ∼ e−
γ

2mDv
v2e
− γk

2m2Dv
x2 (2.46)

This gives the Boltzmann distribution if we have

Dv =
kBTγ

m2
(2.47)

Indeed this diffusion constant has the correct physical dimension for < v2 >= 2Dvt.
As we will see later, it also corresponds to Dx = kBT/γ and < x2 >= 2Dxt.
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2.5 Master equation

The CKE does not only describe diffusive processes, but also jump processes. We
now consider such jump process with the simplest possible law, namely that the
transition (=jump) probability increases linearly with time. We write

p2(x, t+ ∆t|x′′, t) =
(
1− a(x, t)∆t

)
δ(x− x′′) +W (x, x′′, t)∆t+O(∆t2) (2.48)

where
(
1− a(x, t)∆t

)
is the probability to stay at the same point and W (x, x′′, t) is

the probability to jump from x′′ to x at a given time t (the starting point is written
on the right and the end point at the left, so you should read this from right to left).
These two probabilities can be related by considering the normalization condition:∫

dxp2(x, t+ ∆t|x′′, t) = 1 =⇒ a(x′′, t) =

∫
dxW (x, x′′, t) (2.49)

Therefore, the larger the probability to jump, the smaller the probability to stay, as
it should be.
Now, we combine it with the CKE:

p2(x, t+ ∆t|x′, t′) =

∫
dx′′p2(x, t+ ∆|x′′, t)p2(x′′, t|x′, t′) =

=
(
1− a(x, t)∆t

)
p2(x, t|x′, t′) + ∆t

∫
dx′′W (x, x′′, t)p2(x′′, t|x′, t′) +O(∆t2)

Writing a(x, t) in terms of W we obtain the master equation (ME):

∂

∂t
p2(x, t|x′, t′) =

∫
dx′′W (x, x′′, t)p2(x′′, t|x′, t′)−

∫
dx′′W (x′′, x, t)p2(x, t|x′, t′)

(2.50)
The first term is the gain term (all jumps to the position x) and the second term the
loss term (all jumps away from position x). The ME is a balance equation, while the
FPE is a continuity equation.
Since we are dealing with a jump process, it is more natural to write the ME in a
discrete version. Let pn(t) be the probability to be at the site n at a given time and
Wnn′(t) the jump rate from the site n′ to n. The discrete ME then reads

ṗn(t) =
∑
n′

(
Wnn′pn′(t)−Wn′npn(t)

)
(2.51)

Note the asymmetry of the sum and that there is no sum over the repeated index n
on the second term.
The discrete version can be visualized as a weighted bidirectional graph. Every
possible discrete state n is represented by a node of the graph while Wnn′ represents
the directed edge connecting the node n′ to the node n (with a certain weight).
Some properties of the physical system simply follow from the topology of the graph,
while others depend on the exact numbers of the weights. At any rate, a detailed
treatment of master equations profits from graph theory.
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Stationary states

In many cases, our physical system arrives to an stationary state in which probabil-
ities do not depend on time. The definition of a stationary state is ṗn(t) = 0 which
can also be interpreted as an influx-outflux equilibrium:∑

n′

Wnn′pn′ =
∑
n′

Wn′npn (2.52)

There are two types of equilibrium:

1. Local stationarity:

1 //

��

2oo

��
3

OO ??

Here each link is balanced by itself. Thus nodes are also balanced. This situa-
tion is called detailed balance and it is typical for thermodynamical equilibrium
(follows from time-reversal invariance for closed physical systems).

For systems in equilibrium in contact with a heat bath (Boltzmann distribu-
tion):

Wn′n

Wnn′
= e−∆E/kBT (2.53)

2. Global stationarity due to cycles:

1 // 2

��
3

OO

This case is only possible if loops exist in our system. It is also called a non-
equilibrium steady state (NESS) and it is typical in driven systems. So we see
that steady state does not mean equilibrium!

Matrix formulation

The ME is linear in pi and can be solved by an eigenvalue analysis:

~̇p = V ~p (2.54)

where

Vij =

{
Wij i 6= j

−
∑

l 6=iWli i = j
(2.55)
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The matrix V contains all the information of the graph (i.e. of our physical problem).
Examples:

1. Two-state system: 1
**
2jj

The equations of motion are

ṗ1 = W12p2 −W21p1 (2.56)
ṗ2 = W21p1 −W12p2 (2.57)

V =

(
−W21 W12

W21 −W12

)
(2.58)

2. Three-state system:

ṗ1 = W12p2 +W13p3 −W21p1 −W31p1 (2.59)

V =

−(W21 +W31) W12 W13

W21 −(W12 +W32) W23

W31 W32 −(W13 +W23)

 (2.60)

Notice that, according to the construction of V , all the columns of V sum
to zero, the diagonal elements are non-positive and the off-diagonal ones are
non-negative.

From (2.54) we see that

~p(dt) = (1 + V dt)~p(0) =⇒ ~p(t) = lim
M→∞

(1 + V
t

M
)M~p(0)

=⇒ ~p(t) = eV t~p(0)

Therefore eV t is the operator that gives the time evolution3.
A general solution can be expressed in terms of eigenvectors ~pλ of V with eigenvalue
λ as

~p(t) =
∑
λ

cλ~pλ(0)eλt (2.61)

with ~p(0) =
∑
cλ~pλ(0). λ = 0 describes the stationary state and λ < 0 describes

different relaxation processes.

3Here there is a nice analogy with quantum mechanics. For symmetric (thus, hermitian) V, -V
becomes the Hamiltonian of the quantum system. Therefore, the difference between the classical
time evolution operator and the quantum one is only the i of the exponential. Directed edges (i.e.
non-hermitian V which represent dissipation) can be treated quantum-mechanically with a quantum

master equation (
dρ

dt
= −i[H, ρ] + L) in the context of quantum noise and decoherence.
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2.6 Examples for the ME

(1) Poisson process

0
α **

1
α **

2 ...

For the Poisson process we have

n = 0, 1, 2, ... (2.62)
Wnn′ = αδn,n′+1 (2.63)

The equations of motion are

ṗn = αpn−1 − αpn ∀n (2.64)

The solution of this equation is

pn =
(αt)n

n!
e−αt (2.65)

as can be easily checked. So we are dealing with a Poisson process with < n >= αt.

(2) Radioactive decay

... n-1 n
γn
ll ...

The number of nuclei decays in proportion to itself, thus we have

n = 0, 1, ..., n0 (2.66)
Wnn′ = γnδn,n′−1 (2.67)

Thus the rate is linear in n. An exact solution exists (see below).

(3) Random walk on a line

... -2
++
-1kk

**
0kk

**
1jj

**
2jj ...

For the symmetric random walk

n = −∞, ...,∞ (2.68)

Wnn′ =

{
α if |n− n′| = 1
0 otherwise (2.69)

The equations are

ṗn = α(pn−1 + pn+1 − 2pn) (2.70)
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which is the discrete version of the diffusion equation

ṗn = α∂2
npn (2.71)

An exact solution exists (see below). It is not the Gaussian, as expected in the
continuum limit, but more complicated.

(4) Chemical reactions

For small reaction volumes the number of molecules in the sample is crucial (not
the concentrations). The ME applied to that field is often called chemical master
equation. Here is a simple example:

∅ ν→ A

A
µ→ ∅

This is a reaction in which we create a molecule A with a rate ν and it is destroyed
with a rate µ. Now the number of the site represents the number of molecules A
that we have. Therefore,

Wnn′ =

{
ν if n = n′ + 1
µn′ if n = n′ − 1

(2.72)

with n ≥ 0, where the n′ is a combinatorial factor that takes into account that there
are n′ molecules A that can be destroyed.

0
ν **

1
µ
jj

ν **
2

2µ
jj

ν **
3

3µ
jj ...

One-step master equation

The three previous examples where examples of one-step master equation. There
where only jumps from a site to a neighbouring site. It is convenient for later
purposes to rename the jump rates and introduce g(n) ≡ Wn+1,n (dissociation or
death rate) and r(n+ 1) ≡Wn,n+1 (association or birth rate).

... n-1
g(n−1)

** n
r(n)

ll

g(n)
,,
n+1

r(n+1)

jj ...

Typical applications are population dynamics, protein clusters, chemical reactions,...
Like for the FPE, the boundaries are very important and key in determining the
behaviour of the system. Often one has n ≥ 0 (boundary at n = 0 like in the first
and third examples).
Two basic boundary conditions are:
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1. Reflecting boundary: r(0) = g(−1) = 0

This is the case of the Poisson process for example, in which our system are
the sites [0, 1, 2...] and the sites [−∞, ...,−1] are completely disconnected.

2. Absorbing boundary: g(−1) = 0, r(0) = c 6= 0

Here the site −1 acts as a sink. Some probability can go from the site 0 to the
sink but it cannot go out.

-1 0kk
**
1jj

**
2jj

**
3jj ...

If we consider the probability q =
∑∞

n=0 pn to be in the allowed domain defined
as the sites [0,∞] (that is, we restrict ourselves to a sub-domain) we see that
it always decreases and we have dissipative behaviour4.

p−1 + q = 1 =⇒ q̇ = − ˙p−1 = −cp0 < 0 (2.73)

The probability to be in the domain decreases until p0 = 0.

Steady state for the one-step ME

ṗn = r(n+ 1)pn+1 + g(n− 1)pn−1 − (r(n) + g(n))pn
!

= 0 (2.74)
=⇒ J = g(n− 1)pn−1 − r(n)pn = g(n)pn − r(n+ 1)pn+1 (2.75)

thus the net current is the same everywhere.

... n-1 J //// n J //// n+1 ...

Often one has J = 0 (e.g. detailed balance, reflecting boundary, etc). Then we can
write the steady states p∗n as

p∗n =
g(n− 1)

r(n)
p∗n−1 =

g(n− 1)g(n− 2)...g(0)

r(n)r(n− 1)...r(1)
p∗0 (2.76)

On the other hand, p∗0 follows from the normalization condition
∑
p∗n = 1.

Example 1: Queuing

We consider a queue, for example of customers in the supermarket or of tasks in a
to-do-list.
Let g(n) = λ be the arrival rate and r(n) = µ the rate of removal. We need λ < µ
to get an steady state

p∗n =
(λ
µ

)n
p∗0 (2.77)

4The probability in the whole system is of course conserved.
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From the normalization we get the value of p∗0

1 =
∞∑
n=0

p∗n = p∗0

∞∑
n=0

(λ
µ

)n
=

p∗0
1− λ/µ

=⇒ p∗0 = 1− λ

µ
(2.78)

The probability to get served immediately is larger if few clients arrive (low λ) or if
the service is faster (high µ). The average length of the queue is (with r = λ/µ):

< n >=
∞∑
n=0

np∗n = (1− r)(r∂r)
∞∑
n=0

rn = (1− r)(r∂r)
1

1− r
=

r

1− r
(2.79)

Thus it grows linearly with small r and diverges at r = 1.

Example 2: Chemical reaction

Consider the following chemical reaction (molecules):

A+ 2X 
 3X

This reaction should, in principle, be described with a two-variable ME. However,
we only focus and keep track of the X-molecules, so that we can use the one-step
ME. This means that we treat A in the macroscopic limit and X in the microscopic
limit.
Here the domain is n ≥ 2, where n is the number of X-molecules, since we need at
least two molecules in order for this reaction to take place.
The association and dissociation rates are

g(n) = k1CA
n

Ω

(n− 1)

Ω
(2.80)

r(n) = k2
n

Ω

(n− 1)

Ω

(n− 2)

Ω
(2.81)

where Ω is the volume of the system and CA the concentration of A.
For J = 0 (detailed balance assumption), the steady probabilities read

p∗n =
g(n− 1)

r(n)
p∗n−1 =

k1CA(n− 1)(n− 2)Ω3

k2n(n− 1)(n− 2)Ω2
p∗n−1 =

K

n
p∗n−1 =

2Kn−2

n!
p∗2 (2.82)

where we have defined K ≡ k1CAΩ

k2
. Again, p∗2 is found through the normalization

condition.

1 =

∞∑
n=2

p∗n = p∗2

∞∑
n=2

2Kn−2

n!
= p∗2

2

K2
(eK − 1−K) =⇒ (2.83)

p∗n =
Kn

n!
e−K

1

1− (1 +K)e−K
K�1−→ Kn

n!
e−K (2.84)
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We see that, for largeK, it behaves like the Poisson distribution with a mean number
of molecules

〈n〉 = K =
k1CAΩ

k2
= CxΩ (2.85)

where Cx is the concentration in the steady state (Cx = 〈n〉/Ω). From here we can
deduce the law of mass action:

Cx
CA

=
Cx

3

CACx
2 =

k1

k2
= KA (2.86)

where KA is the association constant. Thus in the limit of large systems we get
the macroscopic law of mass action. However, the ME also gives us the stationary
distribution for smaller systems which do not obey thermodynamics.

Equations for the moments

Also called "macroscopic equations" or "mean field approximation".
For the first moment

d

dt
〈n〉 =

∞∑
n=−∞

nṗn(t) =
∑
n

n
(
r(n+ 1)pn+1 + g(n− 1)pn−1 − (r(n) + g(n))pn

)
=

=
∑
n

(
(n− 1)r(n)pn + (n+ 1)g(n)pn − nr(n)pn − ng(n)pn

)
=

=
∑
n

(
− r(n)pn + g(n)pn

)
= 〈g(n)〉 − 〈r(n)〉

If r(n) and g(n) are linear, then the average can be drawn into the functions and we
get an ODE for 〈n〉:

d

dt
〈n〉 = g(〈n〉)− r(〈n〉) (2.87)

Analogously, the higher moments can be calculated with the differential equation

d

dt
〈nk〉 = 〈

(
(n− 1)k − nk

)
r(n)〉+ 〈

(
(n+ 1)k − nk

)
g(n)〉 (2.88)

If r and g are linear in n, the RHS is a polynomial in n of order k. Therefore, it can
be solved recursively using 〈nk〉 and lower moments. If r and g are not linear, the
system is not closed.
Consider the one-step ME with linear rates.

(i) First moment:
d

dt
〈n〉 = g(〈n〉)− r(〈n〉) (2.89)

(ii) Variance:

d

dt
(〈n2〉 − 〈n〉2) ≡ d

dt
〈〈n2〉〉 = (2.90)

= 〈(1− 2n)r(n)〉+ 〈(2n+ 1)g(n)〉 − 2〈n〉(g(〈n〉)− r(〈n〉)) (2.91)
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For example:

1. Symmetric RW on a line: r = g = 1

d

dt
〈n〉 = −1 + 1 = 0 =⇒ 〈n〉 = 0 (2.92)

d

dt
〈〈n2〉〉 = 2 =⇒ 〈〈n2〉〉 = 2t (2.93)

2. Radioactive decay ("linear death process"):

Suppose n0 nuclei that can decay. Let r(n) = γn and g(n) = 0 be the death
and birth rates. Then,

d

dt
〈n〉 = −γ〈n〉 =⇒ 〈n〉 = n0e

−γt (2.94)

Recall that n takes discrete values and that a certain realization will not be
continuous function of time. However, the average is. For the variance

d

dt
〈〈n2〉〉 = −2γ〈n2〉+ γ〈n〉+ 2γ〈n〉2 =⇒ (2.95)

〈〈n2〉〉 = n0(e−γt − e−2γt) (2.96)

The variance vanishes at small and large times and has a peak at intermediate
times.

Exact solutions using generating functions

The generating function G(z, t) is defined as

G(z, t) ≡
∞∑

n=−∞
znpn(t) =⇒ pn(t) =

1

n!

∂nG(z, t)

∂zn

∣∣∣
z=0

(2.97)

The discrete index n has been replaced by the continuous variable z. The normal-
ization condition leads to G(z = 1, t) = 1.
The moments can be expressed as

〈nk〉 = (z∂z)
kG(z, t)

∣∣
z=1

(2.98)

We want to obtain a differential equation for G(z, t). Multiplying the ME times zn

and summing over n we get the following PDE for G(z, t):

∞∑
n=−∞

zn
(
ṗn = r(n+ 1)pn+1 + g(n− 1)pn−1 − (r(n) + g(n))pn

)
=⇒ (2.99)

∂G(z, t)

∂t
=

∞∑
n=−∞

(
zn−1r(n)pn + zn+1g(n)pn − zn(r(n) + g(n))pn

)
=⇒ (2.100)

∂G(z, t)

∂t
=
((1

z
− 1
)
r(z∂z) + (z − 1)g(z∂z)

)
G(z, t) (2.101)
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This equation can be solved for many important cases5.

Example 1: Poisson process

Defined by g(n) = λ, r(n) = 0 and n ≥ 0. Since r(0) = 0 we can consider the
unbounded state space and the generating function

∂tG = λ(z − 1)G (2.102)

With the initial condition pn(t = 0) = δnm, m ≥ 0

G(z, t = 0) = zm =⇒ G(z, t) = eλ(z−1)tzm = e−λt
∞∑
n=0

(λt)n

n!
zm+n = (2.103)

= e−λt
∞∑

i=−m

(λt)i−m

(i−m)!
zi =⇒


pn(t) =

(λt)n−m

(n−m)!
e−λt n ≥ 0

pn(t) = 0 n < m

(2.104)

Again, with G(z, t) we can calculate the moments. The first moment and variance
are

〈n〉 = z∂z
∣∣
z=1

= λt+m (2.105)

〈n2〉 = (z∂z)
2G
∣∣
z=1

= ... = (λt+m)2 + λt =⇒ 〈〈n2〉〉 = λt (2.106)

Example 2: Radioactive decay

As seen above, the radioactive decay is defined through r(n) = γn and g = 0. Thus

∂tG = γ
(1

z
− 1
)
z∂zG (2.107)

The initial condition pn(t = 0) = δnn0 (i.e. G(z, 0) = zn0) gives

G(z, t) =
(
1 + (z − 1)e−γt

)n0 = (1− e−γt)n0

(
1 +

ze−γt

1− e−γt
)n0

= (2.108)

(1− e−γt)n0

n0∑
n=0

(
n0

n

)( e−γt

1− e−γt
)n
zn =

n0∑
n=0

(
n0

n

)
e−γnt(1− e−γt)n0−nzn (2.109)

=⇒ pn(t) =

(
n0

n

)
e−γnt(1− e−γt)n0−n for 0 ≤ n ≤ n0 (2.110)

For example, for n0 = 2 we have

5See book Stochastic Models in Biology by Narendra S. Goel and Nira Richter-Dyn, Springer
1974.
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p0 = (1− e−γt)2 (2.111)
p1 = 2e−γt(1− e−γt) (2.112)

p2 = e−2γt (2.113)

and p0 + p1 + p2 = 1.

Example 3: Symmetric RW on a line

r = g = 1 =⇒ ∂tG =
(1

z
+ z − 2

)
G =⇒ G = e(z+ 1

z
−2)t (2.114)

for the initial condition G(z, t = 0) = 1, which corresponds to pn(t = 0) = δn0.
Normalization is satisfied since G(z = 1, t) = 1. G can be rewritten in terms of the
modified Bessel functions In as

G(z, t) = e−2t
∞∑

n=−∞
In(2t)zn (2.115)

which directly allows us to identify

pn(t) = e−2tIn(2t) (2.116)

This is the first time we are able to get p(t) for the RW. For large times (stationary
limit) we have that pn goes to zero as

pn(t)→ 1√
4πt

(2.117)

Therefore, there is no stationary limit (corresponds to the Wiener process!).
The generating function contains all the information of our system and from it we
can get all relevant quantities. The mean and variance are

〈n〉 = (z∂z)G(z, t)
∣∣
z=1

= zez+
1
z
−2(1− 1

z2
)t
∣∣
z=1

= 0 (2.118)

〈n2〉 = (z∂z)
2G(z, t)

∣∣
z=1

= zez+
1
z
−2(1 +

1

z2
)t
∣∣
z=1

= 2t (2.119)

which agree with the results obtained with the macroscopic equations.

Example 4: Linear birth-death process

For the radioactive decay there is only a decay rate. Now we add a birth rate:

A
k1−⇀↽−
k2
B

We define n to be the number of A molecules (0 ≤ n ≤ N). The birth and death
rates are then r = k1n and g = k2(N − n).
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We want to use dimensionless time k1t. Dividing the one-step ME by k1 we see that
the new birth and death rates are r = n and g = γ(N − n), with γ = k2/k1. Then

∂tG =
((1

z
− 1
)
(z∂z) + (z − 1)γ(N − z∂z)

)
G (2.120)

With the initial condition pn(t = 0) = δnN (G(z, t = 0) = zN ) one gets

G(z, t) =
((z − 1)e−(1+γ)t + (1 + γz)

1 + γ

)N
(2.121)

from which the following probability distributions are obtained

pn(t) =

(
N

n

)
(γ + e−(1+γ)t)n(1− e−(1+γ)t)N−n

(1 + γ)N
(2.122)

In the stationary limit

p∗n =

(
N

n

)
γn

(1 + γ)N
=

(
N

n

)( γ

1 + γ

)
︸ ︷︷ ︸

p

n( γ

1 + γ

)
︸ ︷︷ ︸

q

N−n
(2.123)

which is the binomial distribution with probabilities p and q.
The moments are

〈n〉 = (z∂z)G
∣∣
z=1

=
γ

1 + γ
N︸ ︷︷ ︸

stationary limit

+
N

1 + γ
e−(1+γ)t︸ ︷︷ ︸

exponential relaxation

(2.124)

σ2 = 〈〈n2〉〉 =
〈n〉(1− e−(1+γ)t)

1 + γ
(2.125)

The variance vanishes for t = 0, γ = 0 or γ →∞. The larger the system is (N , 〈n〉),
the smaller relative fluctuations σ

〈n〉 ∼ 〈n〉
−1/2.

Differential CKE

In summary, we have shown that the CKE gives rise to the FPE (diffusion and drift)
or the ME (jumps). However, both processes can also be combined into one equation,
the differential CKE :

∂tp(x, t) = (−∂xA+ ∂2
xD)p(x, t) +

∫
dx′
(
W (x, x′, t)p(x′, t)−W (x′, x, t)p(x, t)

)
(2.126)
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2.7 Summary

• Joint probability pn(x1, t1; ...;xn, tn) of getting the trajectory {x1, t1; ...;xn, tn}.

Marginal distribution:

px(x) ≡
∫
p2(x, y)dy (2.127)

Conditional distribution:

p2(x|y) ≡ p2(x, y)

py(y)
(2.128)

• Gaussian white noise: Gaussian-distributed random variable η(t) defined through

〈η(t)〉 = 0 (2.129)

〈η(t)η(t′)〉 = σ2δ(t− t′) (2.130)

• Markov process: no-memory process defined by

pn(n|(n− 1); ...; 1) = p2(n|(n− 1)) (2.131)

The Wiener process (Wt) is the most relevant Markov process

p2(w, t|w′, t′) =
1√
2πτ

e−(w−w′)2/2(t′−t) (2.132)

p1(w, t) =
1√
2πt

e−w
2/2t (2.133)

• Chapman-Kolmogorov equation (CKE): Integral equation for Markov processes

p2(3|1) =

∫
dx2p2(3|2)p2(2|1) (2.134)

From this equation and depending whether we have diffusion and drift or jumps
one gets the Fokker-Planck equation or the master equation respectively.

• Fokker-Planck equation:

∂p2(x, t|x′, t′)
∂t

=
(
− ∂

∂x
A(x, t) +

∂2

∂x2
D(x, t)

)
p2(x, t|x′, t′) (2.135)

where the the "drift coefficient" A and the "diffusion coefficient" D have been
introduced through
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∫
dx2(x2 − x1)p2(x2, t+ ∆t|x1, t) = A(x1, t)∆t+O(∆t2) (2.136)∫

dx2(x2 − x1)2p2(x2, t+ ∆t|x1, t) = 2D(x1, t)∆t+O(∆t2) (2.137)

One can as well replace the two-point probability distribution in the FPE by
p(x, t).

The FPE can be written as a continuity equation:

ṗ1 + ∂xJ = 0 (2.138)
J ≡ (A− ∂xD)p1 (2.139)

with J being the probability current

• Master equation:

∂

∂t
p2(x, t|x′, t′) =

∫
dx′′W (x, x′′, t)p2(x′′, t|x′, t′)−

∫
dx′′W (x′′, x, t)p2(x, t|x′, t′)

(2.140)

where the probability to jump from x′′ to x, W (x′′, x, t) is introduced via

p2(x, t+∆t|x′′, t) =
(
1−a(x, t)∆t

)
δ(x−x′′)+W (x, x′′, t)∆t+O(∆t2) (2.141)

with a(x′′, t) =
∫
dxW (x, x′′, t).

Since we are dealing with a jump process, it is more natural to write the ME
in a discrete version:

ṗn(t) =
∑
n′

(
Wnn′pn′(t)−Wn′npn(t)

)
(2.142)

where pn(t) is the probability to be at the site n at a given time and Wnn′(t)
the jump rate from the site n′ to n.
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Chapter 3

Langevin equation and stochastic
calculus

3.1 Brownian motion

In this chapter, instead of dealing with the probability distributions p(x, t) of a
random variable X(t) = Xt, we will start directly from the physical equation of
motion and add a stochastic force to it. This was done by Paul Langevin (1872-
1946) in 1906 for the first time for a Brownian particle:

mv̇(t) = −ξv(t) + ση(t)︸ ︷︷ ︸
randomforce

(3.1)

where v = ẋ is velocity of the particle, the ξ is the friction coefficient, σ is the noise
strength and η(t) is Gaussian white noise motivated by the central limit theorem:

〈η(t)〉 = 0 (3.2)
〈η(t)η(t′)〉 = 2δ(t− t′) (3.3)

Note the factor of two in the correlation function. There are different conventions in
the literature.
Since η is a random variable, so is v(t). One can write the following formal solution
of Langevin’s equation:

v(t) = v0e
− ξ
m
t + e−

ξ
m
t

∫ t

0
dse

ξ
m
s σ

m
η(s) (3.4)

which can be verified by substitution. It is important to note that we only used
the property of linearity of the integral and we have not made any assumption of
differentiability of η. Moreover, we have not dicussed yet how an integral over a
random variable has to be defined.
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Mean and correlation function

By drawing averages into the integral, we can calculate moments. For the average
we get:

〈v(t)〉 = v0e
− ξ
m
t (3.5)

thus the average decays exponentially like in the deterministic case.
For the two-point correlation we get:

〈v(t)v(t′)〉 = v2
0e
− ξ
m

(t+t′) +
σ2

m2
e−

ξ
m

(t+t′)

∫ t

0
ds

∫ t′

0
ds′e

ξ
m

(s+s′)2δ(s− s′) = (3.6)

= v2
0e
− ξ
m

(t+t′) +
σ2

m2
e−

ξ
m

(t+t′)

∫ t

0
ds2e

ξ
m

2t = v2
0e
− ξ
m

(t+t′) +
σ2

m2
e−

ξ
m

(t+t′)m

ξ
(e

ξ
m

2t − 1)

(3.7)

= e−
ξ
m

(t+t′)
(
v2

0 −
σ2

mξ

)
+
σ2

mξ
e−

ξ
m

(t′−t) (3.8)

Here we assumed t < t′ for the time order (in the opposite case, we had to invert the
two; the general case could be formulated by using Heaviside step functions). The
coefficient m/ξ is the relaxation time. Under the assumption t, t′ � m/ξ, which is
true in most cases (m/ξ ∼ 10−8s for Brownian particles), the first term vanishes and
we get

〈v(t)v(t′)〉 =
σ2

mξ
e−

ξ
m

(t′−t) (3.9)

For large time differences, t′ � t, it goes to zero, whereas for equal times it has a
finite value

〈v(t)2〉 =
σ2

mξ
. (3.10)

Thus the random kicks from the environment keep the particle in motion.
In thermodynamics, the equipartition theorem tells us that in one dimension and in
equilibrium

1

2
m〈v2〉 =

1

2
kBT =⇒ kBT =

σ2

ξ
(3.11)

which agrees with the Einstein relation previously found if we identify σ2 = Dξ2.

Mean squared displacement

〈x(t)2〉 = 〈
∫ t

0
v(s)ds

∫ t

0
v(s′)ds′〉 (3.12)

=
σ2

mξ

∫ t

0
ds
(∫ s

0
ds′e−

ξ
m

(s−s′) +

∫ t

s
ds′e−

ξ
m

(s′−s)
)

(3.13)

=
σ2

ξ2

∫ t

0
ds(2− e−sξ/m − e−(t−s)ξ/m) (3.14)

=
σ2

ξ2
2t+

2σ2m

ξ3
(e−tξ/m − 1) (3.15)

46



We can study two limiting cases.

(i) Short-time behaviour (t� m/ξ):

The first order terms cancel and one gets ballistic behaviour

〈x(t)2〉 → σ2

mξ
t2 (3.16)

(ii) Long-time behaviour (t� m/ξ):

Now one gets diffusive behaviour

〈x(t)2〉 → 2σ2

ξ2
t (3.17)

Since the diffusion constant is defined by 〈x(t)2〉 = 2Dt, we get the Einstein
relation

D =
σ2

ξ2
=
kBT

ξ
(3.18)

This relation tells us that the mobility of the particle and its diffusion constant are
directly related through thermal energy (fluctuation-dissipation theorem).

Langevin’s original derivation

Langevin’s original derivation was even shorter.

mẍ = −ξẋ+ F (3.19)

where F is a fluctuating force satisfying 〈F 〉 = 0. Multiplying the above equation
by x, he got

m

2

d2

dt2
x2 −mẋ2 = −ξ 1

2

d

dt
x2 + Fx (3.20)

Taking the expectation value and assuming no correlation between F and x gets
rid of the random force. The velocity term can be dealt with by the equipartition
theorem. We then have

m

2

d2

dt2
〈x2〉+

ξ

2

d

dt
〈x2〉 = kBT (3.21)

Again we can distinguish between two regimes. In the overdamped limit t � m/ξ
we can also get rid of the term containing the mass. We then have

〈x2〉 = 2
kBT

ξ
t =⇒ D =

kBT

ξ
(3.22)
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Comments

Since η(t) is Gaussian white noise, only 〈η(t)〉 and 〈η(t)η(t′)〉 are relevant. All higher
cumulants of η(t) and therefore of v(t) vanish.
The velocity v(t) is a random variable with mean and variance

〈v(t)〉 = v0e
−tξ/m (3.23)

〈v(t)v(t′)〉 =
σ2

mξ
e−(t′−t)ξ/m (3.24)

with t′ > t. This actually defines the Ornstein-Uhlenbeck process with steady state
given by

ps(v) =
( ξm

2πσ2

)1/2
e−v

2/(2σ2/ξm) (3.25)

In the over-damped limit, mẍ� ξẋ or t� m

ξ
, the Langevin equation reduces to

ẋ(t) =
σ

ξ
η(t) =⇒ x(t) = x0 +

σ

ξ

∫ t

0
η(t′)dt′︸ ︷︷ ︸
≡dWt′

(3.26)

Wt =
∫ t

0 dWt′ is the Wiener process with

〈Wt〉 = 0 (3.27)

〈WtWs〉 =

∫ t

0
dt′
∫ s

0
ds′〈η(t′)η(s′)〉 =

∫ t

0
dt′
∫ s

0
dt2δ(t′ − s′) = (3.28)

θ(t− s)2
∫ s

0
dt′ + θ(s− t)2

∫ t

0
dt′ = θ(t− s)2s+ θ(s− t)2t = 2 min(t, s) (3.29)

=⇒ 〈W 2
t 〉 = 2dt =⇒ dWt ∼

√
dt (3.30)

which is non-polynomial. The Wiener process is not differentiable.

3.2 Stochastic differential equations (SDEs)

Langevin’s equation for the Brownian particle is an example of a stochastic differen-
tial equation (SDE). Due to the random force, each solution of such an equation is
a different random trajectory. In physics, SDEs are also called Langevin equations
(LEs).
Note that any one-dimensional n-order differential equation can be written as a
n-dimensional system of first order differential equations. For example, Newton’s
equation with inertia can be written as two overdamped equations. For simplicity,
here we restrict ourselves to the one-dimensional case. Then the general form of a
SDE is:

Ẋt = a(Xt, t)︸ ︷︷ ︸
deterministic

+ b(Xt, t)η(t)︸ ︷︷ ︸
stochastic

(3.31)
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Without the noise (stochastic) term this would be an ODE. The noise amplitude
b(Xt, t) and the white noise η(t) make it a SDE. It can also be written in the form

dXt = a(Xt, t)dt+ b(Xt, t)dWt (3.32)

We have to differ between two fundamentally different cases:

(i) Additive noise: b = const = σ

(ii) Multiplicative noise: b = b(Xt)

The t-dependence in b only appears when there are external fields in the system. We
will not take them into account here.
How does a function f(Xt) change with Xt in the case of additive noise ? Keeping
in mind that dXt ∼

∫
ηtdt ∼

√
dt, we write

df(Xt) = f(Xt + dXt)− f(Xt) (3.33)

= f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2 +O(dt3/2) (3.34)

= f ′(Xt)(adt+ σdWt) +
1

2
f ′′(Xt)σ

2dW 2
t +O(dt3/2) (3.35)

=
(
af ′(Xt) + f ′′(Xt)σ

2
)
dt+ f ′(Xt)σdWt +O(dt3/2) (3.36)

which is known as Ito’s formula1. One has to take into account that the last equality
is only valid in the mean-squared sense since we used dW 2

t = 2dt. If we take f(Xt) =
Xt, then dXt = adt+ σdWt, so we recover the equation from above.
For multiplicative noise, this (naively) suggests that

dXt = a(Xt, t)dt+ b(Xt)dWt . (3.37)

For small time steps, this suggests that we solve the equation step by step by treating
b(Xt) constant at every step and evaluate it at Xt. We now will see that this is not
necessarily correct because stochastic integrals are more complicated than we are
used to from classical analysis.

Stochastic integrals

Can an integral like
∫ t

0 b(Xt′)dWt′ be evaluated like a classical Riemann integral? We
compare the result of the integral

∫ t
0 Wt′dWt′ solved using Riemann integration with

the expectation value of a discrete approximation. In analogy to how the Riemann
integral is derived, one does a partition of time. We divide the interval of integration
[0, t] into n equidistant steps such that 0 = t0 < t1 < ... < tn = t. Then we define
the following partial sum:

Sn ≡
n∑
i=1

Wτi(Wti −Wti−1) (3.38)

1Itô Kiyoshi (1915-2008), Japanese mathematician.
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Figure 3.1: Discretization of time ti.

where τi ∈ [ti−1, ti]. We can parametrize τi as

τi = αti + (1− α)ti−1 (3.39)

with 0 ≤ α ≤ 1. Since Sn would take different values every time we evaluate it, one
considers its expectation value

〈Sn〉 =

n∑
i=1

〈Wτi(Wti −Wti−1)〉 = 2

n∑
i=1

(
min(τi, ti)−min(τi, ti−1)

)
(3.40)

= 2

n∑
i=1

(τi − ti−1) = 2α

n∑
i=1

(ti − ti−1) = 2αt = t+ 2
(
α− 1

2

)
t (3.41)

We see that the expectation value (average) of the partial sum depends on α even
in the limit n→∞. This is a fundamental difference to Riemann integration, which
gives a result independent of α:∫ t

0
Wt′dWt′ =

1

2
W 2
t
ms
= t (3.42)

where ms stands for in the mean squared sense.
Compared with the result from the averaged partial sum, the Riemann result corre-
sponds to taking α = 1

2 . However, our first naive expectation corresponded to α = 0.
What is correct ? The answer is: both are correct, this is an additional degree of
freedom we have with stochastic integrals. With other words, the definition is not
complete without specifying a value for α2.
In general, there is an infinite number of possible stochastic integrals. However, the
choices α = 0 and α = 1

2 seem to be special. We therefore differ between two different
interpretations:

1. Itô interpretation: α = 0

Preferred by mathematicians. There is no anticipation of the future and the
system jumps from one time step to the next. From the physics point of view,
this is a good assumption e.g. for population modelling.

2The situation is similar in lattice gas models, where we also have to specify the update procedure
(sequential, parallel, random) to define the complete model.
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Within this interpretation, stochastic integrals are defined as3∫ t

0
b(Xt′ , t

′)dWt′ ≡ lim
n→∞

n∑
i=1

b(Xti−1 , ti−1)(Wti −Wti−1) (3.43)

The SDE is written as

Ẋt = a(Xt, t) + b(Xt, t)ηt (3.44)

2. Stratonovich interpretation: α = 1
2

Preferred by physicists. Agrees with normal calculus and corresponds to the
case of coloured noise in the limit of vanishing correlation time4 (Wong-Zakai
theorem). Therefore it is a good assumption for continuous time processes like
random walks.

According to this interpretation, the stochastic integral is defined as∫ t

0
b(Xt′ , t

′)dWt′ ≡ lim
n→∞

n∑
i=1

b
(Xti −Xti−1

2
, ti−1

)
(Wti −Wti−1) (3.45)

The SDE is then written with the following notation:

Ẋt = a(Xt, t) + b(Xt, t) ◦ ηt (3.46)

where ◦ is a newly introduced symbol.

In computer programs , we cannot evaluate b at
Xt+dt −Xt

2
since it involves future

times. We need to do a Taylor expansion:

dXt = adt+ b(Xt + αdXt)dWt = adt+ b(Xt)dWt + b′(Xt)αdXtdWt +O(dt3/2)

(3.47)
ms
= (a+ 2αb′b)dt︸ ︷︷ ︸

drift

+ bdWt︸ ︷︷ ︸
diffusion

+O(dt3/2) (3.48)

Note that for α 6= 0 we get an additional drift term.
One can deal with the Stratonovich interpretation in the Itô version (relevant for
computing programs) by solving

Ẋt = (a+ b′b)︸ ︷︷ ︸
≡A

+bηt (3.49)

Here the general drift A = a + b′b has been defined (A = a for additive noise and
A = a + b′b for multiplicative noise). Our standard choice will be Stratonovich
interpretation in the Itô version.

3Strictly speaking the limit should be a mean square limit ms-limn→∞Sn. It is defined as the
following limit in the mean. Let Sn(t) be a sequence of random variables. One says ms-limn→∞Sn =
S ⇐⇒ limn→∞〈(Sn − S)2〉 = 0 (convergence in mean square =⇒ convergence in mean)

4A coloured noise ξ(t) is defined by having 〈ξ(t)ξ(t′)〉 = f(t − t′), where f is a fast decaying
function of t− t′ (not δ(t− t′)). So it has finite but short correlation time.
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Equivalence to the FPE

We are interested in the relation between the FPE and SDE frameworks. Given a
SDE for Xt, what equation governs the corresponding probability density function
p(x, t) associated with Xt? dXt is a normally distributed random variable with mean
Adt and second moment 2b2. Therefore the diffusion constant D = b2 and the FPE
reads

ṗ2 = (−∂xA+ ∂2
xb

2)p2 (3.50)

where p2 = p2(x, t|x0, t0). In the SI A = a+ b′b:

ṗ2 = (−∂xa− ∂xb′b+ ∂2
xb

2)p2 =⇒ ṗ2 = (−∂xa+ ∂xb∂xb)p2 (3.51)

Note that the derivatives act to the complete right. Therefore, we see that with FPE
as naively written down corresponds to the Itô interpretation, while in practise we
usually are interested in the Stratonovich interpretation. Therefore it is essential to
add the additional drift term.

3.3 Physical example for multiplicative noise

Consider a colloidal particle (e.g. polystyrene bead with a typical radius of 1µm) in
a container with water. One can use a laser trap to force the particle to move only
in one dimension (vertical z-direction). Due to the damping by the water, this is an
overdamped system (no inertia, low Reynolds-number hydrodynamics). Force and
velocity are therefore connected by a linear relation, v = MF , with mobility M .
What are the forces acting in the z-direction?

(i) Gravity pulls the particle down

(ii) Electrostatic repulsion pushes it up

This leads to a potential with a minimum at a certain distance z0 to the bottom of
the container (where z = 0):

V (z) = A0e
−kz︸ ︷︷ ︸

electrostat.rep.

+ B0z︸︷︷︸
gravitation

(3.52)

What is then the mobility M of the particle?
There are two cases to distinguish:

1. Far from the wall:

In that case we can solve the hydrodynamic equations in a infinitely extended
space.

=⇒ M0 =
1

6πηR
(3.53)

where η is the viscosity and R the radius of the particle. This is the Stokes-
mobility.
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Figure 3.2: Shape of the potential created by the electrostatic repulsion and the
gravitation (arbitrary units and parameters).

The mobility is related to the friction coefficient ξ0 as M0 = 1
ξ0
. Using the

Einstein relation we get the Stokes-Einstein relation:

D0 =
kBT

ξ0
=

kBT

6πηR
(3.54)

2. Close to the wall:

In that case the flow fields are very different from the previous case and one
has to take the no-slip boundary condition at the wall into account. The
hydrodynamics calculation gives

D(z) = D0

(
1 +

R

(z −R)

)−1
(3.55)

Thus we have multiplicative noise since our diffusion coefficient is space-dependent.

0 5 10 15 20
z

0.6

0.7

0.8

0.9

D

Figure 3.3: Behaviour of the diffusion coefficient as a function of z. It vanishes at
z = R and then increases with distance from the wall towards the free case far away
from the wall.
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Chapter 4

Black-Scholes theory for finance

One of the most important applications of the theory of stochastic processes is the
field of economics and finances. We start with a short historical review 1:

• Although the theory of random walks applied to physics is often credited to
the 1905 paper by Einstein, Louis Bachelier in 1900 already developed such a
theory for the stock market in his PhD-thesis Theorie de la speculation (offi-
cially supervised by Henri Poincare). However, his results very forgotten and
rediscovered only by Ito in 1944 for mathematics and in the 1950s in economics,
mainly through Paul Samuelson.

• MIT professor Paul Samuelson also used the analogy between physics and
finance and introduced random walk concepts into economics in the 1940s. He
was awarded the Nobel Prize in economics in 1970.

• In 1962 MIT professor Ed Thorp published his book Beat the Dealer: A Win-
ning Strategy for the Game of Twenty-One and in 1969 he started the first
hedge fund, Princeton/Newport partner based on statistical methods. This
hedge fund was extremely successful and scored double-digit increases even if
the stock market was going down. He even managed to get through the 1987
crisis without much damage, but only because Thorp himself managed the
funds by hand on Black Monday. Hedge funds manage risks in their portfolios
by distributing it over diverse assets through mathematical and highly secret
algorithms. The biggest US hedge fund is Bridgewater Associates with more
than 1.000 employees and more than 100 billion USD. Together the hedge fund
industry in the US handles around 2 trillion USD.

1For a nice introduction into the subject, compare the popular book The Quants: the maths
geniuses who brought down Wall Street by Scott Patterson, Random House Business Books 2011,
which describes the history leading up to the Lehman crisis in 2007/08. There are now also several
movies dealing with the crash from 2008, namely Margin Call from 2011 starring Kevin Spacey
and Demi Moore and The big short from 2015 starring Christian Bale and Brad Pitt. The 2008
movie 21, based on the book Bringing down the house, also stars Kevin Spacey and deals with
the MIT team playing backjack at Las Vegas based on statistical methods, similar to the story of
Ed Thorp. Here we closely follow chapter 5, Modeling the Financial Market, from the book by
Wolfgang Paul and Joerg Baschnagel, Stochastic Processes: From Physics to Finance, 2nd edition
2013, who in turn recommendWilmott, Deynne and Howison, Option Pricing: Mathematical Models
and Computation, Oxford Financial Press 1993.
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• In 1970 Chicago professor Eugene Fama like Paul Samuelson before also looks
at stocks as random walks and formulates the efficient market hypothesis: all
information is immediately absorbed by the market and thus stocks cannot be
predicted in a deterministic manner, because nobody has privileged information
that can be turned into a profit. This means that the stock market should
behave like a Markov process.

• In 1973 Fischer Black and Myron Scholes published their famous work on pric-
ing stock options based on the concept of a geometrical random walk. Inde-
pendently Robert Merton (son of Harvard historian of science Robert Merton)
came to the same conclusions. Scholes and Merton earned the Nobel Prize in
economics in 1997, after Black had died in 1995 from cancer (from 1984 until
his death, he worked for Goldman Sachs managing quantitative trading strate-
gies). Interestingly, Ed Thorp used an unpublished formula for his hedge fund
that is very similar to the one by Black and Scholes.

• In the 1980s the cold war ended and more and more quants moved from the
military into the financial industries. This initiated a development of comput-
erized trading that was blamed as one of the reasons for the 1987 crash. Hedge
funds also played a central role for the 2008 crash (AKA the Lehman crisis).

• Already in 1963, Benoit Mandelbrot had discovered that large price changes
occur more often than predicted by Gaussian models (heavy or fat tails). As
an alternative, he suggested a Levy distribution. This work too was not really
noticed much, but the subject became very important again after the stock
market crashes in 1987 and 2008. Today many financial models go beyond
Gaussian random walks. For example, in 1995 Mantegra and Stanley analyzed
stock market data and suggested a truncated Levy distribution with exponent
α = 1.4 working up to 6σ.

Here we give an introduction into Black-Scholes theory, which is the standard way
to price options and the starting point for more advanced schemes. Consider an
asset like cotton or a foreign currency that is traded on the stock market. At any
time t, it has a spot price S(t). In an efficient market, this should be a Markov
process, because nobody can predict the future in a deterministic manner. Bachelier
suggested a Wiener process for S(t), but a more realistic model is the geometrical
random walk, as realized by Samuelson, Black, Scholes, Merton and others:

dS = µSdt+ σSdW (4.1)

Here µ is the drift or average growth rate, and σ the fluctuation amplitude, called
volatility in finance. We note that because also the second term is linear in S,
fluctuations grow with the stock and we deal with an Ito-process with multiplicative
noise:

dS = a(S)dt+ b(S)dW (4.2)

In contrast to the simple random walk with b = constant, the random walk with
b = σS is geometrical in nature. In other words, not the absolute change dS is
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relevant, but the relative change dS/S, called the return. We thus change variables
from S to f(S) = lnS. Ito’s formula predicts the change in a function of S:

df(S) = (∂tf + a∂Sf +
1

2
b2∂2

Sf)dt+ b∂SfdW (4.3)

With f = lnS, a = µS, b = σS we get

d lnS = (µ− 1

2
σ2)dt+ σdW (4.4)

Thus not S, but lnS performs a Wiener process, with drift µ− 1
2σ

2 and variance σ2.
For S this means that it has a log-normal distribution. The log-normal distribution
of y = ex is defined by

pG(x)dx = pLN (y)dy (4.5)

With y0 = e<x>, it reads

pLN (y) =
1√

2πσ2

1

y
exp−(ln(y/y0))2

2σ2
(4.6)

Most importantly, y has only positive values. One can show that y0 is the median
and that the distribution peaks at a smaller value of y. In general, log-normal
distributions arise if a processes is not the sum, but the product of many independent
random processes, as it is typical for growth processes. Stock market prices can
usually be fitted well with such a distribution.
How can we use the geometrical random walk to derive a rewarding strategy for
the stock market? We now explain this for the European call option. Here the
holder obtains an option from the writer to buy an asset (the underlying with spot
price S(t)) for a prescribed price K (the strike price) at the expiry data T in the
future (typically one year). An American option would allow the holder to exercise
the option at any time prior to expiry. A related instrument are futures, in which
both parties assume an obligation. Options and futures are examples of derivatives.
Historically they were first used in a broad manner in the Dutch tulip market in the
17th century which crashed in 1637).
How should the writer set the price C of the call option? The classical solution
is Black-Scholes theory. We consider C = C(S, t) and first discuss the boundary
conditions. If S(T ) < K, the option will not be exercised, because the holder can
buy at a cheaper price on the market. Thus the price C should be cero. If S(T ) > K,
the option will be exercised and a fair price C would be S(T ) − K (note that the
procedure is fair and transparent for both parties, the benefit arises because one
wants to sell and other other wants to buy). Thus C(S, T ) = max(S(T )−K, 0). If
S = 0, the price will never change again and thus C(0, t) = 0. Finally if S →∞, we
have S > K with certainty and C(∞, t) = S.
To address the time evolution of C = C(S, t), we again use Ito’s formula:

dC = (∂tC + µS∂SC +
1

2
(σS)2∂2

SC)dt+ σS∂SCdW (4.7)

With dS = a(S)dt+ b(S)dW , this amounts to

dC = (∂tC +
1

2
(σS)2∂2

SC)dt+ ∂SCdS (4.8)
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Figure 4.1: Plot of Black-Scholes equations from Paul and Baschnagel book.

We next introduce the hedging strategy of the writer. We assume that he owns a
fraction 0 ≤ ∆(t) ≤ 1 of the underlying, which he adjusts dynamically to respond
to the market. If S rises, ∆ should increase, and vice versa. The purchase has to
be paid from a cash amount P (t), which also could be invested without risk with
interest rate r. Typically r < µ. The writer’s wealth is the sum of the two and for a
risk-free strategy, it should be equal to the option price:

W (t) = ∆(t)S + P (t) = C(S, t) (4.9)

If we assume that ∆ is adjusted on a slow time scale, we have

dC = ∆(t)dS + rP (t)dt (4.10)

Comparing with the stochastic time evolution from above, we get

∆(t) = ∂SC, rP (t) = ∂tC +
1

2
(σS)2∂2

SC (4.11)

Using P (t) = C − ∆S = C − (∂SC)S (a Legendre transform without information
loss), we finally get

∂tC +
1

2
(σS)2∂2

SC + rS∂SC − rC = 0 (4.12)

This deterministic PDE for C is the celebrated Black-Scholes equation. Surprisingly,
it is independent of drift µ, which effectively has been replaced in the risk-free strat-
egy by the interest rate r. Of course it strongly depends on volatility σ. Together
with the boundary conditions from above, the solution is fully determined. In fact it
can be obtained analytically using first non-dimensionalization, then transformation
to a diffusion equation and finally its solution by the Green’s function method. Here
we only give the end result of this procedure:

C(S, t) = SN(d1)−Ke−r(T−t)N(d2) (4.13)
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Figure 4.2: Plot of volatility smile from Paul and Baschnagel book.

where the first term is the Delta-hedge and the second the cash amount. N(x) is the
cumulative distribution function of the normal distribution

N(x) =
1√
2π

∫ x

−∞
dze−z

2/2 =
1

2
(1 + erf(x/

√
2)) (4.14)

Finally we have defined

d1 =
ln(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

(4.15)

d2 = d1 − σ
√
T − t =

ln(S/K) + (r − σ2/2)(T − t)
σ
√
T − t

(4.16)

(4.17)

With these formulae, C(S, t) is known and can be plotted for typical values of r, σ
and T , compare Figure 4.1. One sees that even for S(t) = K, the writer already has
to ask for a finite call price C and to build up a finite Delta-hedge ∆ to be prepared
for fluctuations.
Finally we comment on the main deficiencies of Black-Scholes theory. First volatility
is not constant and increases with mod(K − S(0)) (the so-called volatility smile),
compare Figure 4.2. Second price variations are not Gaussian, but have heavy tails,
compare Figure 4.3. However, in times of normal business and if sampling rate is
sufficiently small, the theory works quite well.
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Figure 4.3: Plot of stock market variations from Paul and Baschnagel book.
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Chapter 5

Noise-induced transitions

The Langevin equation is a stochastic differential equation (SDE) which naively
might be considered to be simply an ordinary differential equation (ODE) for some
deterministic process extended by a noise term. This view might lead to the expec-
tation that noise adds only a small perturbation to a deterministic reference system.
In this chapter we will see that in fact (multiplicative) noise can qualititively change
the behaviour of a system1.
Recall the Fokker-Planck equation (FPE) written as a continuity equation:

ṗ+ ∂xJ = 0 (5.1)
J ≡ (A− ∂xD)p (5.2)

For stationary states (ṗ = 0, thus ∂xJ = 0) and reflecting boundary conditions (no
flux over the boundary, thus flux vanishes everywhere) we have from J = 0

∂xps =
A− ∂xD

D
ps =⇒ ∂x ln ps =

A− ∂xD
D

(5.3)

=⇒ ps = C exp

∫ x

dx′
A− ∂x′D

D
(5.4)

This suggest to define a stochastic potential U(x) such that ps ∝ e−U(x)/kBT .
Now we distinguish between two cases: additive and multiplicative noise.

5.1 Additive noise

For additive noise and a potential (which always exists in one dimension) we have
∂xD = ∂xσ

2 = 0, A = a = −∂xV where V is the real potential. Therefore

ps = Ce−V (x)/σ2
=

1

Z
e−V (x)/kBT (5.5)

where the last equality (Boltzman distribution) comes from thermodynamics. We
recover the Einstein relation as before. Again we see that small noise amounts to

1For more examples for noise-induced transitions, e.g. the genetic model, check the book by W.
Horsthemke and R. Lefever on exactly this subject, Springer 1984.
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having low temperature. At low T the system minimizes V . On the other hand, at
high T the system distributes over large regions in phase space. In this case, the
stochastic and the real potential are identical.

Example: Double well (or Mexican hat) potential

The potential and the corresponding LE are:

V (x) = −λ
2
x2 +

g

4
x4 (5.6)

ẋ = λx− gx3 + σηt (5.7)
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Figure 5.1: Double well potential (red) and stationary probability distributions (blue
and black), ps = e−V/σ

2 , for two different values of σ (σblack > σred).
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Figure 5.2: Deterministic dynamic equation for the double well potential, ẋ = λx−
gx3. The three points where ẋ = 0 are the three fixed points: two stable (xs = ±a)
and one unstable (xu = 0).

5.2 Multiplicative noise

We consider the Stratonovich case. Here we have A = a+ b′b and D = b2, therefore

A = a+
1

2
∂xD. The stationary distribution function thus is

ps = C exp

∫ x

dx′
A− ∂x′D

D
= C exp

∫ x

dx′
a− 1

2∂x′D

D
(5.8)
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Thus, the minimum (the stationary state a low temperature) is at a − 1

2
∂xD = 0

rather than at a = −∂xV = 0. For the Ito case, the sign would be different.
The correction term due to the multiplicative noise shifts the position of the sta-
tionary state away from the minimum of the potential. In general, noise can even
destroy minima or create new minima. In the language of non-linear dynamics, it
can change the nature of the fixed points. In particular, it can lead to different
bifurcation behaviour (a bifurcation occurs when fixed points change their character
or appear/disappear). Such qualitative changes are called noise-induced transitions.

5.3 Example: Verhulst model (or logistic growth)

This is the simplest and most important model for population growth. The deter-
ministic equation is (population size x ≥ 0)

ẋ = λx︸︷︷︸
growth

− x2︸︷︷︸
limited resources

(5.9)

with a stable point at x = λ.
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Figure 5.3: ẋ as a function of x. In the plot the stable point is at xs = λ = 1.
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Figure 5.4: Bifurcation diagram for x ≥ 0. In green the stable fixed points and in
red the unstable ones.

The equation is solved by

x(t) =
x0e

λt

1 + x0
λ (eλt − 1)

(5.10)
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Figure 5.5: Deterministic solution x(t). For an stochastic model of the same system
one could expect just some perturbations around this trajectory. Is it always the
case?

Now consider some fluctuations in the growth rate λ → λ + σηt (representing e.g.
noise in the availability of food). The LE is then:

ẋ = λx− x2 + σxηx︸ ︷︷ ︸
multiplicative noise

(5.11)

that is

a = λx− x2 (5.12)

b = σx ⇐⇒ D = σ2x2 (5.13)

For the equivalent description using the FPE we have:

1. Itô interpretation:
ṗ = −∂x[(λx− x2)p] + σ2∂2

xx
2p (5.14)

2. Stratonovich interpretation:

ṗ = −∂x[(λx− x2 + σ2x)p] + σ2∂2
xx

2p (5.15)

Thus we deal with multiplicative noise.
We investigate the stationary state in the Stratonovich case. We now calculate the
stochastic potential:

− U

kBT
=

∫ x

dx′
a− 1

2∂x′D

D
=

∫ x

dx′
(λx′ − x′2

σ2x′2
− 1

2
∂x′ ln(σ2x′2)

)
= (5.16)

=
( λ
σ2
− 1
)

lnx− x

σ2
+ const (5.17)

=⇒ ps = Cx( λ
σ2
−1)e−x/σ

2
(5.18)

A calculation of the moments give:

〈x〉s =

∫
dxxps(x) = λ = xs (5.19)

〈x2〉s = λ2 + λσ =⇒ 〈(x− 〈x〉s)2〉s = λσ2 (5.20)
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Thus, nothing changes at the level of the first moment: xs = λ is a stable solution for
λ > 0 as for the deterministic equation. The difference is in the higher moments and
it makes ps(x) change its shape as a function of λ at λc = σ2. The most probable
value changes from xm = 0 to xm = λ− σ2 at λ = λc.
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1
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Figure 5.6: ps(x) for λ < λc ≡ σ2 in black and for λ > λc in red.

This also leads to a new bifurcation diagram with two transitions: at λ = 0, the
population starts to grow in average, but only at λ = λc there is a transition to a
finite population size as most probable outcome. This second transition is noise-
induced : it vanishes for σ = 0 (no noise). Between λ = 0 and λ = λc the population
is destabilised by noise: the variance 〈(x − 〈x〉s)2〉s = λσ2 > λ2 = 〈x〉2s, that is the
fluctuations are larger that the mean and the population is not stable.
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Figure 5.7: The most probable value (blue) is different from the average value (red)
and is finite only above λ = λc. This defines a noise-induced transition at λ = λc =
σ2.
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Chapter 6

First passage time problems

Often one is interested in the question when a stochastic process reaches a certain
threshold:

• When does the Neckar reach the 3.5 m level?

• When does a stock reach the buy/sell limit?

• When does my laptop break down?

• When does a Brownian particle leave a domain?

• When does a biomolecular bond break?

• When does an ion channel open?

This time is called the first passage time (FPT). Like for the stochastic variable,
there is a probability distribution (the first passage time distribution) from which
one can calculate the mean first passage time (MFPT)1.

6.1 FPT for Fokker-Planck equation

Random walk on a line

As a first simple example we consider a 1D particle performing a symmetric random
walk with step size δ and jump time τ (e.g. transcription factor diffusion on DNA).
We ask ourselves when the particle will reach the boundaries x = a or x = b as a
function of a certain initial position. We ask for T1(x), the mean first passage time
that it takes for the particle to reach the boundaries if it started at the position x.

1FPT-theory is discussed in all major books on stochastic processes, in particular in the one
by van Kampen. For a recent review see Srividya Iyer-Biswas and Anton Zilman, First Passage
processes in cellular biology, Advances in Chemical Physics, Volume 160, John Wiley and Sons
2016.
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Figure 6.1: First passage time

Here a simple recursive relation holds:

T1(x) = τ +
1

2

[
T1(x+ δ) + T1(x− δ)

]
(6.1)

=⇒ 1

δ2

[
T1(x+ δ) + T1(x− δ)− 2T1(x)

]
+

2τ

δ2
= 0 (6.2)

=⇒ T ′′1 (x) +
1

D
= 0 (6.3)

where the last equation is obtained in the limit δ, τ → 0 with D = δ2/2τ = const.
This equation is an ODE for T1 with a polynomial solution of second order in x. To
solve it, we need boundary conditions, for example

(i) reflecting → T ′1(x0) = 0

(ii) absorbing → T1(x0) = 0

For example, if we consider a = 0 and b > 0 being absorbing boundaries, then

T1(x) =
1

2D
(bx− x2) (6.4)

For right or left side reflective, respectively, one gets:

T1 =
1

2D
(2bx− x2) (6.5)

T1 =
1

2D
(b2 − x2) (6.6)

If the particle is released randomly, one still has to average over the starting position
x. Being both sides absorbing:

T1 =
1

b

∫ b

0
T1(x)dx =

b2

12D
(6.7)

The scaling with b2/D is clear for dimensional reasons and reflects the RW-nature.
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Figure 6.2: T1(x) for both boundaries absorbing (green), right side reflecting (red)
and left side reflecting (blue). a and b have been set to 0 and 1, respectively.

MFPT for a 1D FPE

We now consider the same situation for a 1D FPE with arbitrary diffusion and drift.
Recall the FPE and the adjoint FPE:

∂p2(x, t|x′, t′)
∂t

=
(
− ∂xA(x, t) + ∂2

xD(x, t)
)
p2(x, t|x′, t′) (6.8)

∂p2(x, t|x′, t′)
∂t′

=
(
−A(x′, t′)∂x′ −D(x′, t′)∂2

x′
)
p2(x, t|x′, t′) (6.9)

We define the probability that the particle is still in [a, b] at time t when it started
at x at time t = 0:

G(t|x) ≡
∫ b

a
dx′p(x′, t|x, 0) (6.10)

If we consider an ensemble of particles, then G is the number of remaining particles.
Boundary conditions on G:

p(x′, 0|x, 0) = δ(x′ − x) =⇒ G(0|x) = 1 in (a, b) (6.11)
b absorbing =⇒ G(t|b) = 0 (6.12)
a reflecting =⇒ ∂xG(t|a) = 0 (6.13)

Because b is absorbing, G(t|x) decreases in time to G(∞|x) = 0. We define the
probability per time (rate) at which the boundary is reached as

f(t|x) = −∂tG(t|x) (6.14)

Thus, the MFPT is

T1(x) =

∫ ∞
0

dttf(t|x) = −
∫ ∞

0
dtt∂tG(t|x) =

∫ ∞
0

dtG(t|x) (6.15)

where partial integration has been used in the last step. The constant terms at the
boundaries vanish because of the boundary conditions on G.
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Similarly, for the higher moments we get

Tn(x) =

∫ ∞
0

dttnf(t|x) = −
∫ ∞

0
dt tn∂tG(t|x) = n

∫ ∞
0

dt tn−1G(t|x) (6.16)

Like before, the constant terms vanish.
Now we want to derive a differential equation for G:

− ∂tp(x′, t|x, 0)
t−shift

= −∂tp(x′, 0|x,−t)
AFPE

=
[
−A(x)∂x −D(x)∂2

x

]
p(x′, 0|x,−t)

(6.17)
t−shift

=
[
−A(x)∂x −D(x)∂2

x

]
p(x′, t|x, 0) (6.18)∫ b

a dx
′

⇒ ∂tG =
[
A(x)∂x +D(x)∂2

x

]
G(t|x) (6.19)∫∞

0 dt
⇒ G(∞|x)︸ ︷︷ ︸

=0

−G(0|x)︸ ︷︷ ︸
=1

=
[
A(x)∂x +D(x)∂2

x

]
T1(x) (6.20)

⇒
[
A(x)∂x +D(x)∂2

x

]
T1(x) = −1 (6.21)

This is the MFTP-equation for the FPE. It is not a PDE like the FPE, but a non-
homogeneous ODE. Therefore solving for the MFPT is easier than solving for the
complete FPE.
For the higher moments, we combine

Tn(x) = n

∫ ∞
0

dt tn−1G(t|x) (6.22)

and

∂tG =
[
A(x)∂x +D(x)∂2

x

]
G(t|x) (6.23)

to get

[
A(x)∂x +D(x)∂2

x

]
Tn(x) = n

∫ ∞
0

dt tn−1∂tG(t|x) = −nTn−1(x) (6.24)

a formula which for n = 1 gives the result for the MFPT from above with T0(x) = 1.
Thus we have a hierarchy of equations that can be solved recursively: once we have
solved for moment n, we can go up to moment n+ 1.
We can check that the MFPT equation recovers the example discussed above by
plugging in A = 0 and D = const (this corresponds to the Wiener process):

=⇒ T ′′1 (x) +
1

D
= 0 (6.25)

as obtained above.
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The general solution for the MFPT-equation is:

T1(x) =

∫ b

x
dz

1

φ(z)

∫ z

a
dy
φ(y)

D(y)
(6.26)

φ(z) ≡ exp
(∫ z

dx
A(x)

D(x)

)
(6.27)

with a being reflecting and b absorbing. We can check right away that indeed T1(b) =
0 and T ′(a) = 0. Note the definition of φ which we have seen before with the
stochastic potential, namely in the form φ(x) = e−U(x)/kBT . We check the general
formula by explicit calculation:

(A∂x +D∂2
x)T = A

−1

φ(x)

∫ x

a
dy
φ(y)

D(y)
+D

φ′(x)

φ2(x)

∫ x

a
dy
φ(y)

D(y)︸ ︷︷ ︸
=0

−D 1

φ(x)

φ(x)

D(x)︸ ︷︷ ︸
=1

= −1

(6.28)

using φ′ = φ
A

D
.

Example 1: Wiener process

For the symmetric RW A = 0 and D = ctnt. The left boundary is taken to be at
a = 0:

=⇒ φ = 1 , T1 =
1

D

∫ b

x
dz

∫ z

a
dy =

1

2D
(b2 − x2) (6.29)

x = 0 =⇒ T1 =
b2

2D
=⇒ b2 = 2DT1 (6.30)

in accordance to previous results.
p, G and f can be calculated analytically as infinite sums over exp-functions. There-
fore the complete solution is not easy, but getting the MFPT is relatively easy.
However, the distribution for f(t|x) (see Figure 6.3) is very broad, with standard de-
viation O(b2/D) like the mean. Therefore it is always good to check also for higher
moments.
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Figure 6.3: f(t|x) as a function of t.
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Example 2: Ornstein-Uhlenbeck process

It has A = −λx and D = const. We take a = x = 0. Then

φ(z) = e−λz
2/(2D) (6.31)

T1 =
1

D

∫ b

0
dzeλz

2/(2D)

∫ z

0
dye−λy

2/(2D) (6.32)

≈
√
π

2

eη
2

η

(
1 +

1

2η2
+ ...

)
(6.33)

for η2 =
λb2

2D
� 1. T1 strongly increases with both λ or b.

Example 3: Escape over a barrier (Kramers problem)

In 1D, we always have a potential with A = −∂xV . We consider additive noise,
D = σ2 = const:

ẋ = −∂V
∂x

+ σηt (6.34)

For the Kramers problem, we consider a double well potential, with a metastable
state at the left and the equilibrium state at the right (see Figure 6.4). We want to
know the MFPT for a particle in such a potential to go to the equilibrium position
when it is originally at the metastable position. For this, it has to escape over the
transition state barrier.

20 40 60 80
x

2

4

6

8

V

Figure 6.4: Double well potential. The minimum at the left is at x0 and we take
it as the starting position. The transition state is at x1 and the absorbing state
somewhere to the right, at b (exact position does not matter here). The reflecting
position is at a at the left (again exact position does not matter).

Let the minimum of the left well be the starting point x0. The transition state for
this system is the point x1 with the extremum. The boundaries are a = −∞ on the
left of the starting point, which will be reflective, and b on the right of x1, which is
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absorbing. Therefore we have

φ(z) = exp
(∫ z

dx
−V ′(x)

D

)
= e−V (z)/D (6.35)

T1 =
1

D

∫ b

x0

dzeV (z)/D

∫ z

−∞
dye−V (y)/D ≈ 1

D

(∫ b

x0

dzeV (z)/D
)(∫ x1

−∞
dye−V (y)/D

)
(6.36)

≈ 1

D
eV (x1)/D

( 2πD

V ′′(x1)

)1/2
e−V (x0)/D

( 2πD

V ′′(x0)

)1/2
(6.37)

where the upper bound for the second integral is placed at x1, because the largest
contribution to the outer integral is generated at x1 and the inner integral is flat
around x1. Here we have used the saddle point approximation or method of steepest
descend twice:

∫ ∞
−∞

dye−V (y) ≈ e−V (y0)

∫
dye
−

1

2
V ′′(y0)(y−y0)2

= e−V (y0)
( 2π

V ′′(y0)

)1/2
(6.38)

One finally obtains:

T1 =
2π√

V ′′(x0)V ′′(x1)
e(V (x1)−V (x0))/D ∼ e∆V/D ∼ e∆V/kBT (6.39)

where the last step follows with the Einstein relation. The escape time grows ex-
ponentially with the barrier height. In chemistry, this treatment is also known as
Eyring theory. The exponential relation between escape time and inverse tempera-
ture is known as Arrhenius law. This result is very famous and many applications
exist in physics, chemistry and biology for thermally assisted escape over a transi-
tion state barrier (including the fields of catalysis in chemistry and of enzymes in
biochemistry). A related subject is extreme value statistics, which is important for
e.g. insurance companies.

6.2 FPT for one-step master equation

We consider the one-step master equation from section 2.6 and ask when the process
reaches n = N after starting at n = m at t = 0. Thus N is an absorbing bound-
ary. Let pn,m(t) be the general solution of the master equation with the absorbing
boundary. Then pN,m(t) = 0.
Similar to the situation with the FPE, we define the following quantities:

1. Rate for reaching position N at time t: fN,m(t) = g(N − 1)pN−1,m(t).

2. Probability to reach N at all: πN,m(t) =
∫∞

0 dtfN,m(t).

3. Mean first passage time to reach N : τN,m(t) =
∫∞

0 dttfN,m(t).
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We next denote the solution of the unconstrained process (no absorbing boundary)
as qn,m(t). For example, for the symmetric RW we have qn,m(t) = e−2tIn−m(2t). We
then decompose the path from m to n into those which go directly, and those which
first go to N :

qn,m(t) = pn,m(t) +

∫ t

0
dt′fN,m(t′)qn,N (t− t′) . (6.40)

For n = N , this renewal equation becomes

qN,m(t) =

∫ t

0
dt′fN,m(t′)qN,N (t− t′) (6.41)

because pN,m(t) = 0 from the boundary condition. We use the Laplace transform
q(s) =

∫∞
0 dte−stq(t) to get

qN,m(s) = fN,m(s)qN,N (s) . (6.42)

Therefore
fN,m(s) =

qN,m(s)

qN,N (s)
=

∫ ∞
0

dte−stfN,m(t) (6.43)

and thus
πN,m = fN,m(s = 0), τN,m = −f ′N,m(s = 0) . (6.44)

As an example, we consider the symmetric RW, for which we find:

qn,m(s) =

∫ ∞
0

dte−(s+2)tIn−m(2t) =
(1 + s

2 + 1
2

√
s(s+ 4))m−n√

s(s+ 4)
(6.45)

Therefore
fN,m(s) = (1 +

s

2
+

1

2

√
s(s+ 4))m−N . (6.46)

We set m = 0 and find

πN,0 = fN,m(s = 0) = 1, τN,0 = −f ′N,m(s = 0) =∞ . (6.47)

We conclude that the particle reaches position N with certainty, but in average after
infinite time.
This result is part of the famous 1921 theorem by George Polya which states that
random walks are recurrent in one and two dimensions, but not in three or higher
dimensions. The recurrence probability in three dimensions is around 34 percent and
an analytical but very complicated formula exists for this number. He also showed
that the expectation value for the recurrence time is infinite in both one and two
dimensions. Today there are several proofs available for the Polya theorem. The
essential difference between two and three dimensions is that the harmonic series∑∞

i=1 1/i diverges, while
∑∞

i=1 1/i2 is finite (value π2/6) (compare e.g. the book by
Häggström). These sums appear if one counts how many paths there are for the
probability flow from the origin to infinity (following the Kirchhoff laws for current
flow in an electrical network).
The mean first passage time to reach the absorbing boundary at the right position
n = N = R will become finite if a reflecting boundary exists at the left position
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n = L. Again we consider a partice that starts at n = m. At each position m,
the particle jumps left with probability gm/(gm + rm) and right with probability
rm/(gm + rm). For the probability to reach the right boundary R when starting at
m, we therefore have a recursive relation:

πR,m =
gm

gm + rm
πR,m+1 +

rm
gm + rm

πR,m−1 . (6.48)

We rearrange to

gm(πR,m+1 − πR,m) + rm(πR,m−1 − πR,m) = 0 . (6.49)

With a reflecting boundary at n = L = 0, we have r0 = 0. Therefore πR,1 = πR,0.
We now increase m by one at a time and recursively find that all πR,m = πR,R = 1.
There with the reflecting boundary at the left, the particle now reaches the absorbing
right boundary with certainty.
We now make a similar argument for the mean first passage time, but this time we
also have to consider the fact that the particle can not move (this costs time, but
not probability):

πR,m = ∆t+ gm∆tτR,m+1 + rm∆tτR,m−1 + (1− (gm + rm)∆t)τR,m (6.50)

We rearrange to

gm (τR,m+1 − τR,m)︸ ︷︷ ︸
=:∆m

+rm (τR,m−1 − τR,m)︸ ︷︷ ︸
=−∆m−1

= −1 . (6.51)

Thus we again have a recursive relation:

∆m = − 1

gm
+
rm
gm

∆m−1 . (6.52)

From r0 = 0 we have ∆L = −1/gL. The next step gives us

∆L+1 = − 1

gL+1
− rL+1

gL+1

1

gL
. (6.53)

By recursion we get

∆m = −
m∑
µ=L

rm . . . rµ+1

gm . . . gµ+1

1

gµ
. (6.54)

Using τR,R = 0 we arrive at our final result:

τR,m = −
R−1∑
ν=m

∆ν =

R−1∑
ν=m

m∑
µ=L

rm . . . rµ+1

gm . . . gµ+1

1

gµ
. (6.55)

Thus we have found an exact formula for the MFPT for the one-step master equation
with reflecting boundary at L. The same result can also be derived using Laplace-
transforms.
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For the symmetric random walk, we have r = g = 1 and therefore

τR,m =
R−1∑
ν=m

(ν + 1− L) = (1− L)(R−m) +
(R− 1)R

2
− (m− 1)m

2
=≈ R2

2
(6.56)

for R� m. This is indeed the expected scaling for a random walk.
Another important example is the linear birth-death process with 0 ≤ n ≤ N ,
rn = n and gn = γ(N − n). Here one would place the reflecting boundary at the
right (population cannot become larger than N) and the absorbing boundary at the
left (population cannot recover when reaching 0). A similar formula as above can be
derived for the MFPT, both by recursion or by Laplace transform. One finds 2

T =
N∑
i=1

1

ri
+
N−1∑
i=1

N∑
j=i+1

∏j−1
k=j−i gk∏j
k=j−i rk

. (6.57)

The first part is the one for γ = 0, also known as the harmonic number, which scales
as lnN for large N . The second part increases lifetime by the birth or rebinding rate
γ. Overall T scales exponentially with N and as γN−1 with the rebinding rate. To
increase population lifetime, we should make it large and/or increase birth rate. For
N = 2, we get

T =
1

2
(3 + γ) . (6.58)

This result can be verified by direct calculation.

2T. Erdmann and U.S. Schwarz, Stochastic dynamics of adhesion clusters under shared constant
force and with rebinding, Journal of Chemical Physics 121: 8997, 2004.
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Chapter 7

Path integral formulation

Stochastic dynamics can be formulated also in the language of path integrals, similar
to quantum field theory. This formulation immediately opens the door to such pow-
erful methods as Feynman integrals and renormalization group theory. Traditionally
it has been used to calculate correlation and response functions. More recently it
has been used a lot in stochastic thermodynamics, for example to prove the integral
fluctuation theorem1.
We start with the Chapman-Kolmogorov equation and apply it repeatedly to small
time steps ∆t = (t′′ − t′)/N . Thus we have

p2(x′′, t′′|x′, t′) =

∫
dx1 . . . dxN−1

N−1∏
α=0

p2(xα+1, tα+1|xα, tα) . (7.1)

This is effectively an integration over all paths from x′ to x′′, that is a path integral
(also known as functional integral). For a stochastic process with drift A(x, t) and
noise amplitude

√
D(t) (additive noise), one can convert this to

p2(x′′, t′′|x′, t′) =

∫
Dxe−S[x(t)] (7.2)

with a suitably defined path integral Dx and the action

S[x(t)] =

∫ t′′

t′
dt

(ẋ−A)2

2D
(7.3)

where the integrand can be called the Lagrange function. One sees that the de-
terministic path defined by ẋ = A dominates the outcome, because it has S = 0,
and that fluctuations are suppressed exponentially, but become more important with
larger noise.
We note that in quantum field theory, one would write a similar path integral for
the transition probability:

p2 =

∫
DΦe

i
~S[x(t)] (7.4)

1This field is reviewed in Udo Seifert, Stochastic thermodynamics, fluctuation theorems and
molecular machines, Reports on Progress in Physics 75: 126001, 2012.
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where the path integral is now over all possible wavefunctions Φ. For the free theory,
the Lagrange function would be

L =
1

2
(∂µΦ)(∂µΦ)− 1

2
m2Φ2 . (7.5)

Thus QFT corresponds to SD with a complex time (Wick rotation).
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