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Introduction

• Is ideal fluid realized in Nature? shear viscosity η=0?

helium-4:

• find minimum: universal bounds on transport coefficients?

• not all coefficients bounded: e.g., bulk viscosity ζ=0 in scale-invariant fluids, 
but η is not protected by any symmetry

The Theory of Liquid 4He 5 1  

There appears to be little doubt that it is the difficulty of creating thermal 
excitations in the liquid which is responsible for the appearance of superfluidity. 
However, the mechanism whereby they are excited is obviously not that discussed 
by Landau, because the value of the critical velocity is found to be not of the order 
of 60 m sec-l but only of the order of a few cm sec-l, and is also a complicated func- 
tion of temperature and slit width. This particular problem is one of the least 
understood aspects of liquid helium and is discussed later, in the section on turbu- 
lence. For the present we confine our attention to the region where there appears 
to be true superfluidity, that is where the velocities are sufficiently low not to 
produce excitations in the superfluid. 

5.2. The Normal Viscosity and Andronikashvili’s Experiment 
As we have just discussed, measurements of the rate of flow of helium through 

a capillary do not enable us to determine the viscosity associated with the normal 
fluid. This ‘ normal viscosity ’ rn is best found by measuring the viscous force 
on a body moving through the liquid ; in an experiment of this type the super- 
fluid exerts no force on the moving body and the total reaction is that due to the 
normal viscosity alone. The most straightforward method uses a rotation visco- 
meter and the results of detailed measurements by Heikkila and Hollis-Hallett 
(1955) are shown in figure 6. We defer a discussion of the form of these results 
to Q 6.1, only noticing here that the viscosity is of the same order as that of a gas. 

Figure 6 .  The ‘ normal ’ viscosity of liquid helium as determined (a)  directly with a rotation 
viscometer, and ( b )  with an oscillating-disc viscometer plus a determination of the normal 
density (after Heikkila and Hollis-Hallett 1955, and Hollis-Hallett 1952). 

One would suppose that the same value for the viscosity would be obtained 
by making measurements with an oscillating-disc viscometer, but the damping on 
such a disc is found to decrease steadily as the temperature falls, as is shown in 
figure 7 (Keesom and MacWood 1938). Before discussing this apparent dis- 
crepancy it is necessary to consider the important experiment of Andronikashvili 
(1948). This author mounted fifty thin metal discs very close together on a common 
axis, oscillated them about a vertical axis in a bath of liquid helium, and found 
that below the lambda point the period of the oscillating system decreased with 
falling temperature. This curious result is accounted for by the fact that while 
the superfluid is not affected by the motion of the discs, the normal viscosity is 
sufficient to drag round with the discs all the normal fluid in the narrow spaces 

[Heikkila, 
Hollis-Hallett 1955] 



Estimating the shear viscosity

• shear viscosity η on vastly different scales: normalize by entropy density s,

                                                         ħ: indicates quantum effect

• kinetic theory (non-relativistic, 3D): 
Fermi momentum 
mean free path                                       with cross section                 (unitarity)

• holographic duality (AdS/CFT): string theory dual to gravitational theory
     η: absorption cross section of black hole ~ event horizon
     s: entropy of black hole ~ event horizon

                                 perfect fluidity          [Kovtun, Son, Starinets 2005]

⌘

s
= #

~
kB

⌘

s
� ~

4⇡kB

⌘ ⇡ 1

3
n p `mfp , s ' kBn

p ' ~kF
� ' 1

k2F
`mfp = 1/(n�) ' 1

kF



Unitary Fermi gas

• non-relativistic Fermi gas, two spin components ⬆,⬇

• contact interaction between ⬆ and ⬇: 

• strong s-wave scattering,               (Feshbach resonance)

• superfluid of fermion pairs below 

|r0| ⌧ `

[Bloch, Dalibard, Zwerger 2008] 

Tc/TF ⇡ 0.16 [Ku et al. Science 2012] 

[Ketterle 2005] 
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Theory for η/s

• 2PI (Luttinger-Ward) computation: repeated particle-particle scattering

                                                    self-consistent T-matrix (300 mom./300 freq.)

                                                    good approximation for unitary Fermi gas:

• transport calculation via Kubo formula: 

Tc/TF ' 0.16, ⇠ ' 0.36 [Haussmann et al. 2007] 

[Enss, Haussmann, Zwerger 2011] 

k! kF. Alternatively, the contact density can be determined from the vertex function (C.4) as
!h4C ¼ #m2CX0¼Xþ [58]. At high temperatures T! TF this can be evaluated analytically and leads to

CðTÞ ¼ 4m2z2T2

p!h4 ¼ 8p2!h2n2

mT
¼ 16k4

F

9p2h
; ð60Þ

which agrees precisely with the result obtained in Ref. [76] (note the different definition of the contact
in this work which accounts for an apparent difference by a factor of 4p2). This asymptotic behavior is
in perfect agreement with our numerical results in Fig. 8. An alternative way to infer the high fre-
quency behavior of the shear viscosity is based on the relation [28]

gðxÞ ¼ lim
q!0

3x3

4!hq4 Imvqqðq;xÞ ð61Þ

between the frequency-dependent shear viscosity and the mass–density correlation function vqq(q,
x), a relation that is valid at all frequencies. As shown by Son and Thompson [77], the density corre-
lation function at large frequencies

Imvqqðq;x!1Þ ¼
4!h5=2q4C

45pm1=2x7=2 ð62Þ

is again fully determined by the Tan contact C. The resulting coefficient Cg in the high-frequency tail of
the shear viscosity agrees precisely with that in Eq. (59) above.

Our result for the temperature-dependent shear viscosity can now be combined with the known
value of the entropy density [58] to determine the ratio g/s in the normal fluid regime of the unitary
gas. As shown in Fig. 9, this ratio exhibits a very shallow minimum around T ' 0.3–0.4TF, below which
g/s increases very slowly. The precise location of the minimum clearly depends sensitively on how
accurate the results for both the viscosity and entropy are in this regime. On quite general grounds,
it is likely that the minimum in g/s is close to the superfluid transition temperature Tc ’ 0.15TF, and
that g/s is monotonically increasing as the temperature is lowered in the superfluid regime, eventually
crossing over to the steep increase predicted by Eq. (16) as the temperature approaches zero. The fact
that our diagrammatic calculation gives results, e.g., for the critical temperature and the associated
entropy density s ’ 0.7nkB [58] which agree well with precise numerical results [78], suggests that
our ratio g/s provides a quantitatively reliable estimate, despite the fact that the precise location of
the minimum is difficult to determine. Granting that our value g/s ’ 0.6!h/kB for the minimum is close
to the exact result, we conclude that the ratio g/s for the unitary Fermi gas remains a factor of about
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Fig. 9. Shear viscosity to entropy ratio g/s (blue circles) in comparison with known asymptotes. The dashed red line on the left
is the phonon contribution g/s ( (T/TF)#8 in Eq. (16), the solid red line on the right the classical limit (54) divided by the classical
entropy from the Sackur–Tetrode formula. The red diamond indicates Tc ’ 0.15TF. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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[see also
Bruun, Smith 2007 (kin),
Enss 2012 (large-N),
Wlazlowski+ 2012 (QMC),
Schäfer, Chafin 2012 (hyd),
Romatschke, Young 2012] 

sition temperature by a factor !4e"−1/3#0.45. The nonana-
lytic dependence of the BCS-transition temperature on the
dimensionless coupling constant kFa thus gives rise to a fi-
nite change in the prefactor in Eq. !3.1" from the BCS value
0.61 to 0.28, even though the contribution of induced inter-
actions is of order kFa compared to the bare interaction.

On the BEC side, the zeroth-order result for the critical
temperature is obtained from the value

Tc
!BEC" = 3.31

!2nB
2/3

mB
= 0.218"F, !3.3"

obtained for an ideal Bose gas with density nB=n /2 and
mass mB=2m. The leading corrections to this result arise
from the residual interactions between the strongly bound
bosonic dimers. As shown by Petrov et al. $20,50%, these
interactions can be described by a positive dimer-dimer scat-
tering length add#0.60a. With the quite plausible assump-
tion that the total potential energy in a dilute gas of dimers is
the sum of its two-body interactions, the scattering length of
the four-fermion problem determines the corresponding in-
teraction constant in the theory of a weakly interacting Bose
gas in the regime of a small gas parameter nB

1/3add!1, where
Bogoliubov theory is applicable. The exact dependence of
the critical temperature of the dilute, repulsive Bose gas on

the interaction strength has been calculated only in recent
years. To lowest order in the interaction, the shift is positive
and linear in the scattering length $51%,

Tc/Tc
!BEC" = 1 + cnB

1/3add + ¯ , !3.4"

with a numerical constant c#1.31 $52,53%. As a result, the
evolution of the critical temperature in the homogeneous
case as a function of the dimensionless coupling constant v
=1/kFa necessarily exhibits a maximum, since the
asymptotic ideal Bose gas result is approached from above.
Such a maximum was found in the early calculations of Tc
along the BCS-BEC crossover by Nozières and Schmitt-Rink
$54% and by Randeria $55%. The precise height and location of
this maximum, however, have not been determined so far in
a quantitatively reliable manner. Given that our present
theory exhibits a first-order transition, there is a range of
multivaluedness of the thermodynamic potentials as a func-
tion of temperature. This regime is bounded in Fig. 4 by the
upper and lower Tc curves, respectively. The lower Tc curve
!shown as the red dashed line" which is monotonic in v co-
incides with the Tc curve previously calculated $30% by
implementing the Thouless criterion coming from the normal
fluid side. In a situation where a true first-order transition is
expected, we would need to perform a Maxwell construction
to obtain the proper transition line. As was discussed above,
however, the first-order transition is an artifact of the ap-
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How about spin transport?

• experiment: spin-polarized clouds in harmonic trap

• strongly interacting gas [movie courtesy Martin Zwierlein]:

[A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)] 

bounce!
[J. Thomas 2011]



Is there a quantum bound for spin diffusion?

• scattering conserves total ⬆+⬇ momentum: mass current preserved
but changes relative ⬆-⬇ momentum: spin current decays

• kinetic theory: diffusion coefficient                        [Bruun 2011]

Fermi velocity

mean free path                                  with cross section                 (unitarity)

                                quantum limit for diffusion

spin diffusion

order of one second, which is an extremely long time compared to the
trapping period (44 ms). The underlying explanation for spin current
reversal and the slow relaxation can be found in the extremely short
mean free path and the high collision rate between opposite-spin
atoms at unitarity. According to the above estimate, the spin diffusivity
is approximately B/m, which for 6Li is (100mm)2 s21. The atom clouds
in the experiment have a length of the order of 100mm, and it takes
them of the order of a second to diffuse through each other. So we are
indeed observing quantum-limited spin diffusion. The initial bounces
will occur when the mean free path of a spin-up atom in the spin-down
cloud is smaller than the spin-down cloud size, that is, when the
mixture is hydrodynamic. Instead of quickly diffusing into the spin-
down region, it is then more likely that the spin-up atom is scattered
back into the spin-up region, where it can propagate ballistically.

After long evolution times, the oscillations shown in Fig. 1 have been
damped out, and the displacement between the centres of mass is
much smaller than the widths of the clouds. The relaxation dynamics
can then be described by linear response theory, giving access to the
spin transport coefficients. The spin drag coefficient Csd is defined as
the rate of momentum transfer between opposite-spin atoms12,14, and
is therefore related to the collision rate. From the Boltzmann transport
equation, the relaxation of the displacement d near equilibrium follows
the differential equation22

C sd
_dzv2

z d~0

in the case of strongly overdamped motion realized here. Fitting an
exponential with decay time t to the displacement gives the spin drag
coefficient of the trapped system as C sd~v2

zt. In the deeply degenerate
regime, the relationship between the measured and the microscopic
spin drag coefficient might be affected by a weak enhancement of the
effective mass23 and the attractive interaction energy between the
clouds10,22,24.

The spin drag coefficient is found to be greatest on resonance, and thus
spin conduction is slowest on resonance (see Supplementary Informa-
tion). On resonance, Csd in a homogeneous system must be given by a
function of the reduced temperature T/TF times the Fermi rate EF/B. At
high temperatures, we expect the spin drag coefficient to obey a universal
scaling C sd!nsv! EF

B T=TFð Þ{1=2. In Fig. 2 we show the spin drag
coefficient as a function of T/TF; Csd is normalized by EF/B, where EF

and TF are the local values at the centre of total mass. We observe T21/2

scaling for T/TF . 2, finding C sd~0:16 1ð Þ EF
B T=TFð Þ{1=2. At lower

temperatures, we observe a crossover from classical to non-classical
behaviour as the spin drag coefficient reaches a maximum of approxi-
mately 0.1EF/B near the Fermi temperature. We interpret this saturation
of the spin drag coefficient as a consequence of Fermi statistics and
unitarity4,5, as s and v approach values determined by the Fermi wave-
vector kF. The spin drag coefficient is inversely proportional to the spin
conductivity, which describes the spin current response to an external
spin-dependent force. Near the Fermi temperature, the maximum spin
drag coefficient corresponds to a minimum spin conductivity of the
order of kF/B. This is the slowest spin conduction possible in three
dimensions in the absence of localization.

At low temperatures, the spin drag coefficient decreases with
decreasing temperature. Reduced spin drag at low temperatures is
expected in Fermi liquids owing to Pauli blocking11,18,22,24,25, and is also
expected in one-dimensional Fermi gases26. In the case of collective
density (rather than spin) excitations, it was shown that pairing cor-
relations enhance the effective collision rate dramatically as the tem-
perature is lowered6. The effect of pairing on the spin drag coefficient
may be qualitatively different. In a simple picture, spin currents require
the flow of unpaired atoms, whereas collective density excitations
affect paired and unpaired atoms alike.

Comparing the relaxation rate to the gradient in spin density allows
us to also measure the spin diffusivity Ds. At the centre of the trap, the
spin current density Js is given by the spin diffusion equation27
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Figure 1 | Observation of spin current reversal in a resonant collision
between two oppositely spin-polarized clouds of fermions. a, b, Total
column density (a) and the difference in column densities (b: red, spin up; blue,
spin down) during the first 20 ms after the collision. The central column
densities here are typically 7 3 109 cm22. Strong repulsion is observed that
leads to a high-density interface. c, The centre of mass separation initially
oscillates at 1.63(2) times the axial trap frequency of 22.8 Hz (see
Supplementary Information) before decaying exponentially at later times. The
initial atom number per spin state is 1.2 3 106, and the temperature 200 ms
after the collision and later is 0.5TF, with TF the Fermi temperature at the centre
of each cloud. d, The trapping potential V is harmonic along the symmetry axis.
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Figure 2 | Spin drag coefficient of a trapped Fermi gas with resonant
interactions. The spin drag coefficient Csd is normalized by the Fermi rate EF/B
at the trap centre, whereas the temperature is normalized by TF 5 EF/kB. We
find agreement between measurements taken at three different axial trapping
frequencies, 22.8 Hz (red circles), 37.5 Hz (blue triangles) and 11.2 Hz (black
squares). The data for T/TF . 2 fit to a T 21/2 law (solid line). Dashed line, a
power law fit for T/TF , 0.5 to show the trend. Each point is a mean from
typically three determinations of Csd, each obtained from a time series of about
30 experimental runs and weighted according to the standard deviation from
fitting error and shot to shot fluctuations. Error bars, 61s.e.
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[Sommer et al. 2011] 



Spin diffusivity

• cold atom experiment: 

 

• solid state: spin Coulomb drag in GaAs quantum wells 

Js~{Ds
L n:{n;
! "

Lz

where n"(#) is the density of spin-up (spin-down) atoms. We calculate
Js using the trap-averaged velocity as Js~

1
2 n:zn;
! "

_d, where the
densities are evaluated at the centre of total mass.

We find that the spin diffusivity is at a minimum when interactions
are resonant (see Supplementary Information). The increase in spin
diffusivity for positive scattering length a, as well as the decrease in spin
drag, argues against the existence of a ferromagnetic state in repulsive
Fermi gases, for which diffusion should stop entirely9,11. Figure 3
reports the measured spin diffusivity as a function of temperature at
unitarity. In the high-temperature limit on resonance, one expects
Ds / v/ns / T 3/2. At high temperatures, we indeed find this temper-
ature dependence, with a fit giving Ds~5:8 2ð Þ Bm T=TFð Þ3=2 for
T/TF . 2. In the degenerate regime, the spin diffusivity is seen to attain
a limiting value of 6.3(3)B/m.

When comparing these results to theoretical calculations, it is
important to account for the inhomogeneous density distributions
and velocity profiles. For a homogeneous system on resonance, and
at high temperatures compared to the Fermi temperature, we predict
Ds~1:11 B

m T=TFð Þ3=2 and C sd~0:90 EF
B T=TFð Þ{1=2 (see Supplemen-

tary Information). The measured spin drag coefficient is smaller by a
factor of 0.90/0.16(1) 5 5.6(4) while the spin diffusivity is larger by
about the same factor, 5.8(2)/1.11 5 5.3(2), compared to a homogen-
eous system at the density of the centre of total mass. These factors
reflect the inhomogeneity of the system and agree with an estimate
from the Boltzmann transport equation (see Supplementary Informa-
tion). The emergence of a superfluid core at our lowest tempera-
tures will further modify the ratio of trap-averaged to local transport
coefficients.

Finally, the measured transport coefficients give for the first time
access to the temperature dependence of the spin susceptibility, xs(T),

in strongly interacting Fermi gases. Defined as xs~
L n:{n;
! "

L m:{m;
! " , the

spin susceptibility describes the spin response to an infinitesimal effec-
tive magnetic field or chemical potential difference m"2 m# applied to
the gas, and is a crucial quantity that can discriminate between differ-
ent states of matter10. In a magnetic field gradient, particles with
opposite spin are forced apart at a rate determined by the spin con-
ductivity ss, while diffusion acts to recombine them. The balance
between the processes of diffusion and conduction therefore deter-
mines the resulting magnetization gradient, a connection expressed

in the Einstein relation11 xs 5 ss/Ds. Assuming the standard rela-
tion11,14 ss 5 n/(mCsd),

xs~
1

mdv2
z

L n:{n;
! "

Lz

where
L n:{n;ð Þ

Lz is evaluated near the trap centre. The inhomogeneous
trapping potential does not affect the measurement of xs in the hydro-
dynamic limit at high temperatures (see Supplementary Information).
Close to the transition to superfluidity, interaction effects may modify
the relation between ss and Csd.

Figure 4 reports our findings for the spin susceptibility at unitarity, as
a function of the dimensionless temperature T/TF. At high tempera-
tures, we observe the Curie law xs 5 n/(kBT), where kB is Boltzmann’s
constant. In this classical regime of uncorrelated spins, the susceptibility
equals the (normalized) compressibility of the gas n2k 5 hn/hm that
we also directly obtain from our profiles. At degenerate tempera-
tures, the measured spin susceptibility becomes smaller than the nor-
malized compressibility. This is expected for a Fermi liquid, where

xs~
3n

2EF

1
1zFa

0
and k~

3
2nEF

1
1zFs

0
with Landau parameters Fs

0 and

Fa
0 describing the density (s) and spin (a) response10. The spin suscepti-

bility is expected to strongly decrease at sufficiently low temperatures in
the superfluid phase, as pairs will form that will not break in the pres-
ence of an infinitesimal magnetic field. It is currently debated whether
the strongly interacting Fermi gas above the superfluid transition tem-
perature is a Fermi liquid23 or a state with an excitation gap (pseudo-
gap)28,29. The opening of a gap in the excitation spectrum would be
revealed as a downturn of the spin susceptibility below a certain tem-
perature. Such a downturn is not observed in xs down to T/TF < 0.2,
and therefore our spin susceptibility data agree down to this point with
the expected behaviour for a Fermi liquid.

In conclusion, we have studied spin transport in strongly interacting
Fermi gases. The spin diffusivity was found to attain a limiting value of
about 6.3B/m, establishing the quantum limit of diffusion for strongly
interacting Fermi gases. Away from resonance, the diffusivity increases.
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Figure 3 | Spin diffusivity of a trapped Fermi gas. Shown is the spin
diffusivity on resonance (Ds, normalized by B/m; filled circles) as a function of
the dimensionless temperature T/TF. At high temperatures, Ds obeys the
universal T 3/2 behaviour (solid line). At low temperatures, Ds approaches a
constant value of 6.3(3)B/m for temperatures below about 0.5TF, establishing
the quantum limit of spin diffusion for strongly interacting Fermi gases. Error
bars, 61s.e.
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Computing the spin diffusivity

• 2PI (Luttinger-Ward) theory: use Einstein relation 

spin conductivity                 from current correlation fct.

• including vertex corrections to satisfy ⬆,⬇ particle number conservation

• including medium effects [Enss, Küppersbusch, Fritz 2012]

�s(q,!) h[j" � j#, j" � j#]i

To leading order in z, the pair propagator and on-shell self-energy are given by

Cretðk;XÞ ¼ $i
4p!h3m$3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!hXþ 2l$ ek=2

p þOðzÞ; ð49Þ

Rretðp; ! ¼ ep $ lÞ ¼ i
8eF

3p
erfð

ffiffiffiffi
p
p

p=pTÞ
p=pF

þOðzÞ: ð50Þ

In the case of on-shell fermions with k = p1 + p2, !hXþ 2l ¼ ep1 þ ep2 the pair propagator reduces to the
well-known scattering amplitude f(q) = i/q at infinite scattering length of two particles in vacuum,
with relative momentum q. Note that the exact leading-order result for the on-shell fermionic self-en-
ergy contains a non-trivial error-function dependence on the ratio of the momentum p to its thermal
value pT that was missing in previous studies [60]. It is due to the square-root tail in the pair propa-
gator and gives a noticeable correction at thermal momenta p ’ pT. Moreover, this form is indeed cru-
cial to fulfill the condition of scale invariance, as will be discussed below.

The fermionic spectral function in the low fugacity, high temperature limit has most of the spectral
weight concentrated in the coherent peak at ! = ep $ l. The peak width cp = ImRret(p,!) vanishes like
eFpF/p & T$1/2 for typical momenta p ' pT, consistent with the assumption for the temperature depen-
dence of the relaxation time introduced by Bruun and Smith [26]. This implies, in particular, that the
fermionic quasiparticles become well-defined and thus a Boltzmann equation description is valid in
the regime h( 1.

From a numerical, iterative solution of the integral equations (38)–(43) in the high-temperature
limit we obtain g/(!hn) = 2.80(1)(T/TF)3/2. This fixes the constant in the asymptotic behavior
a(h) = const.h3/2 at large values of h of the universal function introduced in (14). Within the error bars,
the numerical value agrees with that obtained from a variational solution of the full Boltzmann equa-
tion, using higher Sonine polynomials [26, appendix]. The prediction of a simple power-law depen-
dence of the shear viscosity g(T) & T3/2 has recently been verified experimentally in a temperature
range between h ’ 1.5 and h ’ 7 by measuring the expansion dynamics of a unitary gas released from
an optical trap [61]. Very good agreement has been found also with the expected prefactor, thus con-
siderably improving the situation compared to earlier measurements of the shear viscosity from the
damping of the radial breathing mode [62].

Remarkably, the solution of the transport integral equation at high temperatures and small fre-
quencies can also be obtained by a completely analytical approach. In fact, in the low fugacity limit,
one can terminate the iterative procedure after the first iteration step (correlation function to first or-
der in the pair propagator) and resum via a memory function approach, a method that was developed
in the context of electrical conductivities by Götze and Wölfle [63]. The first-order correlation function
contains the diagrams for self-energy, Maki–Thompson and Aslamazov–Larkin contributions shown in
Fig. 3. These diagrams are obtained by evaluating the transport equations (38)–(43) with the bare vis-
cosity vertices Tð0Þ‘ , Sð0Þ‘ on the right-hand side, and with bare fermionic propagators G0(p,!) with an
additional impurity scattering rate c, which is taken to zero after resummation.

Explicitly, to lowest order both in the fugacity and in the scattering rate, the bosonic vertex correc-
tion S‘ in Eq. (43) is given by

S‘¼2ðk;Xþ i0;X$ i0Þ ¼ e1=2
F ek

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð!hXþ 2lÞ $ ek

p

32pc :

Fig. 3. Diagrammatic contributions to the viscosity correlation function v‘(x) at first order in the pair fluctuations: Self-energy
(S), Maki–Thompson (MT) and Aslamazov–Larkin (AL) diagrams.
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Dynamical spin conductivity

• satisfies spin sum rule despite tail [Enss, arXiv:1209.3317]

induced. Hence, the Aslamazov-Larkin correction to the
spin current vanishes exactly in the spin balanced case,
JAL!!0s ¼ 0, which constitutes an important simplification.

We solve the self-consistent equation for the fully dressed
current vertex J!!0 by iteration and obtain the current corre-
lation function (1) via the Kubo formula [9]. Since the
correlation function "jn=jsðq ¼ 0; i!mÞ is evaluated at
discrete imaginary Matsubara frequencies i!m, we must
perform an analytic continuation in order to obtain the
physically relevant correlation function "jn=jsð!Þ for real
frequencies !. We use Padé approximants and find that the
continuation is robust at low temperatures if we vary the
number of Matsubara frequencies, and it yields the correct
high-frequency tail (see below). Specifically, we oversample
theMatsubara data twicewith a spline fit and use the first five
Matsubara frequencies in order to extract the spin drag rate
!sd. We validate our strong coupling calculation by confirm-
ing that !sð!Þ indeed fulfills the spin f-sum rule (3) within
1%. Since we have constructed the formalism to satisfy the
sum rules exactly, this quantifies the numerical accuracy of
our self-consistent solution and the analytical continuation.

Spin conductivity.—The resulting spin conductivity
!sð!Þ is shown in Fig. 2 for reduced temperature T=TF ¼
0:5 where it has the lowest dc value !s ¼ 0:8n=m (red
circles). In a Drude model the conductivity would assume a
form !Drude

s ð!Þ ¼ ðn=mÞ!sd=ð!2 þ !2
sdÞ (solid black line)

with total spectral weight given by the sum rule. The spin
drag rate !sd is a parameter which we determine from the
dc limit !s ¼ n=m!sd of our full numerical solution. We
find that the true !sð!Þ deviates from the Drude model for
! * EF: spectral weight is transferred from the region
! & 8EF to higher frequencies where it forms a power-
law tail !sð! ! 1Þ %!&3=2 (dotted blue line in Fig. 2).

The high-frequency response generally depends on the
nonuniversal short-distance behavior of the interatomic
potential. However, for a broad Feshbach resonance as in

6Li [2] this potential has a range much shorter than the
particle spacing, kFjrej ' 1, and becomes effectively a
contact interaction. In this case the correlation functions
exhibit universal power-law tails in the high-frequency range
maxðEF; kBTÞ=@ ' ! ' @=ðmr2eÞ [27] which depend only
on the Tan contact density C [28]. In the high-frequency
limit the exact transport equations can be solved analytically
in a manner analogous to the viscosity response [9], and we
obtain the universal spin conductivity tail

!sð! ! 1Þ ¼ @1=2C
3#ðm!Þ3=2

(4)

in agreement with the result from the operator product
expansion [29]. Similar tails appear in other transport prop-
erties such as the viscosity [9,23,29,30]. The value for the
Tan contact density C ¼ 0:0863k4F at T=TF ¼ 0:5 extracted
from the tail of !sð!Þ agrees better than 1% with the value
C ¼ 0:0860k4F from the tail of the momentum distribution
nk % Ck&4 [9]. A similar behavior of !sð!Þ is observed for
all temperatures T ( Tc.
We now turn to the dc limit and plot the spin drag rate

!sd ¼ n=m!s in Fig. 3 (solid red line). The spin drag has a
maximum value of !sd ) 1:2EF=@ in the quantum degen-
erate regime around T=TF ¼ 0:5 and decreases both for
lower and higher temperatures. In the high-temperature
limit of a classical gas the Luttinger-Ward transport equa-
tions can be solved analytically to leading order in
the fugacity [9], and we obtain !sd ¼ ð32

ffiffiffi
2

p
=9#3=2Þ*

ðT=TFÞ&1=2EF=@ ¼ 0:9ðT=TFÞ&1=2EF=@ for T + TF in
agreement with Boltzmann kinetic theory [4,15]. The fact
that the numerical solution at large temperatures agrees
with the analytical result for T + TF is a nontrivial vali-
dation of our analytical continuation procedure.
The measured spin drag rate in a trapped unitary Fermi

gas [4] (blue squares in Fig. 3) has the same qualitative
behavior as our numerical data, with a broad maximum
between T=TF ¼ 0:4; . . . ; 0:8. Note that the absolute spin
drag rate cannot be directly compared to our calculation for
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FIG. 2 (color online). Spin conductivity !sð!Þ (in units of@n=mEF) vs frequency (red circles) at T ¼ 0:5TF. The Drude
model (solid black line) has the same total spectral weight as
!sð!Þ given by the spin f-sum rule. Part of the spectral weight is
transferred from lower frequencies into a universal high-
frequency tail (dotted blue line) !sð! ! 1Þ ¼ C=3#ðm!Þ3=2
with Tan contact density C ¼ 0:086k4F [9].
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FIG. 3 (color online). Spin drag rate !sd (in units of EF=@) vs
reduced temperature T=TF (solid red line). The experimental
data [4] (blue squares) for a trapped gas are rescaled up by a
factor of 5.3 to compensate for the effect of the trapping
potential. The dashed black line is the result from kinetic theory,
!sd ¼ 0:9ðT=TFÞ&1=2EF=@.
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Spin diffusivity

• obtain diffusivity from conductivity,

                                                                               minimum

• recent Monte Carlo simulation:                        [Wlazlowski et al. arxiv:1212.1503]

(dashed black line). In the strongly interacting region
near Tc, however, the fermions cease to be well-defined
quasiparticles [17,18] and the Boltzmann theory is not
applicable. Therefore, we employ the strong coupling
Luttinger-Ward theory to compute spin transport. The
Luttinger-Ward (or 2PI) formalism [19,20] is based on
the self-consistent T matrix for repeated particle-particle
scattering and becomes exact at high temperatures. In the
most interesting regime near Tc and unitarity there is no
small parameter to estimate its accuracy. Instead, a com-
parison with experiment shows that it accurately describes
both the normal and the superfluid phase of the BEC-BCS
crossover problem [21]: the values for Tc=TF ¼ 0:16ð1Þ
and the Bertsch parameter ! ¼ 0:36ð1Þ agree within error
bounds with precision experimental [13] and diagrammatic
Monte Carlo [22] results. We have devised a framework
which includes all diagrams needed to exactly fulfill the
conservation laws including scale invariance [9] and the
Tan relations [11].

The Luttinger-Ward theory has recently been extended to
compute transport coefficients in linear response using the
Kubo formula: this gives access to the frequency-dependent
shear viscosity of the unitary Fermi gas, which was found
to satisfy the exact viscosity sum rule [9,23].We now extend
this work to the case of spin transport in order to explain the
recent experiment by Sommer et al. [4], and we proceed as
follows: first we compute the frequency-dependent spin
conductivity "sð!Þ of the unitary Fermi gas. The dc value
"s ¼ "sð! ¼ 0Þ determines the spin drag rate !sd ¼
n=m"s at density n, which is the rate of momentum transfer
between atoms of opposite spin. We then compute the spin
susceptibility #s ¼ @ðn" $ n#Þ=@ð$" $$#Þ which charac-
terizes the magnetic properties of the system [14,24].
Finally, we determine the spin diffusivity shown in Fig. 1
by the Einstein relation Ds ¼ "s=#s.

The strongly interacting two-component Fermi gas is
described by the grand canonical Hamiltonian

H ¼
X

k;"

ð"k $$"Þcyk"ck" þ g0
V

X

k;k0;q

cyk"c
y
k0#ck0$q#ckþq"

where "k ¼ k2=2m (@ & 1) is the free particle dispersion
and$" the chemical potential for the" ¼" , # components.
The s-wave contact interaction g0 acts only between differ-
ent fermion species at low temperatures. The bare interac-
tion is singular in the ultraviolet [2] and needs to be
regularized; the renormalized coupling g ¼ 4%@2a=m
determines the s-wave scattering length a.
The transport coefficients are obtained from the micro-

scopic model via the retarded number-current or spin-
current correlation function

#jn=jsðq; !Þ ¼ i@ Z 1

0
dt

Z
d3xeið!t$q'xÞ

( h½ðjz" * jz# Þðx; tÞ; ðjz" * jz# Þð0; 0Þ+i: (1)

The spin selective current operators in Fourier representa-
tion are given by j"ðqÞ ¼ V$1P

kð@k=mÞcyk$q=2;"ckþq=2;".

The correlation function determines the conductivity

"n=sð!Þ ¼ lim
q!0

Im#jn=jsðq; !Þ
!

(2)

which measures the relaxation of a global number or spin
current at frequency !. The total response integrated over
all frequencies is proportional to the particle density by the
number or spin f-sum rule [25,26]

Z 1

$1

d!

%
"n=sð!Þ ¼ n

m
: (3)

For a momentum-conserving interaction the particle cur-
rent cannot decay and "nð!Þ ¼ %n&ð!Þ=m. In contrast,
scattering transfers momentum between " and # particles so
that the spin current relaxes and "sð!Þ has a nontrivial
structure.
We compute the current correlation function (1) using

field theoretical methods and Feynman diagrams in the
Matsubara formalism [25]. The current operator jz ¼ jz" *
jz# implies a current response vertex J""0 ¼ J0""0 þ JMT

""0 þ
JAL""0 in the Feynman diagrams which splits into three con-
tributions [9,20] (","0 are the spin indices of incoming and
outgoing fermion lines). The first term is the bare number
(spin) current vertex J0""0nðpÞ ¼ pz'

0
""0 [J0""0sðpÞ ¼

pz'
3
""0] with the ‘ ¼ 1 partial wave component of the

momentum p and Pauli matrices 'j. The other two terms
are current vertex corrections which are required to fulfill
the conservation laws. The Maki-Thompson (MT) contri-
bution describes direct scattering between quasiparticles
while the Aslamazov-Larkin (AL) term captures the in-
duced current of fermion pairs, or molecules (for details
see Ref. [9]). For a mass current both " and # fermions move
in the same direction and induce a current of pairs, leading
to a sizeable AL term. In contrast, for a spin current " and #
atoms move in opposite directions [4] and no pair current is
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FIG. 1 (color online). Spin diffusivity Ds vs reduced tempera-
ture T=TF (solid red line) in the normal phase, T > Tc ’ 0:16TF.
The experimental data [4] (blue squares) for the trapped gas are
rescaled down by a factor of 4.7 to compensate for the effect of
the trapping potential. The dashed black line is the result from
kinetic theory, Ds ¼ 1:1ðT=TFÞ3=2@=m.
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Conclusion and outlook

• universal viscosity bound:
unitary Fermi gas most perfect non-relativistic fluid

• clouds of opposite spin bounce off each other

• universal diffusion bound from holographic duality?
unitary spin diffusivity                           constrains bound

• local transport measurements: [cf. Ku et al. 2012 for thermodynamics]
extract diffusivity from spin-resolved dynamic structure factor

Ds & 1.3 ~/m

k! kF. Alternatively, the contact density can be determined from the vertex function (C.4) as
!h4C ¼ #m2CX0¼Xþ [58]. At high temperatures T! TF this can be evaluated analytically and leads to

CðTÞ ¼ 4m2z2T2

p!h4 ¼ 8p2!h2n2

mT
¼ 16k4

F

9p2h
; ð60Þ

which agrees precisely with the result obtained in Ref. [76] (note the different definition of the contact
in this work which accounts for an apparent difference by a factor of 4p2). This asymptotic behavior is
in perfect agreement with our numerical results in Fig. 8. An alternative way to infer the high fre-
quency behavior of the shear viscosity is based on the relation [28]

gðxÞ ¼ lim
q!0

3x3

4!hq4 Imvqqðq;xÞ ð61Þ

between the frequency-dependent shear viscosity and the mass–density correlation function vqq(q,
x), a relation that is valid at all frequencies. As shown by Son and Thompson [77], the density corre-
lation function at large frequencies

Imvqqðq;x!1Þ ¼
4!h5=2q4C

45pm1=2x7=2 ð62Þ

is again fully determined by the Tan contact C. The resulting coefficient Cg in the high-frequency tail of
the shear viscosity agrees precisely with that in Eq. (59) above.

Our result for the temperature-dependent shear viscosity can now be combined with the known
value of the entropy density [58] to determine the ratio g/s in the normal fluid regime of the unitary
gas. As shown in Fig. 9, this ratio exhibits a very shallow minimum around T ' 0.3–0.4TF, below which
g/s increases very slowly. The precise location of the minimum clearly depends sensitively on how
accurate the results for both the viscosity and entropy are in this regime. On quite general grounds,
it is likely that the minimum in g/s is close to the superfluid transition temperature Tc ’ 0.15TF, and
that g/s is monotonically increasing as the temperature is lowered in the superfluid regime, eventually
crossing over to the steep increase predicted by Eq. (16) as the temperature approaches zero. The fact
that our diagrammatic calculation gives results, e.g., for the critical temperature and the associated
entropy density s ’ 0.7nkB [58] which agree well with precise numerical results [78], suggests that
our ratio g/s provides a quantitatively reliable estimate, despite the fact that the precise location of
the minimum is difficult to determine. Granting that our value g/s ’ 0.6!h/kB for the minimum is close
to the exact result, we conclude that the ratio g/s for the unitary Fermi gas remains a factor of about
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Fig. 9. Shear viscosity to entropy ratio g/s (blue circles) in comparison with known asymptotes. The dashed red line on the left
is the phonon contribution g/s ( (T/TF)#8 in Eq. (16), the solid red line on the right the classical limit (54) divided by the classical
entropy from the Sackur–Tetrode formula. The red diamond indicates Tc ’ 0.15TF. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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(dashed black line). In the strongly interacting region
near Tc, however, the fermions cease to be well-defined
quasiparticles [17,18] and the Boltzmann theory is not
applicable. Therefore, we employ the strong coupling
Luttinger-Ward theory to compute spin transport. The
Luttinger-Ward (or 2PI) formalism [19,20] is based on
the self-consistent T matrix for repeated particle-particle
scattering and becomes exact at high temperatures. In the
most interesting regime near Tc and unitarity there is no
small parameter to estimate its accuracy. Instead, a com-
parison with experiment shows that it accurately describes
both the normal and the superfluid phase of the BEC-BCS
crossover problem [21]: the values for Tc=TF ¼ 0:16ð1Þ
and the Bertsch parameter ! ¼ 0:36ð1Þ agree within error
bounds with precision experimental [13] and diagrammatic
Monte Carlo [22] results. We have devised a framework
which includes all diagrams needed to exactly fulfill the
conservation laws including scale invariance [9] and the
Tan relations [11].

The Luttinger-Ward theory has recently been extended to
compute transport coefficients in linear response using the
Kubo formula: this gives access to the frequency-dependent
shear viscosity of the unitary Fermi gas, which was found
to satisfy the exact viscosity sum rule [9,23].We now extend
this work to the case of spin transport in order to explain the
recent experiment by Sommer et al. [4], and we proceed as
follows: first we compute the frequency-dependent spin
conductivity "sð!Þ of the unitary Fermi gas. The dc value
"s ¼ "sð! ¼ 0Þ determines the spin drag rate !sd ¼
n=m"s at density n, which is the rate of momentum transfer
between atoms of opposite spin. We then compute the spin
susceptibility #s ¼ @ðn" $ n#Þ=@ð$" $$#Þ which charac-
terizes the magnetic properties of the system [14,24].
Finally, we determine the spin diffusivity shown in Fig. 1
by the Einstein relation Ds ¼ "s=#s.

The strongly interacting two-component Fermi gas is
described by the grand canonical Hamiltonian

H ¼
X

k;"

ð"k $$"Þcyk"ck" þ g0
V

X

k;k0;q

cyk"c
y
k0#ck0$q#ckþq"

where "k ¼ k2=2m (@ & 1) is the free particle dispersion
and$" the chemical potential for the" ¼" , # components.
The s-wave contact interaction g0 acts only between differ-
ent fermion species at low temperatures. The bare interac-
tion is singular in the ultraviolet [2] and needs to be
regularized; the renormalized coupling g ¼ 4%@2a=m
determines the s-wave scattering length a.
The transport coefficients are obtained from the micro-

scopic model via the retarded number-current or spin-
current correlation function

#jn=jsðq; !Þ ¼ i@ Z 1

0
dt

Z
d3xeið!t$q'xÞ

( h½ðjz" * jz# Þðx; tÞ; ðjz" * jz# Þð0; 0Þ+i: (1)

The spin selective current operators in Fourier representa-
tion are given by j"ðqÞ ¼ V$1P

kð@k=mÞcyk$q=2;"ckþq=2;".

The correlation function determines the conductivity

"n=sð!Þ ¼ lim
q!0

Im#jn=jsðq; !Þ
!

(2)

which measures the relaxation of a global number or spin
current at frequency !. The total response integrated over
all frequencies is proportional to the particle density by the
number or spin f-sum rule [25,26]

Z 1

$1

d!

%
"n=sð!Þ ¼ n

m
: (3)

For a momentum-conserving interaction the particle cur-
rent cannot decay and "nð!Þ ¼ %n&ð!Þ=m. In contrast,
scattering transfers momentum between " and # particles so
that the spin current relaxes and "sð!Þ has a nontrivial
structure.
We compute the current correlation function (1) using

field theoretical methods and Feynman diagrams in the
Matsubara formalism [25]. The current operator jz ¼ jz" *
jz# implies a current response vertex J""0 ¼ J0""0 þ JMT

""0 þ
JAL""0 in the Feynman diagrams which splits into three con-
tributions [9,20] (","0 are the spin indices of incoming and
outgoing fermion lines). The first term is the bare number
(spin) current vertex J0""0nðpÞ ¼ pz'

0
""0 [J0""0sðpÞ ¼

pz'
3
""0] with the ‘ ¼ 1 partial wave component of the

momentum p and Pauli matrices 'j. The other two terms
are current vertex corrections which are required to fulfill
the conservation laws. The Maki-Thompson (MT) contri-
bution describes direct scattering between quasiparticles
while the Aslamazov-Larkin (AL) term captures the in-
duced current of fermion pairs, or molecules (for details
see Ref. [9]). For a mass current both " and # fermions move
in the same direction and induce a current of pairs, leading
to a sizeable AL term. In contrast, for a spin current " and #
atoms move in opposite directions [4] and no pair current is
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FIG. 1 (color online). Spin diffusivity Ds vs reduced tempera-
ture T=TF (solid red line) in the normal phase, T > Tc ’ 0:16TF.
The experimental data [4] (blue squares) for the trapped gas are
rescaled down by a factor of 4.7 to compensate for the effect of
the trapping potential. The dashed black line is the result from
kinetic theory, Ds ¼ 1:1ðT=TFÞ3=2@=m.
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