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Coupled superfluidity of binary Bose mixtures in two dimensions
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We consider a two-component Bose gas in two dimensions at a low temperature with short-range repulsive
interaction. In the coexistence phase where both components are superfluid, interspecies interactions induce a
nondissipative drag between the two superfluid flows (Andreev-Bashkin effect). We show that this behavior leads
to a modification of the usual Berezinskii-Kosterlitz-Thouless (BKT) transition in two dimensions. We extend
the renormalization of the superfluid densities at finite temperature using the renormalization-group approach
and find that the vortices of one component have a large influence on the superfluid properties of the other,
mediated by the nondissipative drag. The extended BKT flow equations indicate that the occurrence of the
vortex unbinding transition in one of the components can induce the breakdown of superfluidity also in the other,
leading to a locking phenomenon for the critical temperatures of the two gases.
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I. INTRODUCTION

The physics of degenerate two-component bosonic mix-
tures plays an important role in various systems, such as
3He-4He mixtures [1–3], ultracold atomic gases of differ-
ent species or hyperfine states [4–7], bilayer Bose systems
[8], and two-gap superconductors [9]. Recently, experimental
progress in creating degenerate two-component Bose droplets
and mixtures [10–14] has raised the question whether super-
fluidity is robust and how the superfluid behavior in each
component is influenced by the presence of the other. Further-
more, while the behavior of low-dimensional Bose mixtures in
the quantum degenerate regime has already been established
[15,16], the finite-temperature picture for two coupled com-
ponents has yet to be clarified.

In the quantum degenerate case, the interspecies interaction
leads to the hybridization of the low-energy phonon excita-
tions of the two components [17–21]. The superfluid behavior
is mediated by the long-wavelength phonon fluctuations of the
mixture, and as a result, a nondissipative drag or Andreev-
Bashkin interaction between the superfluid flows of both com-
ponents appears [3,22–29]. For the single-component Bose
gas in two dimensions at finite temperature, superfluidity is
eventually destroyed by topological vortex excitations which
drive the BKT transition to the normal state [30–32]. What is
the role of topological excitations in the Bose mixture [33]?
and What effect do they have on the nondissipative drag?
Our results suggest that the interaction between different
topological excitations can lead to coupled superfluidity in
both components, with both critical temperatures locked to a
unique value.

In this paper we first compute the phase diagram of the
degenerate two-component Bose mixture with equal mass on
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the basis of long-wavelength phonon fluctuations and quantify
the nondissipative drag originating from the fluctuations at
zero and finite temperature. We then build on these results
to estimate the effect of vortex excitations on the superfluid
behavior. Specifically, we extend the BKT renormalization-
group (RG) flow equations from one to two components and
explicitly include the interaction effect between topological
excitations of different components. We find a strong renor-
malization of the superfluid densities and the nondissipative
drag due the topological excitations. Remarkably, this can
even lead to the breakdown of superfluidity in both compo-
nents as soon as topological excitations become large in one
component. This behavior could be observed in experiments
which image vortices [34].

Our findings have important consequences for other two-
component systems which can be mapped to Bose mixtures
including species with different masses, such as Na and K. Be-
sides ultracold-atom experiments, this could be important for
bilayer Bose systems [8,25,35] and classical nonequilibrium
simulations [36–38], but also in connection with the spatial
form of vortices within a Bose mixture [25,39] and for two-
component Bose mixtures with intercomponent Josephson
coupling [40]. Furthermore, in a two-band superconductor
such as MgB2 [9] with multiple energy gaps, different types of
Cooper pairs can form a binary Bose mixture [26]. It was also
proposed that mixtures of neutron and proton Cooper pairs
form a condensate inside neutron stars [41] and within the
metallic state of hydrogen [42].

Furthermore, several fundamental condensed matter prob-
lems are related to the physics of bilayer models and cou-
pled field theories [43], such as heavy-fermion systems [44]
and the prototypical Kondo lattice model [45], whose crit-
ical properties have been connected to the physics of cou-
pled quantum spin chains [46]. More recently, much atten-
tion has been devoted to twisted bilayer graphene [47–49],
where experimental evidence of superconductivity has been
observed [50].

2469-9926/2019/99(6)/063627(11) 063627-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.063627&domain=pdf&date_stamp=2019-06-28
https://doi.org/10.1103/PhysRevA.99.063627


KARLE, DEFENU, AND ENSS PHYSICAL REVIEW A 99, 063627 (2019)

The present analysis can also be cast in the wider frame-
work of layered two-dimensional (2D) systems, which are
deeply connected to high-temperature superconductors [51].
In this context, generalized BKT flow equations have been
derived [52–54] and successfully applied to the description
of transport properties in strongly correlated superconduc-
tors [55,56].

The paper is structured as follows. In Sec. II we introduce
the model and show its mean-field phase diagram; in Sec. III
we present the mixed phonon modes and the phase diagram
of the superfluid densities without topological excitations. In
Sec. IV we derive the new coupled RG flow, which shows
how the topological excitations alter the superfluid behavior
in two dimensions. We discuss the implications in Sec. V and
conclude with Sec. VI.

II. MEAN-FIELD PHASE DIAGRAM

We consider a weakly interacting binary Bose mixture with
equal masses in two dimensions, which is described by the
Lagrangian [4,20,21]

L(x, t ) =
∑

i

ψ
†
i (x, t )

[
i∂t − ∇2

2m
− μi

]
ψi(x, t )

+ 1

2

∑
i j

gi j |ψi(x, t )|2|ψ j (x, t )|2. (1)

Here, ψi(x, t ) denote complex bosonic fields for species i =
1, 2 with equal masses m but individual chemical potentials
μi. The short-range interaction is assumed to be repulsive both
within species (g11, g22 > 0) and between species (g12 > 0).
The coupling strengths gi j are given in terms of the physical
2D scattering lengths ai j > 0 [29,57–60],

gi j (E ) = 4π/m

ln
(
4/e2γ ma2

i jE
) . (2)

Note that the coupling strength always depends on the scat-
tering energy E , for which we insert the chemical potential
μ as the typical many-body energy scale to incorporate the
effect of quantum fluctuations (see Appendix A for a discus-
sion). Henceforth we restrict ourselves to the case of equal
intraspecies scattering g11 = g22. An asymmetry between μ1

and μ2 or between g11 and g12 then leads to nonsymmetric su-
perfluid behavior. In terms of the number densities ni(x, t ) =
|ψi(x, t )|2 we arrive at the Lagrangian for the potential part:

Lpot = −μ1n1 − μ2n2 + 1
2 g11

(
n2

1 + n2
2

) + g12n1n2. (3)

We introduce relative variables �μ = 1
2 (μ2 − μ1), μ =

1
2 (μ2 + μ1), �g = 1

2 (g12 − g11), g = 1
2 (g12 + g11), and n =

n1 + n2, �n = n2 − n1 to write

Lpot = 1

2
gn2 − 1

2
�g(�n)2 − μn − �μ�n

= g

2

(
n − μ

g

)2

− �g

2

(
�n + �μ

�g

)2

+ const,

(4)

FIG. 1. Mean-field phase diagram for a Bose mixture in the
ground state. A mixture occurs only in the coexistence regime at the
left, where the interspecies repulsion is smaller than the intraspecies
repulsion (on the left margin �g = −g, g12 = 0, and the interspecies
repulsion vanishes). In contrast, in the phase separation regime there
are only bosons of species 2 because μ2 > μ1. In this work, we study
how fluctuations modify the coexistence regime. Note that we have
chosen units such that g = 1 and μ = 1.

where the second line holds for g,�g �= 0. The potential is
minimized by the mean-field solution n̄ = n̄1 + n̄2 = μ/g and

�n̄ = n̄2 − n̄1 =
{

−�μ

�g ,
|�μ|

μ
� |�g|

g and �g < 0,
μ

g sgn[�μ] otherwise.

(5)

The mean-field phase diagram exhibits a coexistence regime
(miscible; first case) and a phase separation regime (immis-
cible; second case), as illustrated in Fig. 1. In the following,
we focus on the left half of the diagram, i.e., for �g < 0. For
�μ < 0 the phase diagram is the mirror image with n̄2 ↔ n̄1.

III. PHONON EXCITATIONS

In two dimensions, a Bose-Einstein condensate with long-
range coherence does not exist at any finite temperature.
However, there can be a quasicondensate with finite superfluid
density ns [26,61]. The low-energy fluctuations around the
quasicondensates in the mixture are given by two branches of
phonon modes with dispersion [19,22] (see Appendix A for a
derivation),

ω2
k± = εk (εk + 2mc2

±), (6)

in terms of the speed of sound

2mc2
± = g11(n̄1 + n̄2) ±

√
g2

11(n̄2 − n̄1)2 + 4g2
12n̄1n̄2, (7)

where we have used the mean-field densities n̄i defined in
(5). The linearity of the dispersion relation allows for super-
fluid behavior [62]. The two branches of normal modes are
combined excitations of components 1 and 2, corresponding
to density (c+) and spin (c−) excitations [63] (see Fig. 2).
For definiteness, we have chosen parameters for the experi-
mentally relevant case of an 87Rb mixture in two hyperfine
states. The spin mode becomes soft, c− → 0, at the quantum
phase transition to the phase-separated regime, while the
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FIG. 2. Speed of sound c± of two branches of normal modes
from Eq. (7). The lower branch c− → 0 becomes soft at the transition
to the phase separation regime where n1 → 0, while the upper branch
(dashed line) c+ → c2. Parameters are for an 87Rb Bose mixture with
scattering length a11 = 100aB and varying a12. The energy scale E in
Eq. (2) is set to the many-body scale μ = (μ1 + μ2 )/2 = 2.8 μK,
and we vary the chemical potential difference �μ = (μ2 − μ1)/2.

density mode c+ → c2 approaches the speed of sound of
component 2.

The zero-point quantum fluctuations of the normal modes
contribute to the ground-state equation of state as a shift of
the energy density. In Appendix A we show that this can be
reabsorbed in a logarithmic correction to the coupling gi j in
Eq. (2) [16,60].

Unlike the single-component case, for two components
we encounter a nondissipative drag, the Andreev-Bashkin
entrainment effect [3], between the two superfluid currents
j(i)
s (see [26] for a comprehensive introduction). The supercur-

rents j(i)
s = (mL2)−1d	fl/dvi can be computed from the grand

potential 	fl of long-wavelength phonon fluctuations and are
expressed in terms of the superflows vi = m−1∇θi as

j1 = (n̄1 − nn1 − ndr)v1 + ndrv2 = ñ1v1 + ndrv2,

j2 = (n̄2 − nn2 − ndr)v2 + ndrv1 = ñ2v2 + ndrv1. (8)

Thermal and quantum fluctuations give rise to the
temperature-dependent drag density ndr as well as the normal
densities nn,i, which in turn define the depleted densities
ns,i = n̄i − nn,i (see Appendix B for explicit expressions for
nn,i and ndr). The diagonal coefficients then give the super-
fluid densities ñi = ns,i − ndr. To demonstrate the quantitative
importance of these fluctuation effects, we have computed
both the superfluid densities (Fig. 3) and the drag density
(Fig. 4). One observes that the fluctuations become large, and
superfluidity is suppressed by the normal component, when
approaching the quantum phase transition where spin modes
become soft, c− → 0.

From Eq. (8) we see that the classical action of the phase
fluctuations can be described by the Villain model, which is
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FIG. 3. Depleted densities ns,i = n̄i − nn,i at different tempera-
tures from long-wavelength excitations only, at fixed chemical poten-
tials μ1 and μ2 (parameters for 87Rb as in Fig. 2). At zero temperature
both components are fully superfluid. The normal densities nn,i, (B1),
increase with the temperature, and they become larger for softer
phonons with a lower speed of sound, (7). In the coexistence region,
both phonon modes contribute to both normal densities; therefore,
the fluctuations of one component decrease the superfluid density of
the other component as well.

found by assuming the simplest action quadratic in vs which
reproduces the given values of ns [26]. A more rigorous
approach would be to use an RG treatment which includes
density and phase fluctuations on equal footing [64]. The
two-component Villain model [65] for bosons of the same
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FIG. 4. Nondissipative drag density ndr at different temperatures,
T = 1 μK (solid line) and T = 2 μK (dashed line), from long-
wavelength fluctuations; parameters for 87Rb as in Fig. 2. Since
the nondissipative drag arises from fluctuations between the two
components, it becomes larger for increasing temperature and for
decreasing speed of sound near the phase transition (cf. Fig. 2). Finite
values of the drag density ndr ∝ n̄1n̄2, (B2), are only possible in the
coexistence phase, where both components are present, while the
drag density trivially vanishes in the regime of phase separation.
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mass (which can be extended to bosons of different masses
straightforwardly; see (25) in [22]) reads

Ss(x) = β

2m

∫
L2

dx[ñ1(∇θ1(x))2 + ñ2(∇θ2(x))2

+ 2ndr∇θ1(x) · ∇θ2(x)]. (9)

In the above action, the effects of long-wavelength quantum
fluctuations around the quasicondensates have been included
in the effective average densities ñ1, ñ2, and ndr. These re-
sults include only lowest-order quantum fluctuations and they
are strictly valid only at low temperatures. In particular, in
the vicinity of the infinite-order superfluid transition, finite-
temperature critical fluctuations, which are represented by
vortex configurations of the phases, become relevant. These
excitations are topological and need to be explicitly intro-
duced in the Hamiltonian via a duality transformation in order
to be treated.

IV. VORTEX EXCITATIONS AND RG FLOW

The Villain model, (9), is formulated in terms of the
superfluid densities ñi and ndr, which already include the effect
of long-wavelength phonon fluctuations. However, the phases
θi ∈ [0, 2π ] are periodic and also give rise to topological
vortex excitations with nonzero winding numbers [30–32].
In this section, we derive a new RG flow equation for the
renormalization of the superfluid densities due to vortex ex-
citations. These topological excitations can be incorporated
analogously into the single-component BKT case [66]: there
is a duality transformation to a classical Coulomb gas of
vortices in both components, where the nondissipative drag
now introduces an interaction between them (see Appendix C
for the derivation). The effective action can then be written as
a sum of harmonic fluctuations and topological excitations,
Ss = Sharm + Stop + Score. The harmonic term Sharm resem-
bles Eq. (9) but with the harmonic field φ(x), which contains
no vortices. The topological term, instead, can be written as a
Coulomb gas of topological charges w

(i)
j :

Stop = −4π2β

m

⎛
⎝ñ1

∑
j<k∈V1

C
(
x(1)

j − x(1)
k

)
w

(1)
j w

(1)
k

+ ñ2

∑
j<k∈V2

C
(
x(2)

j − x(2)
k

)
w

(2)
j w

(2)
k

+ ndr

∑
j∈V1

∑
k∈V2

C
(
x(1)

j − x(2)
k

)
w

(1)
j w

(2)
k

⎞
⎠,

Score =
∑
j∈V1

S (1)
j,cr +

∑
j∈V2

S (2)
j,cr. (10)

The position of the jth (anti-)vortex of species i is denoted
x(i)

j , its winding number w
(i)
j , and the interaction between

vortices C(x − y) ≡ ln(|x − y|)/2π . The third line shows
how the drag density gives rise to an interaction between
vortices of different species. Note that also mixed vortices
x(1)

j = x(2)
k with winding numbers (w(1)

j ,w
(2)
k ) are included in

this equation. However, they are strongly suppressed at the
bare level in the case of a low drag density, ndr 	 ns,1, ns,2,

and they cannot be thermally excited in this limit. In the inter-
mediate drag density case one may expect these mixed vortex
configurations to proliferate and introduce novel phases in the
model. Nevertheless, in the weakly interacting regime relevant
for present experimental realizations this should never be the
case. The core contributions S (i)

j,cr in the last line account for
the energy cost of creating a single vortex.

The Boltzmann factor of creating a neutral vor-
tex pair depends on their interaction energy as ppair ∝
exp [−JjkC(x j − xk )] with dimensionless coupling

Jjk = 4π2β

m

{
ñ1,2 for j, k ∈ V1,2,

ndr for j ∈ V1, k ∈ V2.
(11)

The sum over these probabilities for all neutral vortex con-
figurations gives rise to the partition function (nonneutral
configurations are strongly suppressed; see Appendix C). The
interaction has to be regularized at short distances, and we
use the smaller of the two scattering lengths a ≡ min[a11, a12]
as the short-distance cutoff such that we can use the same
interaction function C(x) for both components. In the low-
temperature limit only vortex configurations with unit cir-
culation w

(i)
j = ±1 contribute to Stop [67]. In this case, the

core action is the same for all vortices within each species,∑
j∈Vi

S (i)
j,cr = 2N (i)

d S (i)
cr , where N (i)

d denotes the number of
neutral vortex-antivortex dimers of species i. In analogy to the
single-component case [68, p. 469] we find the topological
partition function

Ztop =
∞∑

N (1)
d , N (2)

d =0

e−2N (1)
d S (1)

cr(
N (1)

d !
)2 × e−2N (2)

d S (2)
cr(

N (2)
d !

)2

×
2N (1)

d∏
j=1

∫
L2

d2x j

2N (2)
d∏

k=1

∫
L2

d2xk e−Stop . (12)

The factors (Nd !)2 prevent overcounting equivalent configura-
tions in the

∑
jk sums. In Eq. (12) we can interpret exp[−S (i)

cr ]
as the effective fugacity for creating a vortex of species i.
With limT →0 Scr = ∞ we can expand the partition function
in orders of yi ≡ e−S (i)

cr as

Ztop = 1 + y2
1Z

(1)
di + y2

2Z
(2)
di︸ ︷︷ ︸

dipole contributions

+ y4
1Z (1)

qu + y2
1y2

2Z (1)(2)
qu + y4

2Z (2)
qu︸ ︷︷ ︸

quadrupole contributions

+O
(
y6

1,2

)
. (13)

At zero temperature, yi → 0 and no unbound vortices are
present; at finite temperature, the vortex density is controlled
by the respective Boltzmann factors y1,2. In analogy to the
single-component case, vortices disrupt the superfluid flow. In
order to determine the renormalization of the superfluid densi-
ties, one needs to evaluate the interactions between vortices of
both species. The effective probability of creating a vortex pair
is then given by the expectation value peff

pair = 〈e−Ji jCrr′ 〉, which
includes thermal excitation of additional dipoles according to
Eq. (13). Without loss of generality, we can choose a negative
test charge (winding number) � at r and a positive charge ⊕
at r′. We want to compute the effect on these test charges by
a dipole within the thermal ensemble, with charge � at s and
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FIG. 5. Illustration of the dipole configurations (s, s′) of order y2

with two test charges (r, r′) which appear in Eq. (13). Blue and red
refer to vortex excitations in the first and second species, respectively.
Their action is calculated below.

⊕ at s′ (see Fig. 5 for an illustration). The contributions from
these three exemplary configurations can be written as

(a) J11(Css′ +Crr′ − (Crs +Cr′s′ −Cr′s −Crs′ ))=J11(Css′ +
Crr′ − Drr′ss′ ),

(b) J22Css′ + J11Crr′ − J12(Crs +Cr′s′ −Cr′s −Crs′ ) =
J22Css′ + J11Crr′ − J12Drr′ss′ ,

(c) J11(Css′ − Crs + Crs′ ) + J12(−Cr′s′ + Crr′ + Cr′s),
where we have abbreviated C(x − x′) by Cxx′ and defined the
dipole moment Drr′ss′ = Crs + Cr′s′ − Cr′s − Crs′ . The signs
arise from the combination of winding numbers which multi-
ply the coupling. We can decompose the effective probability
peff

pair into terms where only the same or the opposite species
appears (nonmixed), as in (a) and (b), and in terms with
mixed contributions as in (c). These contributions give rise to
a screening of the bare interaction, which can be incorporated
into a renormalization of the superfluid densities. We find an
extended set of RG flow equations to leading order in fugacity
(see Appendix D for the derivation), for an increasing spatial
length scale r � ael :

dñ−1
1,2

dl
= 4π3β

m

(
y2

1,2 + y2
2,1

(
ndr

ñ1,2

)2
)

+ O
(
y4

1,2

)
,

dy1,2

dl
=

(
2 − πβ

m
ñ1,2

)
y1,2 + O

(
y3

1,2

)
,

dn−1
dr

dl
= 4π3β

m
n−1

dr

(
y2

1ñ1 + y2
2ñ2

) + O
(
y4

1,2

)
. (14)

The initial conditions for ñi and ndr are given by the coef-
ficients in the Villain model, (9), which are computed from
Eqs. (B1) and (B2) in Appendix B. According to the con-
ventional BKT argument [66], the microscopic (bare) vortex
fugacity is given by the formula yi = e−π2βñi/2m as in the
single-layer XY model. Further corrections arising from the in-
teraction between the components are negligible at the present
expansion order. The RG equations, (14), can then be inte-
grated from the microscopic scale l = 0 up to the physical
scale l .

V. RESULTS

Our flow equations, (14), extend the traditional BKT
equations for uncoupled superfluids by new terms
proportional to ndr, which introduce a coupling between
both superfluid densities during the RG flow. The new RG
equations quantify how vortices in one component influence
vortices in the other and have the tendency to suppress

superfluidity. For the uncoupled system with vanishing drag
ndr = 0, we recover two separate single-component BKT
flows for ns,i and yi. In this uncoupled case, there is a single
critical superfluid density n0

c (T ) at temperature T ; if either one
of the two bare superfluid densities n̄i,b is below this critical
value, vortex unbinding occurs in that component and drives
the renormalized superfluid density to 0, while the respective
vortex fugacity diverges, yi → ∞. In the following, we
describe how a finite coupling between the two components,
induced by the drag density, modifies this picture.

Assume that without drag ndr = 0 the superfluid density
in the first component is renormalized to some finite value
n̄1,b > n0

c , while the second component renormalizes to 0,
n̄2,b < n0

c , as illustrated in Fig. 6(a); this corresponds to a flow
with y1 → 0 and y2 → ∞. Instead, when the drag ndr �= 0 is
included, ñ1 will continue to decrease beyond the fixed point
of the uncoupled case. This can be understood analytically in
the limit y1 → 0, where the flow equation, (14), for ñ1 reads

dñ−1
1

dl
= 4π3β

m
y2

2

(
ndr

ñ1

)2

. (15)

Hence, if one of the two superfluid densities is renormalized to
0, it drags the other one to a lower density as well. Moreover,
for high enough drag densities, such additional renormal-
ization also drives the first component to the normal state,
completely disrupting superfluidity [see Fig. 6(b)]. Along the
same line, we also find a coupled superfluidity breakdown
regime, illustrated in Fig. 6(c): while the uncoupled case
would have finite superfluid densities in both components, a
high enough drag density renormalizes both of them to 0.

The observation of coupled superfluidity breakdown is
expected for values of the drag density ndr comparable to those
of the single component’s depleted densities. Specifically, for
an 87Rb mixture in two hyperfine states with a12 ≈ a11 ≈
100aB the largest ndr is reached for equal densities at a temper-
ature T ≈ 2 μK. In this configuration one has ndr ≈ 10 μm−2

(see Fig. 4), which is very close to the depleted densities for
the same parameters (see Fig. 3).

In the uncoupled case the critical temperature is given by
the Kosterlitz-Nelson criterion T̃ (i)

c = π h̄2ñi/2kBm in terms of
the renormalized superfluid density ñi at the end of the RG
flow. In the coupled case, it follows from the RG equations,
(14), that there are two critical temperatures in the coexistence
regime which differ from the uncoupled case. According to
this model, the locking of superfluidity will occur for ndr large
enough compared to n1 and n2. Note that it is not possible
to have a finite drag ndr in the high-temperature phase where
ñ1,2 → 0: if ndr < ñ1,2 initially, then it will always remain
smaller by the flow equation, such that ndr decreases to 0 as
well.

Our results suggest that finite drag densities ndr may cou-
ple the two superfluids so strongly that the collapse of one
component can lead to the collapse of the other or, even
more surprisingly, two stable superfluids in the uncoupled
regime can be driven above criticality and disappear if a
strong enough coupling is introduced. Therefore, the finite
drag density can introduce a locking effect of the two critical
temperatures, which tend to become equal in the intermediate
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FIG. 6. Exemplary BKT flow trajectories. Dashed lines illustrate the conventional flow of the uncoupled system, while solid curves
represent the coupled flows obtained for the BKT system in Eq. (14). Apart from the case of irrelevant vortex configurations where both
components remain superfluid, three major cases arise: if one of the bare superfluid densities is lower than the uncoupled critical value [middle
curves in (a) and (b)], already low drag densities may induce strong renormalization of the superfluid density in the majority component; see
(a). At higher drag densities, this renormalization may become so strong as to induce vortex unbinding also in the majority component, which
would have remained superfluid in the uncoupled case; see (b). Finally, a coupled breakdown of superfluidity appears for low enough bare
superfluid densities n̄1 ≈ n̄2 � n0

c , where both components were superfluid in the uncoupled case (dashed lines) but drag-induced fluctuations
lead the system to the normal phase; see (c).

coupling limit. Such an effect only appears for close enough
superfluid densities in the two components, as shown in Fig. 7.

VI. CONCLUSION

We find that vortex excitations in a binary Bose mixture
with the same mass [69] give rise to a coupled breakdown
of superfluidity: whenever one of the superfluids surpasses
the single-component critical temperature and vanishes, it can

0.0 0.5 1.0 1.5
nd

0.0

0.5

1.0

1.5

n s

ñ1,b = 1.600, ñ2,b = 1.500
ñ1,b = 1.550, ñ2,b = 1.540
ñ1,b = 1.700, ñ2,b = 1.480

FIG. 7. Renormalized superfluid densities as a function of the
initial drag density, for various bare initial conditions. The majority
superfluid density n̄1 is shown as a solid line, while n̄2 is represented
by a dashed line. When the bare values for the two superfluid
components are well separated, also the renormalized values always
remain apart, even at high initial drag densities; see the blue and
green curves. Nevertheless, when the bare superfluid densities n1,b

and n2,b are close enough, the locking mechanism brings them closer
and, finally, merges them at high drag densities; see the orange lines.

lead to the collapse of the other component as well, given
that the drag density ndr between them is high enough. In this
case, they share a unique critical temperature. This result is
qualitatively different from the uncoupled case, where each
component can have a different critical temperature depending
on its density in the coexistence regime. We thus observe
how topological excitations of the phase of one component
have a large influence on the superfluid properties of the
other.

Our derivation is perturbative in the fugacity and is, in prin-
ciple, valid only for small y1 and y2. Nevertheless, in analogy
with the traditional BKT case, we expect the flow equations,
(14), to capture all universal aspects of the system, at least as
long as mixed vortex configurations do not proliferate [70]. In
order to include these, one should use a theoretical approach
which incorporates both density and phase fluctuations (in-
cluding topological excitations) nonperturbatively, which can
be achieved, e.g., using the functional renormalization group
[64]. Such an accurate treatment of density fluctuations is
especially important near the quantum phase transition where
fluctuations of the relative density become soft. Nevertheless,
our flow equations already show that in the coexistence regime
not too close to the phase boundary, the superfluid transition
temperatures are locked, a new effect which is not observed in
the uncoupled case and is inaccessible in mean-field calcula-
tions.

It is important to note that this analysis is obtained for the
case g11, g12 > 0 but should, in principle, be extendable to the
more general case. However, since in the limit g = 1

2 (g11 +
g12) = 0 the speed of sound of the lower branch becomes 0;
in this case no superfluid is to be expected. Therefore, in order
to see superfluid behavior, the regime g > 0 is appropriate.
The breakdown of superfluidity is most striking in the regime
where one component is superfluid while the other is normal,
T̃ (1)

c < T < T̃ (2)
c , which could be achieved by fine-tuning the

difference of the chemical potentials �μ �= 0. In this case,
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the superfluid behavior in the majority component is disrupted
by proliferating vortices in the minority component and will
eventually collapse for strong enough drag. An experimental
test of our predictions appears viable with the present technol-
ogy for ultracold binary Bose mixtures [12–14].
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APPENDIX A: LOW-TEMPERATURE EXCITATIONS:
NORMAL MODES AND QUANTUM FLUCTUATIONS

The complex fields ψi(x, t ) = √
n̄i + δψi(x, t ) fluctuate

around the quasicondensates n̄1, n̄2 such that 〈ψi(x, t )〉 = √
n̄i

and 〈δψi(x, t )〉 = 0. The Lagrangian for the fluctuation inde-
pendent term is given by Lpot[n̄1, n̄2] in Eq. (4), whereas the
fluctuating part can be written as

Lfl =
∑

i

L(1)
i + L(2)

i + L(3)
i + L(4)

i , (A1)

where L(1)
i for component i consists of terms linear in δψ , L(2)

i
of quadratic terms, etc. These are given by

L(1)
1 = δψ

†
1 (−μ1 + g11n̄1 + g12n̄2)

√
n̄1 + H.c.,

L(2)
1 = δψ

†
1

(
∂τ − ∇2

2m
− μ1 + 2g11n̄1 + g12n̄2

)
δψ1

+ 1

2
g11n̄1

(
(δψ†

1 )2 + δψ2
1

)
+ 1

2
g12

√
n̄1n̄2(δψ†

1 δψ
†
2 + δψ

†
1 δψ2 + H.c.),

L(3)
1 = g11

√
n̄1(δψ†

1 )2δψ1 + g12
√

n̄1δψ
†
2 δψ2δψ1 + H.c.,

L(4)
1 = 1

2
g11(δψ†

1 δψ1)2 + 1

2
g12(δψ†

1 δψ
†
2 δψ1δψ2), (A2)

and similar terms arise for the second component L( j)
2 . At

this point, we neglect higher terms than quadratic ones, insert
the mean-field densities, (5), to eliminate L(1)

i , and perform
the Fourier transform. The Lagrangian can then be written
Lfl = 1

2 δψ† M δψ with δψ† = (δψ†
1 , δψ1, δψ

†
2 , δψ2), and

the quadratic form

M =

⎛
⎜⎜⎝

εk + g11n̄1 − ω g11n̄1 g12
√

n̄1n̄2 g12
√

n̄1n̄2

g11n̄1 εk + g11n̄1 + ω g12
√

n̄1n̄2 g12
√

n̄1n̄2

g12
√

n̄1n̄2 g12
√

n̄1n̄2 εk + g11n̄2 − ω g11n̄2

g12
√

n̄1n̄2 g12
√

n̄1n̄2 g11n̄2 εk + g11n̄2 + ω

⎞
⎟⎟⎠. (A3)

The dispersion relation ωk± is found by solving det(M) = 0,
with the result, (6), given in the text. These normal modes
are composite modes consisting of excitations in both species.
One can identify the ± mode with in-phase (density) and
out-of-phase (spin) variations with respect to the two species
[1]. Since the frequencies are gapless, we can identify them
with the two phonon modes of the system, which are expected
by the Goldstone theorem [71]. As in the single-component
case, the Matsubara sum of the action can be evaluated using
convergence-factor regularization [68]. The grand potential of
the fluctuating part 	fl = −T lnZfl is given by

	fl =
∑
kσ

(
1

2

(
ωkσ − εk − mc2

σ

) + T ln(1 − e−βωkσ )

)
. (A4)

The first term is not temperature dependent and gives rise to
quantum fluctuations

	qfl = 1

2

∑
kσ

(
ωkσ − εk − mc2

σ

)

= V m

4π

∑
σ

∫ ε0

0
dε

(√
ε
(
ε + 2mc2

σ

) − ε − mc2
σ

)
. (A5)

The integral is formally ultraviolet (UV) divergent and needs
to be regularized by a UV cutoff scale ε0 � mc2

±, as in the
single-component case [60]. The pressure due to quantum

fluctuations then takes the form [16]

pfl(T = 0) = − m

8π

∑
σ

m2c4
σ

(
ln

(
mc2

σ

2ε0

)
+ 1

2

)
. (A6)

A priori, different regularization scales ε± could be cho-
sen for the two branches. However, as the fluctuation pres-
sure depends only logarithmically on these cutoff scales,
one can choose a common scale ε0 for both, up to sub-
leading logarithmic corrections ln(ε±/ε0), which are small
[16]. Hence, the quantum fluctuation pressure can be reab-
sorbed into the expression for the mean-field pressure p0 =
μ2/2g(ε0) = (mμ2/8π ) ln(εb/ε0) by a redefinition of the cou-
pling. Whereas the mean-field pressure is defined in terms
of the bare coupling g(ε0) from Eq. (2) evaluated at the
cutoff energy, the additional quantum fluctuation part, (A6),
effectively shifts the regularization scale from the UV scale
ε0 to the many-body scale μ ∼ mc2

±, and we find p(T = 0) =∑
σ m2c4

σ /2g(μ), up to logarithmic corrections.

APPENDIX B: TWO-COMPONENT SUPERFLUIDITY
AND THE ANDREEV-BASHKIN EFFECT

In this section we give the expressions for the two-
component normal fluid densities and the drag density, fol-
lowing the derivations given in [22] and [29]. Both normal
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densities arise only from thermal fluctuations and vanish at
zero temperature. The normal fluid densities are given in terms
of the normal mode frequencies ωk± as

nn,i = − 1

2L2

∑
k

εk

[
dn(ωk+)

dωk+

(
1 ± ω2

k1 − ω2
k2

ω2
k+ − ω2

k−

)

+dn(ωk−)

dωk−

(
1 ∓ ω2

k1 − ω2
k2

ω2
k+ − ω2

k−

)]

= − 1

2L2

∑
kσ

εk
dn(ωkσ )

dωkσ

(1 ± σγ ),

(B1)

with the sign ± for component i = 1, 2, and γ = (ω2
k1 −

ω2
k2)/(ω2

k+ − ω2
k−) = g11�n̄/(mc2

− − mc2
+) independent of k,

while n(ω) = (eβω − 1)−1 denotes the bosonic occupation
number. The drag density, in turn, is given by

ndr = 2L−2
∑

k

g2
12n̄1n̄2ε

3
k

ωk+ωk−

[
1 + n(ωk+) + n(ωk−)

(ωk+ + ωk−)3

− n(ωk+) − n(ωk−)

(ωk+ − ωk−)3

+ ωk+ωk−(
ω2

k+ − ω2
k−

)2

(
dn(ωk+)

dωk+
+ dn(ωk−)

dωk−

)]
. (B2)

In the zero-temperature limit, the normal densities vanish
while the drag density reaches the finite value due to quantum
fluctuations [29],

ndr(T = 0) = g2
12n̄1n̄2

8π

c4
+ − c4

− − 4c2
+c2

− ln(c+/c−)

(c2+ − c2−)3
. (B3)

The drag densities are plotted in Fig. 4: they diverge at
the phase transition where the normal modes ωk± become
soft. The meaning of the drag density ndr becomes apparent
when computing the supercurrents from the fluctuation grand
potential 	fl(vi ) at finite temperature T > 0 and superflow vi.
To linear order in vi, the supercurrents ji are then determined
by the normal and drag densities as given in Eq. (8) in the
text.

The nondissipative drag thus changes the qualitative behav-
ior in the coexistence regime: for instance, a superflow only
in component 1 with v1 �= 0 and v2 = 0 nevertheless yields a
supercurrent j2 = ndrv1 �= 0 in the same direction also in the
second component [3,18,26].

APPENDIX C: DERIVATION OF THE TWO-COMPONENT
VORTEX-ANTIVORTEX COULOMB GAS

In this Appendix we derive the vortex-antivortex Coulomb
gas, which is dual to the phase fluctuations of the two-
component Bose gas. Starting with the two-component Villain
model, (9), we can decompose ∇θi into a curl-free part ∇φi

and a divergence-free part Ai,

∇θi(x) = −∇φi(x) + ∇ × Ai(x). (C1)

In two dimensions, ∇ × Ai(x) = ∇ × (ezχi(x)) with a scalar
function χi(x). Also, eiθi must be single-valued and thereby
gives rise to an integer winding number w(i) ∈ Z defined as

2πw(i) =
∮

C
∇θi · d� =

∫
L2

d2x[∇ × ∇θi]

=
∫

L2
d2x[∇ × (∇ × Ai(x)) − ∇ × (∇φi(x))]

=
∫

L2
d2x∇2χi(x). (C2)

The scalar function φi is the harmonic part of θi without vor-
tex excitations. To leading order, the harmonic contributions
φi and topological excitations χi decouple [68], i.e., Ss =
Sharm + Stop. Let us therefore focus on Stop, which includes
the nontrivial topological solutions of the Poisson equation in
two dimensions. Since the fundamental group π1(S1) ∼= Z, we
can decompose w(i) = ∑

j∈Vi
w

(i)
j , where w

(i)
j ∈ Z is the topo-

logical charge of the jth vortex within the ith component, with
j ∈ Vi = {1, . . . , Ni} and Ni vortices in total. Equation (C2)
can be rephrased in terms of vortices centered at position x j as

∇2χi(x) = 2π
∑
j∈V

w
(i)
j δ2(x − x j )

⇒ χi(x) =
∑
j∈V

w
(i)
j ln(|x − x j |),

(C3)

where χi(x) is the solution of the 2D inhomogeneous Laplace
equation. The action for topological excitations can be
integrated by parts as∫

L2
d2x (∇θi )

2 =
∫

L2
d2x (∇ × ezχi(x))2

= [χi(x)∇χi(x)]∂L2 −
∫

L2
d2x χi(x)∇2χi(x),

(C4)

where the first contribution is evaluated at the boundary
∂L2 of the integration area. The boundary term vanishes
for

∑
j∈V〉 w

(i)
j = 0, i.e., topological charge neutrality, and

diverges otherwise. Let us therefore assume charge neutrality,
since nonneutral configurations are suppressed strongly. We
can then use the identity (C3) and find∫

L2
d2x (∇θi )

2 = −2π
∑
j,k∈Vi

w
(i)
j w

(i)
k ln(|x j − xk|)

≡ −4π2
∑
j,k∈Vi

w
(i)
j w

(i)
k C(x j − xk ) (C5)

with interaction C(x − y) ≡ ln(|x − y|)/2π . At this point
divergences arise (i) for terms j = k in the sum and (ii) for
vortex configurations with x j = xk for j �= k. While (i) can be
cured easily by assuming a small, but finite self-interaction,
(ii) arises due to the failure of the continuous description for
very small length scales. Let us therefore assume the action
to be finite.

Finally, the third contribution in Eq. (9) has the form
∇θ1(x) · ∇θ2(x), and in analogy to (C5) we arrive at∫

L2
d2x ∇θ1(x) · ∇θ2(x)

= −4π2
∑
j∈V1

∑
k∈V2

w
(1)
j w

(2)
k C

(
x(1)

j − x(2)
k

)
, (C6)
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where w
(i)
j and x(i)

j denote the topological charge and the
position of the jth vortex of species i (the two sets V1 and
V2 are, in general, different). The singularities are of type (ii)
and will be cured analogously to make all contributions of the
action finite, and we derive (10) from the text.

The contributions of self-interaction type (i) in Eq. (C5)
with j = k have been grouped into the core action Scr, and
the sum restricted to different vortices

∑
j �=k . The core action

defines the energy needed to excite a single vortex, i.e., the
chemical potential of a vortex; it is finite but depends on the
short-distance details of the system. A popular choice is to use
Scr = π2βñi/2m of the lattice XY model.

APPENDIX D: DERIVATION OF THE
RENORMALIZATION-GROUP FLOW

In this Appendix we derive the RG flow equations by
following the standard procedure [26,68] and then showing
what changes for two components. The flow equations arise
from the following argument: Two test charges, � at r and
⊕ at r′, say both of component 1, have a direct interaction
J11Crr′ . In addition, the interaction with thermally excited
charges s and s′ leads to an induced interaction between r
and r′; this can be incorporated into a renormalization of J11.
The induced interaction is found to leading order O(y2

1,2) by
considering vortex configurations of the type shown in Fig. 5.
Specifically, for test charges r and r′, both of component
1, there are two contributions: either s and s′ are also of
component 1 [Fig. 5(a)] or both s and s′ are of component
2 [Fig. 5(b)]. Mixed configurations with s of component 1 and
s′ of component 2 are suppressed because they violate charge
neutrality; mixed-species dipoles appear only at order O(y4

1,2).
Throughout our phase diagram the drag density remains low,
ndr 	 ñ1,2, so in our case the quadratic approximation is
justified. However, in Bose droplets [10,16] with g11 > 0 and
g12 < 0 the mixed contributions are favored and ndr becomes
much larger [26]: in this case vortices of different species can
be tightly bound and act as stable dipoles with topological
charge (w(1)

j = 1,w
(2)
k = −1).

The induced interaction is determined as the full interac-
tion with the direct part canceled out:

peff
11 e J11Crr′ =Z−1

top

[
1 +

∫
L2

d2s
∫

L2
d2s′ (y2

1e−J11(Css′−Drr′ss′ )

+ y2
2e−J22Css′ +J12Drr′ss′ + O

(
y4

1,2

)]
. (D1)

Also, the partition sum Ztop is expanded to order O(y2
1,2),

where it consists of terms e−JiiCss′ for component i. Up to this
order, the right-hand side of (D1) can thus be written as

1 + y2
1

∫
d2s′

∫
d2s(eJ11 Drr′ss′ − 1)e−J11Css′ , (D2)

plus an analogous contribution for y2
2.

At the low-temperature limit, the most significant contri-
butions to the partition function are those with tightly bound
dipoles with small separation x ≡ s − s′, and we can use
the dipole approximation. In terms of center-of-mass coordi-
nates (X, x) with X ≡ (s + s′)/2, one can expand the dipole

moment Drr′ss′ as

Drr′ss′ = x · ∇(CrX − Cr′X) + O(x3), (D3)

where ∇ ≡ ∇X; in the dipole approximation we retain only
the linear term in x. The term in parentheses in Eq. (D2) can
thus be written as

eJ11Drr′ss′ − 1 = J11 x · ∇(CrX − Cr′X)

+ 1
2 J2

11[x · ∇(CrX − Cr′X)]2 + O(x3), (D4)

and Eq. (D2) becomes

1 + y2
1

∫
d2X

∫
d2x e−J11Cx

(
J11 x · ∇(CrX − Cr′X)

+ 1

2
J2

11[x · ∇(CrX − Cr′X)]2

)
. (D5)

Upon angular integration over x, the first term in (D5) linear in
J11 vanishes since exp(−J11Cx) does not depend on the angle,
and the second term yields∫ 2π

0

dθ

2π
[x · ∇(CrX − Cr′X)]2 = x2

2
|∇(CrX − Cr′X)|2; (D6)

the gradient term can be integrated by parts to give∫
d2X |∇(CrX − Cr′X)|2

= −
∫

d2X ∇2[CrX − Cr′X]︸ ︷︷ ︸
δ(r−X)−δ(r′−X)

(CrX − Cr′X)

= 2(Crr′ − C0).

The right-hand side of (D1) then becomes, including the y2
2

terms,

1 + π (Crr′ − C0)

×
∫ ∞

0
dx x3(J2

11y2
1e−J11Cx + J2

12y2
2e−J22Cx

)
. (D7)

The divergent contribution C0 is regularized by setting a short-
distance cutoff scale a for both r − r′ and x and working with
dimensionless lengths x̄ = x/a:

Cx − Ca = ln(|x|/a)/(2π ) = Cx̄. (D8)

After rescaling the integral and dropping the bars, we find the
full interaction between two component-1 test charges given
by

peff
11 = e−J11Crr′

(
1 + πCrr′

∫ ∞

1
dx

(
J2

11y2
1x3−J11/2π

+ J2
12y2

2x3−J22/2π
))

. (D9)

Analogously, two component-2 test charges yield the corre-
sponding interaction term:

peff
22 = e−J22Crr′

(
1 + πCrr′

∫ ∞

1
dx

(
J2

12y2
1x3−J11/2π

+ J2
22y2

2x3−J22/2π
))

. (D10)
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Finally, the mixed-case diagram in Fig. 5(c) has one test
charge r of component 1 and the other r′ of component 2.
The interaction terms change slightly. Here, the only thing we
have to change is that in (D3) there are two contributions with
two different couplings:

eJ11(Crs−Crs′ )−J12(Cr′s−Cr′s′ ) − 1

= x · ∇(J11 CrX − J12 Cr′X) + 1
2 [x · ∇(J11 CrX − J12 Cr′X)]2

+ O(x3). (D11)

The subsequent steps proceed as above, and we find an
expression similar to Eq. (D7) but with a factor π (J11J12Crr′ −
(J2

11 + J2
12)C0/2) before the integral. We can choose the same

short-distance cutoff and thus obtain

peff
12 = e−J12Crr′

(
1 + πJ12Crr′

∫ ∞

1
dx

(
J11y2

1x3−J11/2π

+ J22y2
2x3−J22/2π

))
. (D12)

In all cases, the bare interaction term e−JjkCrr′ is screened by
thermal fluctuations, and we can write the screened interaction
as an effective direct interaction with renormalized coupling

Jeff
11 = J11 − π

∫ ∞

1
dx

(
y2

1J2
11x3−J11/2π + y2

2J2
12x3−J22/2π

)
,

(D13)

Jeff
22 = J22 − π

∫ ∞

1
dx

(
y2

1J2
12x3−J11/2π + y2

2J2
22x3−J22/2π

)
,

(D14)

Jeff
12 = J12 − πJ12

∫ ∞

1
dx

(
y2

1J11x3−J11/2π + y2
2J22x3−J22/2π

)
.

(D15)

Since the couplings depend on each other, we can solve
this set of equations using a flow equation for the three
effective couplings as a function of the scale. This is done by
splitting the integrals

∫ ∞
1 = ∫ b

1 + ∫ ∞
b and introducing the new

intermediate couplings J̃ , which include the fluctuations in the
range x = 1 . . . b, such that to order y2 one finds

J−1
eff = J̃−1 + π y2

∫ ∞

b
dx x3−J/2π + O(y4), (D16)

J̃−1 = J−1 + π y2
∫ b

1
dx x3−J/2π . (D17)

If we now express y in terms of the rescaled ỹ = b2−J/4πy,
the integration variable in (D16) can be rescaled back to
the original range x = 1 . . . ∞ and we obtain the same form
(D15) as before, but with rescaled couplings. An infinitesimal
rescaling, b = el ≈ 1 + l for l 	 1, immediately yields the
five coupled renormalization-group equations, (14).
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