Quantum limited spin transport in ultracold atomic gases

Searching for the perfect SPIN fluid...

Tilman Enss (Uni Heidelberg)

Rudolf Haussmann (Uni Konstanz) Wilhelm Zwerger (TU München)

DELTA meeting, Heidelberg, 11 January 2013

Introduction

• Is ideal fluid realized in Nature? shear viscosity $\eta=0$?

- find minimum: universal bounds on transport coefficients?
- not all coefficients bounded: e.g., bulk viscosity ζ=0 in scale-invariant fluids, but η is not protected by any symmetry

Estimating the shear viscosity

- shear viscosity η on vastly different scales: normalize by entropy density s,

$$\frac{h}{k_B} = \# \frac{\hbar}{k_B}$$
 ħ: indicates quantum effect

- kinetic theory (non-relativistic, 3D): $\eta \approx \frac{1}{3}n \, p \, \ell_{\rm mfp}$, $s \simeq k_B n$ Fermi momentum $p \simeq \hbar k_F$ mean free path $\ell_{\rm mfp} = 1/(n\sigma) \simeq \frac{1}{k_F}$ with cross section $\sigma \simeq \frac{1}{k_F^2}$ (unitarity)
- holographic duality (AdS/CFT): string theory dual to gravitational theory η: absorption cross section of black hole ~ event horizon
 s: entropy of black hole ~ event horizon

Unitary Fermi gas

- non-relativistic Fermi gas, two spin components 1,
- contact interaction between \uparrow and \downarrow : $|r_0| \ll \ell$
- strong s-wave scattering, $|a| \gg \ell$ (Feshbach resonance)
- superfluid of fermion pairs below $T_c/T_F \approx 0.16$ [Ku et al. Science 2012]

Theory for η/s

• 2PI (Luttinger-Ward) computation: repeated particle-particle scattering

self-consistent T-matrix (300 mom./300 freq.)

good approximation for unitary Fermi gas:

 $T_c/T_F \simeq 0.16, \quad \xi \simeq 0.36$ [Haussmann et al. 2007]

• transport calculation via Kubo formula:

[see also Bruun, Smith 2007 (kin), Enss 2012 (large-N), Wlazlowski+ 2012 (QMC), Schäfer, Chafin 2012 (hyd), Romatschke, Young 2012]

How about **spin** transport?

• experiment: spin-polarized clouds in harmonic trap

• strongly interacting gas [movie courtesy Martin Zwierlein]:

[A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)]

Is there a quantum bound for spin diffusion?

 scattering conserves total + momentum: mass current preserved but changes relative + momentum: spin current decays

• kinetic theory: diffusion coefficient $D_s \approx v \ell_{\rm mfp}$ [Bruun 2011]

Fermi velocity
$$v \simeq \frac{\hbar k_F}{m}$$

mean free path $\ell_{\rm mfp} = \frac{1}{n\sigma} \simeq \frac{1}{k_F}$ with cross section $\sigma \simeq \frac{1}{k_F^2}$ (unitarity)
 $\implies D_s \simeq \frac{\hbar}{m}$ quantum limit for diffusion

Spin diffusivity

• cold atom experiment: $D_s = \frac{\text{area}}{\text{time}} \approx \frac{(100 \,\mu\text{m})^2}{(1 \,\text{second})} \approx \frac{\hbar}{m}$ 100- $D_s \gtrsim 6.3 \, \frac{\hbar}{m}$ 08 mD_s/h 10-3 [Sommer et al. 2011] 0.3 3 10 $T/T_{\rm F}$

- solid state: spin Coulomb drag in GaAs quantum wells $D_s \simeq 500 \, {\hbar \over m}$ [Weber 2005]

Computing the spin diffusivity

- 2PI (Luttinger-Ward) theory: use Einstein relation $D_s = \frac{\sigma_s}{\chi_s}$ spin conductivity $\sigma_s(q, \omega)$ from current correlation fct. $\langle [j_{\uparrow} - j_{\downarrow}, j_{\uparrow} - j_{\downarrow}] \rangle$
 - including vertex corrections to satisfy 1, particle number conservation

• including medium effects [Enss, Küppersbusch, Fritz 2012]

Dynamical spin conductivity

• satisfies spin sum rule despite tail [Enss, arXiv:1209.3317]

$$\int \frac{d\omega}{\pi} \, \sigma_s(\omega) = \frac{n}{m}$$

Spin diffusivity

- recent Monte Carlo simulation: $D_s\gtrsim 0.8rac{\hbar}{m}$ [Wlazlowski et al. arxiv:1212.1503]

Conclusion and outlook

- universal viscosity bound: unitary Fermi gas most perfect non-relativistic fluid
- clouds of opposite spin bounce off each other

- universal diffusion bound from holographic duality? unitary spin diffusivity $D_s\gtrsim 1.3\,\hbar/m$ constrains bound
- local transport measurements: [cf. Ku et al. 2012 for thermodynamics] extract diffusivity from spin-resolved dynamic structure factor

