Spin transport in 2D Fermi gases

dimensionality, scale invariance and strong interaction

Tilman Enss (University of Heidelberg)

Nicolò Defenu (Heidelberg, theory) Jochim group (Heidelberg, expt) Thywissen group (Toronto, expt)

Frontiers in 2D Quantum Systems Trieste, 14 Nov 2017

2D Fermi gas

dilute gas of **†** and **↓** fermions with contact interaction:

$$\mathcal{H} = \int d\mathbf{x} \sum_{\sigma=\uparrow,\downarrow} \psi_{\sigma}^{\dagger} \Big(-\frac{\hbar^2 \nabla^2}{2m} - \mu_{\sigma} \Big) \psi_{\sigma} + g_0 \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow} \psi_{\uparrow} \psi_{\downarrow} \psi_{\uparrow} \psi_{\downarrow} \psi_{\downarrow} \psi_{\uparrow} \psi_{\downarrow} \psi_{\downarrow} \psi_{\uparrow} \psi_{\downarrow} \psi_{$$

Levinsen & Parish Annu. Rev. CMP 2015

Scattering properties

 two-particle scattering: how does coupling g change when zooming out?

$$\frac{dg}{d\ln k} = \frac{g^2}{2}$$
 attractive: strong binding repulsive: asympt. free

coupling always energy dependent (log. running coupling)

• never scale invariant (quantum anomaly breaks classical scale invariance) Holstein 1993; Pitaevskii & Rosch 1997

exact two-body scattering amplitude:

always bound state

$$f(k) = \frac{4\pi}{\ln(-\varepsilon_B/E_k)} = \frac{2\pi}{i\frac{\pi}{2} - \ln(ka_{2D})}$$

$$\varepsilon_B = \frac{\hbar^2}{ma_{2\mathrm{D}}^2}$$

typical scale k=k_F: interaction parameter ln(k_Fa_{2D})

Phase diagram

Thermodynamics & scale invariance

Thermodynamics & scale invariance

scale invariance broken

Local many-body correlations

subtract two-body binding energy:

strong local correlation in crossover: quantify scale invariance breaking

Local many-body correlations

subtract two-body binding energy:

Hofmann 2012 Taylor & Randeria 2012

strong local correlation in crossover: quantify scale invariance breaking

T>0: Luttinger-Ward approach

• repeated particle-particle scattering dominant in dilute gas:

self-consistent T-matrix

Haussmann 1993, 1994; Haussmann et al. 2007

self-consistent fermion propagator (400 momenta / 400 Matsubara frequencies) Bauer, Parish & Enss PRL 2014

Density equation of state: theory

maximum & density driven crossover

$$n = 2 \int d\omega f(\omega) \rho(\omega) \quad \Delta n_0 = 2 \ln(1 + e^{\beta \mu}) / \lambda_T^2$$

Ku+ Science 2012

Equation of state: cold atom experiment (Jochim)

Boettcher, Bayha, Kedar, Murthy, Neidig, Ries, Wenz, Zürn, Jochim & Enss PRL 2016 see also Anderson & Drut PRL 2015 (QMC), Fenech et al. PRL 2016 (expt)

Equation of state: Bose side

agrees with bosonic QMC in quasi-2D geometry (open symbols)

Boettcher, Bayha, Kedar, Murthy, Neidig, Ries, Wenz, Zürn, Jochim & Enss PRL 2016

Universality near critical point

Low temperature: chemical potential

• chemical potential vs interaction strength:

Boettcher, Bayha, Kedar, Murthy, Neidig, Ries, Wenz, Zürn, Jochim & Enss PRL 2016

Transport

spin diffusion

Quantum bounds on transport

• 3D spin diffusion $D_s \simeq \tau_r v^2/3$:

quantum limited

Enss, Inguscio, Zaccanti & Roati, Nature Phys. 2017

Quantum bounds in 2D

- 3D unitary Fermi gas strongly interacting, scale invariant, quantum critical point (QCP): transport bounds
- 2D Fermi gas strong contact correlations, but not scale invariant, no interacting QCP: transport bounds?

2D transport bounds found for charge conductivity, ...

transverse spin diffusion:

Longitudinal vs transverse spin diffusion

Spin diffusion in kinetic theory

local magnetization vector and gradient

$$\mathcal{M}(\mathbf{r},t) = \mathcal{M}(\mathbf{r},t) \,\hat{\mathbf{e}}(\mathbf{r},t)$$

$$\frac{\partial \mathcal{M}}{\partial r_i} = \frac{\partial \mathcal{M}}{\partial r_i} \hat{e} + \mathcal{M} \frac{\partial \hat{e}}{\partial r_i}$$

Boltzmann equation for spin distribution function

$$\frac{D\sigma_{p}}{Dt} \equiv \frac{\partial\sigma_{p}}{\partial t} - \sum_{i} v_{pi} \frac{\partial\mathcal{M}}{\partial r_{i}} \hat{e} \sum_{\sigma} t_{\sigma} \frac{\partial n_{p\sigma}}{\partial \varepsilon_{p}}$$

$$+ \sum_{i} v_{pi} \frac{\partial \hat{e}}{\partial r_{i}} (n_{p+} - n_{p-}) + \Omega \times \sigma_{p} = \left(\frac{\partial\sigma_{p}}{\partial t}\right)_{\text{coll}} \qquad \begin{array}{c} \text{Landau} \\ \text{Leggett} \\ \text{Lhuillier} \\ \text{Meyerover se} \end{array}$$

Landau 1956, Silin 1957; Leggett & Rice 1968-70; Lhuillier & Laloë 1982; Meyerovich 1985; Jeon & Mullin 1988, 1992

• many-body T-matrix in collision integral and spin rotation Enss PRA 2013 derived as leading order in large-N expansion Enss PRA 2012

Demagnetization dynamics by spin transport

transverse spin current precesses around local magnetization

$$oldsymbol{J}_j^\perp = -D_{ ext{eff}}^\perp
abla_j M - \gamma M imes D_{ ext{eff}}^\perp
abla_j M$$

diffusive reactive (Leggett-Rice)

• imprint local perturbation on fluid:

Demagnetization dynamics: Leggett-Rice

$$M_{xy} \equiv M_x + iM_y = i\sin(\theta)$$

$$\partial_t M_{xy} = -i\alpha x_1 M_{xy} + D_{\text{eff}}^{\perp} (1 + i\gamma M_z) \nabla_1^2 M_{xy}$$

gradient complex diffusion

homogeneous system: rotating frame $M_{xy}({\pmb x},t)=e^{-i\alpha x_1 t}m(t)$ Leggett & Rice 1968, 1970

$$\partial_t m = -D_{\text{eff}}^{\perp} (1 + i\gamma M_z) \alpha^2 t^2 m(t)$$

$$M_{xy}(t) = M_{xy}(0) e^{-i\alpha x_1 t} e^{-D_{\text{eff}}^{\perp}(1+i\gamma M_z)\alpha^2 t^3/3}$$

$$\left|\frac{M_{xy}(t)}{M_{xy}(0)}\right| = e^{-D_{\text{eff}}^{\perp}\alpha^2 t^3/3} \qquad \Delta\phi = \arg M_{xy} = -\gamma M_z \ D_{\text{eff}}^{\perp}\alpha^2 \frac{t^3}{3}$$

Demagnetization dynamics (Thywissen experiment)

Diffusion D_{eff} from magnitude

Leggett-Rice γ from phase

$$D_{\rm eff}^{\perp} = \frac{D_0^{\perp}}{1 + \gamma^2 M^2}$$

Luciuk, Smale, Böttcher, Sharum, Olsen, Trotzky, Enss & Thywissen, PRL 118, 130405 (2017)

Transverse diffusion

interaction dependence: minimum near unitarity, confirm quantum limited spin diffusion

Luciuk, Smale, Böttcher, Sharum, Olsen, Trotzky, Enss & Thywissen, PRL 118, 130405 (2017)

$$D_0^{\perp} = 1.7(6) \hbar/m$$

$$\frac{d\sigma}{d\Omega} = \frac{1}{4k} \left| \frac{2\pi}{i\frac{\pi}{2} - \ln(ka_{2D})} \right|^2 \le \frac{4}{k}$$

transport calculation:

- 1. compute spin transport coefficient from microscopic quantum theory
- 2. solve Boltzmann equation for spin helix in trapping potential

cf. Enss PRA 2015

Spin-rotation parameter γ

• precession of spin current around local magnetization m:

Ramsey phase
$$\phi \propto \gamma M = -Wm \frac{\tau_{\perp}}{\hbar}$$
 W: effective interaction
molecular field
interaction dependence:
zero crossing near ln(k_Fa)=-1
repulsive interaction
for ln(k_Fa) < -1
 ~ 0
 -1
 -2
 -4
 -2
 -2
 -4
 -2
 -2
 -4
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2

Local correlations build up over time

local correlations build up during demagnetization

Local correlations build up over time

contact 15x smaller than in ground state: Fröhlich+ PRL 2012: C~5 N k_F^2

demagnetization into excited state which is almost scale invariant

upper branch stable >> Fermi time

Luciuk+ PRL 2017

Small reheating during demagnetization

demagnetization switches on interaction, but onto lower or upper branch?

3. reheating: total E conserved;

initially T/TF=0.3 (polarized gas) lower branch T/TF=2.5 @ ln(kFa)=0 (application of EoS)

measured much smaller T/TF=0.7

initial polarized gas (scale invariant):

$$V = \frac{E}{2}$$

after demagnetization (contact measures scale invariance breaking):

$$V = \frac{1}{2}E + \frac{\hbar^2}{8\pi m}C_{2\mathrm{D}}$$

virial (cloud size) grows only 4% during demagnetization

$$V/N = \frac{1}{2}m(\omega_1^2 \langle x_1^2 \rangle + \omega_2^2 \langle x_2^2 \rangle)$$

Conclusion

- 2D equation of state at T=0 and T>0: EoS strongly scale dependent density driven crossover from Bose to Fermi substantial density renormalization Bauer, Parish & Enss PRL 2014 Boettcher *et al.* PRL 2016
- spin transport in strongly interacting gas: quantum bound relaxation rate

$$\tau_r^{-1} \lesssim \frac{k_B T}{\hbar}$$

scale invariance for transport almost recovered Luciuk, Smale, Böttcher, Sharum, Olsen, Trotzky, Enss & Thywissen PRL 2017; Enss PRA 2015 & 2013

• upper branch physics: demagnetization into metastable upper branch

Outlook

Additional material

Scaling of density maximum n/n₀

• maximum where
$$\tilde{\mu} \simeq 0$$
 :

$$(\beta\mu)_{\rm max} \simeq -\frac{\beta\varepsilon_B}{2} + \ln 2$$

at density

$$(n/n_0)_{\rm max} \simeq 2e^{\beta \varepsilon_B/2}$$

Boettcher+ PRL 2016