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Abstract

A Ginzburg-Landau model with a scalar and a vector order parameter, which describe the con-

centration and orientation of the amphiphile, respectively, is used to study the phase diagram and

the scattering intensity of binary amphiphilic systems. With increasing amphiphile concentration,

the calculated phase diagram shows the typical sequence of ordered phases observed experimentally,

that is micellar liquid ! cubic micellar ! hexagonal ! lamellar ! cubic bicontinuous ! invers

hexagonal. The scattering intensity in the homogeneous phase is calculated in the one-loop approx-

imation. In the vicinity of a phase transition to an ordered phase, the intensity is found to show a

1=q behavior for not too small wave vectors q, followed by a small peak, and a 1=q2 decay for large

wave vectors, in agreement with experimental observations in the L3- (or sponge-)phase.

PACS numbers: 05.40.+j, 61.20.Gy, 82.70.-y
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1 Introduction

The simplest system, in which the self-assembly of amphiphilic molecules | consisting of a polar head

and a non-polar, hydrocarbon tail | can be studied, is a binary mixture of non-ionic amphiphiles and

water [1, 2, 3]. For example, in binary mixtures of n-alkyl polyglycol ether C12E5 and water [1, 4, 5],

with increasing amphiphile concentration the phase sequence

micellar liquid (L1) ! hexagonal (HI) ! lamellar (L�) ! cubic

is observed at low temperatures. This sequence can be explained in part by packing constraints [4]. At

higher temperatures, two-phase coexistence occurs between a water-rich and an amphiphile-rich phase,

which ends in a lower critical point. At still higher temperatures, another isotropic liquid (L3) is found

at very small amphiphile concentration, separated from a highly swollen lamellar phase on one side, and

an almost pure water phase on the other side, by �rst-order phase transitions. The L3-phase shows

quite unusual properties, like a strong 
ow birefringence, which show that it cannot be another micellar

liquid [6, 7]. Freeze-fracture microscopy [8], conductivity and self-di�usion measurements [6, 9, 10, 11, 12]

indicate that the structure of this phase consists of a random array of amphiphilic bilayers, which are

multiply connected and divide space into two distinct networks of water channels, with a typical separation

between the bilayers of the order of 1000 �A [13]. Thus, the L3- (or sponge-)phase is the analog of the

microemulsion phase in ternary amphipilic systems [3].

Among the most important probes of the mesoscopic structure of complex 
uids are neutron and

light scattering experiments. The scattering intensity of the sponge phase has been calculated in Refs.

[14, 15, 16] by assuming that the amphiphilic bilayer forms a perfect two-dimensional surface without

any holes or seams. In this case, a unique distinction of water on one side of the bilayer (\inside water")

and on the other side (\outside water") can be made. Then, a Ginzburg-Landau model is constructed

[14, 15, 16] for two scalar order parameter �elds, the local concentration di�erence �(r) of inside and

outside water, and the amphiphile concentration �(r). With this model, the scattering intensity of a

sponge phase is shown to decay as 1=q over a range of wave vectors q, where the lower limit is given

by the inverse of the correlation length of the �-correlation function (which cannot be measured directly

because there is no physical distinction between inside and outside water), and the upper limit by the

inverse of the average separation between the bilayers. This power law behavior indeed agrees very well

with experimental observations [14, 17, 11, 12].

We want to present in this paper an alternative explanation of the 1=q decay of the scattering intensity.

We use a Ginzburg-Landau model which takes into account the orientational degrees of freedom of the

amphiphile, in addition to the amphiphile concentration [18]. In this model, the bilayer has not to be

assumed to be perfect. We �rst show that it reproduces very well the typical sequence of phases which
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is observed experimentally with increasing amphiphile concentration. We then calculate the scattering

intensity in the homogeneous phase; in the vicinity of a phase transition to an ordered phase, we �nd that

the 
uctuations of the amphiphile orientations are responsible for a 1=q decay, as observed experimentally

in the sponge phase.

2 Ginzburg-Landau Model

Our analysis is based on the free-energy functional [18]

Ff�; �g =
Z
d3r

�
�1(r � � )2 + �2(r2

� )2 + �3(r� � )2

+ �4(r(r � � ))2 + �1(r�)2 + 
(� � r�) + U(�; � 2)
�

(1)

for the scalar order parameter �eld �(r) and the vector order parameter �eld � (r). Here, � is the am-

phiphile concentration, �=j� j the amphiphile orientation, and j� j the degree of the amphiphile alignment.
For the free energy density U(�; � 2) we employ the Flory form [18]

U(�; � 2) = a2�
2 + T [� ln� +M(1��) ln(1��)]

+ b2�
2 + T�

�
c2

�
2

�2
+ c4

(� 2)2

�4

�
: (2)

Here, M is the volume of an amphiphile, measured in units of the volume of a water molecule. We have

introduced the temperature T as prefactor of the entropic contributions to U in Eq. (2). There is an

additional temperature dependence of the interactions, due to the orientational degrees of freedom of the

water molecules [19], which we do not take into account.

In a homogeneous phase, the correlation functions in Fourier space,

Gmn(k) � 2

Z
d3r e�ik�rh m(r) n(0)i ; (3)

with  n = �n for 1 � n � 3 and  4 = ��h�i, can be calculated quite easily in the Gaussian approximation
[18]:

G(0)
nm(k) =

�nm
�

� ("� 
2pk2=4)

�(� + "� 
2pk2=4)

knkm
k2

G
(0)
4n (k) = � i

2


p

�(� + "� 
2pk2=4)
kn = G

(0)
n4 (k) (4)

G
(0)
44 (k) =

p(� + ")

� + "� 
2pk2=4
;

where

p(k)�1 = �1k
2 +

1

2
@2�U j�=�0;�=0

�(k) = �2k
4 + �3k

2 +
1

2
@2�U j�=�0;�=0 (5)

"(k) = �4k
4 + (�1 � �3)k

2
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with �0 = h�i0 being the average amphiphile concentration in the Gaussian approximation. The depen-

dence of the correlation functions (4) on the amphiphile concentration has been discussed in Ref. [18].

In particular, it has been shown that for �1 < 0 and not too small amphiphile concentrations a peak

appears at �nite wave vector k. This peak signals the self-assembly of the amphiphiles into micelles and

bilayers within the homogeneous phase. Note that the scattering intensity S(k) = 1
2 G

(0)
44 (k) decays as

k�2 for large k in this approximation.

3 Phase Diagram

The phase diagram of a system containing medium-chain amphiphiles is shown in Fig. 1, calculated

numerically in the mean-�eld approximation (MFA) with the same Fourier ansatz and with the same set

of parameters as used in Ref. [18]. The value of �3 is taken to be positive and su�ciently large, so that

no phases with a tilt of the amphiphile orientation relative to the layer normal can occur. The phase

diagram is identical with the one calculated previously [18], except that we have found another cubic

phase (I1), which is stable in the range 0:15 < �0 < 0:4, see Fig. 1. This phase is a FCC crystal of

micelles. Its structure can easily be distinguished from the simple cubic V1-phase, which is bicontinuous,

as demonstrated in Fig. 2 by contour plots of both phases. The other cubic structures we have examined,

which are the BCC and the single-diamond phases, have been found not to be stable anywhere in the

phase diagram. A cut through the phase diagram of Fig. 1 at constant temperature T = 1:0 shows

that the Ginzburg-Landau model (1) yields all ordered phases | in the correct sequence with increasing

amphiphile concentration | which are observed in CiEj { water mixtures [1, 4]. In particular, the

agreement with the phase diagram of the C12E8-plus-water system is quite good.

4 Scattering Intensity

To calculate the scattering intensity in a homogeneous phase beyond the Gaussian approximation, we

expand the free-energy functional (1) in powers of � and ~� � � � h�i0. To leading order, we �nd the

contributions ~�3 and ~�� 2, so that the free energy functional now takes the form

Ff�; �g = FMFAf�0; � = 0g (6)

+

Z
d3r

�
�1(r � � )2 + �2(r2

� )2 + �3(r� � )2 + �4(r(r � � ))2

+�1(r~�)2 + 
(� � r~�) + r2 ~�
2 + t2�

2 + �1 ~�
3 + �2 ~��

2
�
:

To ensure thermodynamic stability, fourth order terms like ~�4, ~�2
�
2 and (� 2)2 are clearly required in

the free energy functional. However, they are not necessary for the calculation of the scattering intensity,
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and have thus been omitted in Eq. (6). The parameters r2, t2, �1 and �2 of Eq. (6) are related to the

parameters of the model (1), (2) by

r2 =
1

2
@2�U j�=�0;�=0 = a2 +

1

2
T

�
1

�0
+

M

1��0

�
(7)

t2 =
1

2
@2�U j�=�0;�=0 = b2 +

c2T

�0
(8)

�1 =
1

6
@3�U j�=�0;�=0 =

1

6
T

�
M

(1� �0)2
� 1

�2
0

�
(9)

�2 =
1

2
@�@

2
�U j�=�0;�=0 = �c2T

�2
0

(10)

where again �0 = h�i0. Note that the coupling constant �2 is always negative, while �1 is negative

for small �0, but positive for �0 > 1=(
p
M + 1). The e�ect of the �1-term is to enhance 
uctuations

of � to larger (smaller) values of the local amphiphile concentration for small (large) �0. The �2-term

acts as a chemical potential for the amphiphile concentration, favoring larger than average amphiphile

concentration in regions of large orientational order, i.e. inside monolayers. For the calculation of the

scattering intensity, we consider r2, t2, �1 and �2 to be phenomenological parameters of our model.

The full correlation functions Gmn(q) of model (6) can be expressed exactly in terms of the vertex

functions �ij(q) by the Dyson equation

Gmn(q) =
1

2

2
4G(0)

mn(q) +
4X

i;j=1

G
(0)
mi(q)�ij (q)Gjn(q)

3
5 (11)

which can easily be inverted to give (in matrix form)

G(q) =

�
1� 1

2
G(0)(q)�(q)

��1
1

2
G(0)(q) : (12)

In order to proceed, we expand the vertex functions in a series of Feynman diagrams. To leading order in a

loop expansion, the vertex functions �ij(q) are given by the one-loop contributions shown in Fig. 3a. The

tadpole diagrams shown in Fig. 3b contribute to the average amphiphile concentration h�i, which di�ers
from the mean-�eld value �0. We can now introduce a new variable ~ = ��h�i, so that h ~ i = 0. When

the free energy functional (6) is written in terms of ~ , a linear term in ~ appears, which exactly cancels

all tadpole contributions to the correlations functions (diagrams containing tadpoles have therefore been

omitted in Fig. 3a). At the same time, the coupling constants get renormalized. Since we consider these

parameters to be phenomenological anyway, we ignore these corrections here.

In general, the calculation of the Feynman diagrams can only be done numerically. However, in the

limit of large surfactant concentrations, where the bare ~�~�-propagator vanishes, the dominant contribu-

tion can be calculated analytically.
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4.1 The Limit of Large Amphiphile Concentrations

In the limit of large amphiphile concentrations @2�U ! 1, so that p ! 0, see Eq. (5). In this case, the

leading contribution comes from the vertex function �44(q) and is given by

�44(q) =
�22
2

3X
i;j=1

Z
d3k

(2�)3
G
(0)
ij (k)G

(0)
ij (q� k) ; (13)

where the G
(0)
ij (for 1 � i; j � 3) in this limit reduce to

G
(0)
ij (k)!

�ij
�
� "

�(� + ")

kikj
k2

; (14)

compare Eq. (4). It turns out that the simplest way to calculate �44 is to use the form

�44(q) =
�22
2

3X
i;j=1

Z
d3r e�iq�r

h
G
(0)
ij (r)

i2
(15)

which is equivalent to (13). Thus, we need the Fourier transform of Eq. (14) to obtain the bare propa-

gators in real space. This calculation is straightforward, so that we immediately give the result:

G
(0)
ij (r) = �ijQ(r) � @i@jW (r) (16)

with

Q(r) =
1

8�ab�2

1

r
e�br sin(ar) ; (17)

and

W (r) =
1

2�u

(
1

r
e�br

�
�3(D

2
x � �23)

�1=2 sin(ar) + cos(ar)
�

�1

r
e�dr

�
�1(D

2
z � �21)

�1=2 sin(cr) + cos(cr)
�)

: (18)

The correlation function in real space contains four inverse length scales,

a =
1

2

p
(Dx � �3)=�2 (19)

b =
1

2

p
(Dx + �3)=�2 (20)

c =
1

2

p
(Dz � �1)=�24 (21)

d =
1

2

p
(Dz + �1)=�24 (22)

where �24 = �2 + �4, and

Dx =
p
2u�2 ; Dz =

p
2u�24 ; u = @2�U j�=�0;�=0 : (23)

The function Q(r) has the damped oscillatory form (17) for �Dx < �3 < Dx, whereas it is a sum of

two monotonically decaying exponentials for �3 > Dx. Similarly, the function W (r) has the damped
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oscillatory form (18) for �Dz < �1 < Dz, whereas it is a sum of four exponentials for �1 > Dz. The

lines �3 = Dx and �1 = Dz are called disorder lines (DOL) [20, 21, 18]. The oscillatory behavior of the

correlation functions indicates that the amphiphile is strong enough to produce a structured 
uid. Here,

�1 < Dz is required to describe head-head and tail-tail attraction, and head-tail repulsion; �1 = �Dz

is a spinodal, where the oscillations of the correlation function become long ranged, and a transition

to an ordered phase occurs [18]. For the analytic calculation of the scattering intensity, we assume

�3 < Dx for simplicity. There is a tendency for the amphiphiles to tilt with respect to the normal of

a monolayer for �3 < Dx, as can be seen, for example, from an oscillatory behavior of the correlation

function
R
dx
R
dy G

(0)
xx (r) [18]. Since we are interested here in systems without tilt, we will take the limit

�3 ! Dx below.

Eq. (16) has now to be inserted into Eq. (15), and the Fourier integral has to be carried out. A few

details of this calculation are given in appendix A. Unfortunately, the result of this calculation is rather

lengthy, so that the explicit expression is not very enlightning; it is presented in appendix B. However,

we can now use the analytic result (29) for the vertex function to derive the power-law behavior of the

scattering intensity in the small q limit. In order to describe a highly structured homogeneous system

without tilt, we consider the limits �1 ! �Dz, i.e. the approach to a spatially ordered phase, and

�3 ! Dx. In this case, a; d! 0, and b; c! const. An expansion of Eq. (29) for small q then yields

512 � �44(q) = �22
1

c2d3�224

�
3 +

�21
u�24

�
2d

q
arctan

� q

2d

�
+O(q) : (24)

Thus, for d < q < c, the vertex functions shows a 1=q decay. Since the bare propagator remains roughly

constant in this regime, our model indeed yields the 1=q behavior observed experimentally in the sponge

phase [14, 17].

For large wave vector q, on the other hand, we obtain from Eq. (29) the asymptotic behavior

�44(q) = O(q�2) : (25)

Thus, the contribution of the bare propagator dominates at large q, which yields a q�2 decay, again

consistent with experiment.

We expect these results for the q-dependence of the scattering intensity to be valid beyond the limit

of very large amphiphile concentrations, or weak coupling between concentration and orientation �elds

(i.e. small coupling constant 
), for the following reasons. First, the general shape of the bare propagator

G
(0)
ij (q) (for 1 � i; j � 3) as a function of the wave vector q depends only very weakly on h�i0 and 
.

Second, the most important e�ect of the one-loop diagrams shown in Fig. 3a is to couple the concentration

to the 
uctuations of the orientational degrees of freedom, independent of the values of h�i0 and 
.
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4.2 Numerical Results

The e�ect of the one-loop contributions to the scattering intensity for the system shown in Fig. 1 is rather

small, since the coupling constants �1 and �2 are rather small in the vicinity of the transition to the ordered

phases. Eqs. (9) and (10) show that �1 and �2 become large only for very small amphiphile concentrations.

This is in agreement with the experimental observation that the 1=q-behavior of the scattering intensity

occurs in the L3-phase, a phase which only exists at very low amphiphile concentrations. However, there

are no transitions to ordered phases at small �0 for the system of Fig. 1. Other choices of the parameters

of model (1), (2) will give other phase diagrams, where ordered phases might occur at lower amphiphile

concentrations. In such a case | which we want to consider here | the coupling constants �1 and �2 of

the Ginzburg-Landau model (6) can be considerably larger.

The result of a numerical calculation of the scattering intensity S(q), which includes all Feynman

diagrams of Fig. 3a, is shown in Fig. 4. The double-logarithmic plot of the data reveals quite clearly that

there is a range of q-values, where the scattering intensity falls o� almost as 1=q, and that the decay for

large q is as q�2. These two regimes are separated by a small peak, just as observed experimentally in

the sponge phase [17]. The general features of the scattering intensity calculated here also agree with

those obtained from the \inside-outside" model in Ref. [16]. The main di�erence of both theroretical

results with the experimental data is for wave vectors just beyond the small peak at �nite q: While the

experiments show a q�2 behavior, which sets in right at the peak, the theoretical curves decay considerably

faster, see Fig. 4, before they cross over to the asymptotic q�2 law.

It has been shown explicitly for the \inside/outside" model of sponge phases that the scattering

intensity calculated in the one-loop approximation [16] agrees very well with the result of a Monte Carlo

simulation [22]. Therefore, we do not expect higher-order contributions to the vertex functions, which have

been omitted from our analysis, to change the qualitative features of the scattering intensity calculated

above.

5 Summary and Conclusions

We have studied a Ginzburg-Landau model for binary amphiphilic systems, in which the local amphiphile

concentrations and orientations are described by a scalar and a vector order parameter �eld, respectively.

Compared to other Ginzburg-Landau descriptions of binary systems [14, 15, 16, 22], this model has the

advantage that it does not require the amphiphile to be assembled in perfect bilayers. Thus, it can

describe phases, which are not an ensemble of bilayers, like a cubic crystal of spherical micelles, or a

hexagonal packing of cylindrical micelles. In fact, it reproduces very well the typical sequence of phases

which is observed experimentally with increasing amphiphile concentration. Furthermore, we have shown
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here that the same model also explains the scattering behavior of a strongly structured homogeneous

phase at low amphiphile concentrations, where the scattering intensity is characterized by a 1=q decay

at small wave vector q, followed by a small peak, and a 1=q2 behavior for large wave vectors. This is the

scattering behavior observed experimentally in the L3- or sponge-phase. In our calculation, the origin

of the 1=q behavior is the coupling of the amphiphile concentration to 
uctuations of the amphiphile

orientation. Since this model has thus been shown to describe the behavior of binary systems very well,

it can now be generalized to the case of ternary systems. In particular, it will be interesting to study the

evolution of the phase diagram with increasing oil concentration.
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A Appendix: Some Details of the Calculation of

�44(q)

This appendix describes the main steps which are needed to calculate the vertex function �44(q) from

the explicit form of the bare correlation function, Eq. (16). By inserting (16) into (15), one �nds

�44(q) =
�22
2

Z
d3r e�iq�r

2
43Q(r)2 � 2Q(r)r2W (r) +

3X
i;j=1

(@i@jW (r))
2

3
5 : (26)

The last term in Eq. (26) can be rewritten, by repeated integration by parts, in the form

Z
d3r e�iq�r

3X
i;j=1

(@i@jW (r))
2

=
1

2

Z
d3re�iq�r

h
W (r)r2r2W (r) (27)

+
�r2W (r)

�2
+
1

2
q4W (r)2 + 2q2W (r)r2W (r)

i
:

This form is advantageous, since

r2

�
1

r
e�r=� (A sin(qr) +B cos(qr))

�
= � 4�B �(r) (28)

+
1

r
e�r=�

"�
(��2 � q2)A+

2q

�
B

�
sin(qr) +

�
(��2 � q2)B � 2q

�
A

�
cos(qr)

#
:

Thus, the functions Q(r) andW (r) essentially reproduce themselves when the Laplace operator is applied.

The resulting integrals can all be expressed by elementary functions [23].

B Appendix: Analytic Expression for Large Amphiphile Con-

centrations

In the limit p! 0, the analytic expression for the vertex function, Eq. (26), is found to be

8��44(q)=�2 =

�
� 1

�2
+
q4

u

�
1

ub
�+

�q
b
; 0;

a

b

�
�
�

1

�24
� q4

u

�
1

ud
�+

�q
d
; 0;

c

d

�

+

�
1 +

q4�23
4u2

+
�23
4u�2

+
q2�3
u

�
1

4a2b3�22
��

�q
b
; 0;

a

b

�

+

�
1

2
+
q2�1
u

+
q4�21
4u2

+
�21

4u�24

�
1

4c2d3�224
��

� q
d
; 0;

c

d

�

+

�
q2�3
2u

+ 1

�
q2

uab2�2
�+(

q

b
; 0;

a

b
) +

�
1 +

q2�1
2u

�
q2

ucd2�24
�+

�q
d
; 0;

c

d

�

�
�
q4�3 �1
2u

+
�3 �1
4�24

+ q2�1 + q2�3 +
�3 �1
4�2

�
1

2uabcd�2�24(b+ d)
��

�
2q

b+ d
;
a� c

b+ d
;
a+ c

b+ d

�
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+

�
1

�24
� 4q4

u
+

1

�2

�
2

u(b+ d)
�+

�
2q

b+ d
;
a� c

b+ d
;
a+ c

b+ d

�

�
�
q2 +

�1
4�24

+
q4�1
2u

� �1
4�2

�
2

ucd�24(b+ d)
��

�
2q

b+ d
;
a� c

b+ d
;
a+ c

b+ d

�

�
�
q4�3
2u

+
�3
4�2

+ q2 � �3
4�24

�
2

uab�2(b+ d)
�+

�
2q

b+ d
;
a� c

b+ d
;
a+ c

b+ d

�
:

(29)

Here, the functions �� and �� are de�ned as

��(x; y; z) =
1

4x

"
arctan

�
4x

4 + 4y2 � x2

�
(30)

� arctan

�
4x

4 + 4z2 � x2

�
� (m� n)�

#

��(x; y; z) =
1

8x

�
ln

�
4 + (2z + x)2

4 + (2z � x)2

�
� ln

�
4 + (2y + x)2

4 + (2y � x)2

��
; (31)

where n = 0 for x2 < 4(1 + y2), while n = 1 otherwise, and similarly m = 0 for x2 < 4(1 + z2), while

m = 1 otherwise.
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Figure Captions

Figure 1: Phase diagram of a binary system as a function of temperature T and amphiphile concen-

tration �0 = h�i0, calculated from the model (1), (2) with the parameters �1 = �6, �2 = 5, �4 = 5,

�1 = 10, 
 = 30, M = 20, a2 = �10, b2 = 1, c2 = 17=12, and c4 = 1. Continuous phase transitions

are shown by dashed lines. The shaded areas are two-phase regions. The full circle denotes a tricritical

point.

Figure 2: Contour plots of the order parameter � in the I1- and V1- phases for constant z. (a) I1-

phase, with z = 0; (b) V1-phase, with z = 0; (c) I1-phase, with z = 0:25a0; (d) V1-phase, with z = 0:25a0.

Here, a0 is the lattice constant of the cubic structure.

Figure 3: (a) Feynman diagrams, which contribute to one-loop order to the vertex functions �mn(q).

(b) Feynman diagrams (\tadpoles"), which contribute to one-loop order to the average amphiphile con-

centration, h�i. Here, the solid lines denote the concentration �eld ~�, the dashed lines the orientational

order parameter � .

Figure 4: Scattering intensity S(q) = 1
2G44(q) of the homogeneous phase, in the vicinity of the

spinodal to an ordered phase. The parameters of model (6) are taken to be �1 = �6, �2 = 4, �3 = 10,

�4 = 4, �1 = 16:3, 
 = 21:15, r2 = 5:0, t2 = 8:1, �1 = �32, and �2 = �58. (a) Linear plot. (b)

Double-logarithmic representation.
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