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Abstract Adhesion-dependent soft tissue cells both create and sensetension in the
extracellular matrix. Therefore cells can actively interact through the mechanics of
the surrounding matrix. An intracellular positive feedback loop upregulates cellu-
lar contractility in stiff or tensed environments. Here we theoretically address the
resulting pattern formation and force generation for the case of a filamentous ma-
trix, which we model as a two-dimensional cable network. Cells are modeled as
anisotropic contraction dipoles which move in favor of tensed directions in the
matrix. Our Monte Carlo simulations suggest that at small densities, cells align in
strings, while at high densities, they form interconnectedmeshworks. Cellular acti-
vation both by biochemical factors and by tension leads to a hyperbolic increase in
tissue tension. We also discuss the effect of cell density ontissue tension and shape.

1 Introduction

During recent years, mechanical tension has emerged as an essential and unify-
ing organizing principle spanning both cell and tissue scales [1]. All adhesion-
dependent cell types from soft tissue are contractile and thus create tension in the
surrounding extracellular matrix. The molecular basis of cellular contractility is the
actomyosin system, which can be inhibited by e.g. blebbistatin, a specific inhibitor
for the myosin II motor. In a typical cell culture experiment, the actin cytoskeleton
tends to organize into contractile bundles, so-called stress fibers, which terminate
at mature cell-matrix adhesions, so-called focal adhesions. This system can be con-
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sidered to act as a little muscle specifically assembled to deform the environment.
In some cases, this deformation serves a specific physiological purpose, like e.g.
wound closure after injury. However, a growing body of evidence shows that the
system of stress fibers and focal adhesions also functions asa force sensing appa-
ratus [2]. The exact details of this sensing mechanism are still unclear, although
most likely there are several mechanisms acting in parallel, including mechanical
unfolding of proteins, changes in the spatial coordinationof enzymatic reactions
and opening of stretch-sensitive ion channels [3]. Becausecells both create and
sense forces, they are able to actively sense the stiffness of their environment. By
culturing cells on elastic substrates of varying stiffness, it has been shown that in-
deed many essential cellular processes depend on the actively sensed extracellular
stiffness, including adhesion, migration, proliferationand differentiation [4]. An im-
pressive demonstration of the importance of stiffness sensing is the fact that rigidity-
dependent differentiation of mesenchymal stem cells is prevented by administering
the myosin II inhibitor blebbistatin [5].

The combination of force generation and sensing common to adhesion-dependent
soft tissue cells suggests that cells might interact mechanically through the mechan-
ical properties of the extracellular matrix. In order to model the elastic interaction
of cells, one can make use of concepts developed before for physical defects in
deformable media [6, 7, 8]. In particular, it has been suggested that the minimal
system representing a mechanically active cell, namely onestress fibers anchored
at two focal adhesions, can be modeled as an anisotropic force contraction dipole
[9]. In contrast to physical force dipoles, however, cells are characterized by a rich
internal structure, including complex feedback loops coupling cytoskeletal mechan-
ics and signal transduction [10]. Therefore the system of cells and matrix cannot
be expected to minimize the total energy, as it is usually assumed for systems of
passive defects in deformable media. Instead it has been suggested that most ad-
herent tissue cells (including fibroblasts, smooth muscle cells and endothelial cells)
effectively behave as if they minimized the elastic energy which they invest into
the matrix deformation [11, 12]. This extremum principle provides a good starting
point for a theoretical analysis and predicts that cells orientate in the direction of
large stiffness or tension, exactly as observed experimentally [13, 14]. Using this
extremum principle, one can explain many other observations made experimentally,
including their parallel and perpendicular orientations close to free and clamped
boundaries, respectively. The mechanical feedback loop leading to cell activation
can be described theoretically using the concept of susceptibility tensors for polar-
ization, which also allows one to include the effect of cell shape [15, 16]. In order
to address dynamical situations like cell reorientation dynamics under cyclic sub-
strate stretch, an overdamped dynamics has been formulatedbased on an energy
functional which assumes that cells tend to maintain an optimal stress in the matrix
[17, 18].

Given the importance of tension for single soft tissue cells, it is not surprising to
find that tension is also a major regulator of tissue. Tensionhas long been implicated
in cell growth in tissue, in particular during development [19]. Using microcontact
printing to control tissue shape and tension, it has been shown that cell proliferation
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is enhanced in regions of large tension [20]. It has been found that osteoblast growth
depends on the curvature of the substrate, possibly throughforces being developed
in the tissue [21]. Mechanical feedback has been suggested as a possible explanation
for the observed uniform growth in the Drosophila wing disc [22]. Mechanical ten-
sion has also been implicated as a major determinant of cancer progression. Tumors
were found to correlate with upregulated contractility anda stiffer environment,
with dramatic consequences for invasiveness [23, 24].

In order to reveal the underlying mechanisms, experimentalmodels have to
be developed for cell-matrix interactions in tissues. It has been shown early that
collagen-cell mixtures result in tissue-like structures under large tension [25, 26].
In order to measure the tension developed in these systems, different versions of a
cell force monitor have been developed [27, 28]. In these studies, it was found that
tension always builds up in a hyperbolic fashion, similar tothe build-up of force by
single cells [29]. Recently it has been shown that the shape of spatially constrained
model tissues of this kind provide evidence both for the presence of tension and the
fibrous mechanics of the system [30]. It has also been argued that the response of the
polymer matrix to cell traction is strongly determined by its non-linear properties
[31].

Given the essential role of tension for the behaviour of single cells and for the
homeostasis of tissue, one might expect that the tension developed in tissue can be
explained by the tension-dependent activity of the dispersed cells. When going from
the level of single cells to the tissue level, however, one has to take care to consider
possible collective effects. Indeed it has been shown with elastic substrate work that
a certain degree of substrate softness is required for cellsto feel each other dur-
ing tissue formation [32] and migration [33], possibly because elastic interaction
through the substrate is the main mode of cellular interaction in this case. This in-
terpretation is supported by the observation that for cell-collagen mixtures, a critical
threshold in cell density is required for gel compactification to occur [31]. Theoreti-
cally it has been suggested before that collective effects of mechanically interacting
cells will lead to phase transitions as a function of cell density and material param-
eters [34]. However, in this work the mechanical propertiesof the matrix have been
described by isotropic linear elasticity, which is the simplest assumption possible,
but far from the non-linear and anisotropic characteristics of the matrix in tissue
models or real tissues. In this contribution, we theoretically address the role of fila-
mentous matrix mechanics for pattern formation and force generation in ensembles
of cells.

2 Model

Tissue cells are often polarized and thereby can be modeled as anisotropic force con-
traction dipoles with dipolar strengthP = Fl. An extreme case would be a cell with
one stress fiber of lengthl, where equal and oppositely directed forcesF are exerted
at each end for reasons of mechanical equilibrium. During the adhesion process,
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cells spread out and contract against the external stiffness to achieve the force level
given byF . If the matrix is modeled simply by a harmonic spring with spring con-
stantK and if the build-up of force is reversible (no energy dissipation takes place),
then the cell exactly invests an energyW = F2/2K into its surrounding. Therefore
the stiffer the environmnent, the less energy the cell has toinvest to achieve the
force F . Experimentally it has been found that if confronted with a choice of dif-
ferent stiffnesses, e.g. corresponding to different directions in the matrix, then cells
will prefer the direction of largest stiffness. Thus the cell behaviour formally cor-
responds to minimizing the elastic energy invested into thematrix [11, 12]. This
theoretical framework allows to treat stiffness and tension on the same footing (both
are favorable for migration and mature adhesion). In the following we will use these
concepts as a starting point to study the interaction of cellensembles in a fibrous
matrix. Cellular dipoles are dispersed into a matrix and moved until the overall en-
ergy stored in the matrix is minimized. For simplicity we consider the same dipole
strength for each cellular dipole in the ensemble.

The matrix is modeled as a two-dimensional cable network, which is a simple
model for fibrous networks like the actin cytoskeleton or theextracellular matrix
[35, 36, 30]. The joining points of the cables are called nodes and cables connecting
two neighboring nodes are called edges. In order to ensure macroscopic isotropy
and a finite Poisson ratio, we use a triangular network. The force acting on a node
due to the deformation of a link to lengthl reads [35]

F =

{

EcAc ( l
lr
−1) for l > lr

0 for l ≤ lr
(1)

Here Ec is the cable’s Young modulus,Ac is its cross-sectional area andlr is its
resting length. Because the values given for collagen matrices differ widely in the
literature, here we use only dimensionless parameters.

Cell dipoles are inserted between two neighboring nodes andare allowed to con-
tract with equal and oppositely directed forcesF . Equilibrium is established by it-
eratively solving force balance for every node until all of them are simultaneously
satisfied. The iterations are terminated once the maximum force on every node be-
comes smaller thanF ×10−4. In order to avoid collapse of the network in regions
which are compressed, we introduce a critical lengthlc = 0.1 lr below which nodes
are treated as repulsive. This means that if two nodes come closer to each other
than the lengthlc, they are glued such that they behave like a single node underany
compressive load along their joining axis.

For studying the ordering kinetics of the cell dipole system, a completely disor-
dered configuration is chosen initially by distributing dipoles randomly over the net-
work. To mimic cellular motility, the dipole system is updated with a Monte Carlo
(MC) algorithm. A dipole can jump into six possible places inthe neighborhood of
its original position. If∆W is the energy difference between initial and equilibrated
configurations, then a dipole move is accepted with probability

P(∆W ) =

{

exp(−β ∆W ) for ∆W ≥ 0
1 for ∆W < 0,

(2)
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whereβ is inverse thermal energy. After each update the entire system is mechani-
cally equilibrated. A single Monte Carlo step (MCS) corresponds to attempted up-
dates ofN dipoles.

Build-up of force in tissue models has been experimentally studied before with
so-called cell force monitors [27, 28]. To mimic the experimental situation we clamp
two opposite sides of the network, leaving the other two sides free. The force mea-
sured with the cell force monitor usually starts in a linear fashion from zero and
then crosses over to some saturation value. We study two possible mechanisms for
the activation of cell contractility. In mechanism 1 (chemical activation), cells are
switched on at random times, possibly due to some biochemical signals present in
the system, and are not allowed to change configuration due tothe mechanical in-
put. In mechanism 2 (mechanical activation), in addition tothe random activation by
mechanism 1, there is also mechanical activation if locallysome threshold in matrix
strain is reached. In this mechanisms we also allow for cell reorientation (but not for
repositioning).

3 Results

Fig. 1 Configuration versus
energy for two cellular dipole
on a triangular matrix of
stiffnessE = 1. Cellular
dipoles are pulling on the
matrix with a force 0.1 at
each end. One clearly sees
that the minimum energy
configuration corresponds to
the closest allowed proximity
of cells along a line.
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In Fig. 1 we show the energies of a two-dipole system on a lattice under peri-
odic boundary conditions. Initially dipoles are randomly distributed on aLx × Ly

triangular lattice with periodic boundary conditions. We have kept the temperature
T = 0.001 which is low enough to see the ordering effect. The systemis then al-
lowed to evolve under MC dynamics. The equilibrium is achieved when the average
cluster configuration remain unchanged with time. Fig. 1 fortwo dipoles suggests
that the cells tend to organize in lines. In Fig. 2 we show typical snapshots of the
time development forN = 60 dipoles. Indeed one finds that they assemble into a
network of strings.

In order to consider cell activation as it occurs in the cell force monitor, we turn to
a triangular lattice of sizeLx ×Ly whose two vertical sides (Ly) are clamped and the
horizontal ones (Lx) are kept free to move. Under this constraint, any internal con-
traction inside the lattice would cause inward curvature ofthe horizontal edges and
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(b)(a) (c)

t=0 t=50 t=200

Fig. 2 Snapshots of cellular ordering on a 2d triangular lattice ina system of sizeLx = Ly = 50
at timest =0, 50 and 200. There are 60 dipoles in the system and temperature T = 0.001 is kept
constant. Color code: thick blue line segments are cellulardipoles, grey represents the matrix and
faded red lines refers to the intensity of the strains produced by the dipoles.

no displacement of the vertical edges. In the beginning, allinactive cellular dipoles
at a fixed density are uniformly randomly seeded into the matrix. The system is then
allowed to evolve under two different mechanisms proposed earlier. Mechanism 1
assumes that each cell is activated at random time steps and does not change its
configuration after activation. To simulate this we assign arandomly picked cell an
activation time chosen from a Poissonian distribution starting at zero. As time pro-
gresses more and more cells get activated until a large simulation timetmax ∼ 500
is reached when there is almost no inactive cell left in the system. Snapshot of the
randomly oriented dipoles in the matrix at timetmax = 500 and the forceF(t) gen-
erated by the active cells as a function of timet are shown in Fig. 3. Aftert ∼ 300
there is hardly any activities going on in the system, leading to a saturated force
level Fsat . For the same number of cellular dipolesFsat depends upon the elasticity
of the matrix.

Fig. 3 (a) Snapshot of the
cellular patterning after they
are activated randomly ac-
cording to the mechanism 1.
Color code: thick blue line
segments are cellular dipoles,
grey represents the matrix and
two thick vertical lines on
opposite sides of the lattice
refers to the clamped bound-
aries. It is evident from the
figure, that cells are oriented
randomly within the lattice.
(b) ForceF(t) generated by
the randomly activated cells.
Different elastic constants
E of the matrix gives rise
to different force level after
saturation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

F
(t

)

t

E=5
E=7

E=11
E=15

x

y

L

L

(b)

(a)



Cells ensembles in a filamentous matrix 7

In mechanism 2, an activated cell may mechanically influencean inactive cell
to bring it into the active state. During the simulation, at each time step, the total
tensile deformation of the matrix is calculated where the inactive cells are located.
If the normalized resultant deformation exceeds a threshold valueDth (e.g.,0.2), the
latter gets activated and pulls on the matrix. The final evolution pattern and force de-
veloped in this way are shown in Fig. 4. Unlike the previous case, in this case cells
are allowed to rotate and find the minimal energy configuration. Since minimum en-
ergy of the cell corresponds to maximal effective stiffnessof the matrix, cells adjust
their orientations satisfying this criteria. Unlike the random cellular morphologies
obtained in the previous case (mechanism 1), pattern obtained in the present case
in the asymptotic time regime are ordered. We find that most ofthe cells prefer to
orient perpendicular to the clamped boundaries and form chain-like structures. In
this case the saturated forceFsat does not depend upon the stiffness of the matrix.

Fig. 4 (a) Pattern formed by
the cellular assembly accord-
ing to mechanism 2. Color
code: same as in Fig. 3. It
is observed that most of the
cells are aligned perpendic-
ular to the vertical clamped
boundaries. (b) Force gen-
erated by randomly placed
cellular dipoles. Cells are
activated randomly and also
mechanically when they are
pulled strongly by other active
cells. Data are collected for
different E with fixed thresh-
old activation deformation
Dth=0.2. Inset:F(t) for differ-
entDth with fixed E = 7.
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In order to investigate the effect of cell density on tissue tension, we finally con-
sidered a configuration in which tissues of different shapesare pinned at discrete
points of adhesion. Experimentally it has been found beforethat such setups lead to
inward curved tissue shapes with the arc radii given a quantitative measure of tissue
tension [26, 30]. We considered triangular and hexagonal model tissues pinned at
their corners. Cells are randomly seeded in the matrix at certain densitiesρ . After
the equilibrium is achieved, the radius of curvatureR of the matrix is measured be-
tween two neighboring vertices. The snapshots and average radii of curvature of the
cell seeded matrix are plotted as function ofρ in Fig. 5. Comparing snapshots of
Fig. 5(a,b) with (d,e) it is clear that the inward curvature of the matrix is caused
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by the contractile force of the cells. Fig. 5(c,f) demonstrate that radiusR and cell
densityρ scale inversely with each other.

 150

 200

 250

 300

 0  0.2  0.4  0.6  0.8  1

R

ρ

 25

 30

 35

 40

 45

 50

 55

 60

 0  0.2  0.4  0.6  0.8  1

R

ρ

ρ= 0.5ρ= 0
(b)(a) (c)

(d) (e) (f)

Fig. 5 Subplots (a) and (d) represents triangular and hexagonal elastic matrix without cell pinned
at the 3 and 6 vertices respectively. (b) and (e) are the corresponding figures with cell dipoles
seeded at densityρ = 0.5. Due to the contractile force of the seeded cells one can seethe inward
curvature of the matrix edges between successive pinned vertices. In subplot (c) and (f) we plot the
average radius of curvatureR as a function of the cell density for triangular and hexagonal matrix
respectively.

4 Discussion

In this contribution we have used Monte Carlo simulations ofcontractile cells (mod-
eled as force dipoles) in a fibrous matrix (modeled as cable network) to study pattern
formation and force generation in tissues. In such simulations, temperature is a mea-
sure for cell activity, namely the tendency of cells to change position and orientation
[34]. Our model focuses on mechanical effects, but includesinternal regulation by
introducing a Poisson process for cell activation. Becausetemperature is fixed at
a relatively low value, pattern formation occurs. The higher matrix stiffness, the
higher the ordering temperature and the slower the dynamics. In general we ob-
served very slow dynamics because for cell ensembles many metastable states exist
in which the system becomes traped. Regarding pattern formation, we observe that
cells assemble into strings. At higher densities, these strings form interconnected
networks running through the matrix. Due to the increasing activation of cells, tis-
sue tension builds up in a hyperbolic way. However, the saturation level depends
on the exact details of the switching mechanism. Only if the cells are responsive
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to mechanical cues does one get a tissue tension which is independent of matrix
stiffness, as has been reported before from experiments with a cell force monitor for
fibroblast contraction of a collagen-GAG matrix [28]. With increasing cell density,
the effective tissue tension rises and the shape of pinned tissue becomes more in-
vaginated. A simple Laplace law would predictR = λ/σ , where the tension in the
tissue is decomposed into a line tension acting at the periphery and a surface tension
acting in the bulk [30]. Assumingσ ∼ ρ , one exactly arrives at the inverse relation
revealed by Fig. 5.

In summary, if going from the level of single cells to tissues, collective effects
are essential and introduce many additional phenomena suchas density thresholds,
structural transitions and slowed-down dynamics due to metastable states. Although
simple models are essential to gain a fundamental understanding, in the future more
realistic models are required, in particular in view of possible applications in tissue
engineering. Here we have used cable networks as a first step towards more realistic
models for the matrix and a simple Poisson-type activation of cells as a first step
towards modelling the biochemical aspects of mechanotransduction. In the future,
this approach might be extended in several regards. Anisotropic force contraction
dipoles are only the first order approximation for the complex mechanical activity
of cells and might be extended to more general tensors for mechanical activity and
susceptibility [15, 16]. Alternatively one might combine our approach with whole
cell models incorporating the way focal adhesions and stress fibers grow as a func-
tion of the coupling to the matrix [37]. In the long run, such an approach should
also include the details of force-modulated signals to the cytoskeleton of adherent
cells [10]. Finally more detailed models have to be developed for the dynamics of
the matrix, which might collapse locally under cell traction [31].
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