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Abstract

We consider two-component fermions with a zero-range interaction both in two and three dimensions and
calculate the bulk viscosity for an arbitrary scattering length in the high-temperature regime. We evaluate
the Kubo formula for the bulk viscosity using an expansion with respect to the fugacity, which acts as a small
parameter at high temperatures. In the zero-frequency limit of the Kubo formula, pinch singularities emerge
that reduce the order of the fugacity by one. These singularities can turn higher-order vertex corrections
at nonzero frequencies into the leading order at zero frequency, so that all such contributions have to be
resummed. We present an exact microscopic computation for the bulk viscosity in the high-temperature
regime by taking into account these pinch singularities. For negative scattering lengths, we derive the
complete bulk viscosity at second order in fugacity and show that a self-consistent equation to resum the
vertex corrections is identical to a linearized kinetic equation. For positive scattering lengths, a new type
of pinch singularity arises for bound pairs. We show that the pinch singularity for bound pairs leads to
a first-order contribution to the bulk viscosity, which is one order lower than that for negative scattering
lengths, and that the vertex corrections also provide first-order contributions. We propose a new kinetic
equation for bound pairs that derives from a self-consistent equation to resum the vertex corrections.
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1. Introduction

The bulk viscosity is one of the fundamental transport coefficients in hydrodynamics, which determines
the dissipation during isotropic expansion [1, 2]. One intriguing property of the bulk viscosity is that it
vanishes in conformal fluids because they can expand isotropically without dissipation [3]. On the contrary,
the nonvanishing bulk viscosity serves as an indicator of breaking conformal invariance in various systems [4,
5]. For example, a dilute two-dimensional Fermi gas is scale invariant classically, but this scale invariance is
broken by quantum fluctuations leading to a quantum scale anomaly, which is theoretically predicted [6–8]
and experimentally observed via the isotropic expansion and contraction mode (breathing mode) [9–11].

In this study, we consider a two-component Fermi gas realized in ultracold atoms, which provides an ideal
ground to study strongly correlated quantum many-body systems owing to the tunability of the interparticle
interaction via the Feshbach resonance [12, 13]. This system has the universality that the interaction effect
appears only through the scattering length, and its universal properties have been actively explored not
only in thermodynamics but also in transport phenomena [14]. In particular, the system shows nonrela-
tivistic conformality in the unitary limit [15–17]. The vanishing bulk viscosity at unitarity was confirmed
experimentally [18].

One simple approach to compute the transport coefficients is the kinetic theory founded on the quasi-
particle approximation [19–27]. However, while kinetic theory is capable of predicting the high-temperature
behavior of the shear viscosity and the thermal conductivity of short-range interacting Fermi gases, the
quasiparticle approximation does not capture all relevant contributions to the bulk viscosity at high temper-
atures [28]. As another approach in the high-temperature regime, the transport coefficients can be calculated
from the Kubo formula in the quantum virial expansion, whose expansion parameter is the fugacity [29–
36]. In the zero-frequency limit of the Kubo formula, there is the pinch singularity due to a particle-hole
excitation with vanishing energy and momentum exchange [37–40]. The pinch singularity reduces the order
of the fugacity by one and changes the power counting with respect to the fugacity, so that a resummation
is required. The shear viscosity and the thermal conductivity were computed with an approximate resum-
mation [29, 30, 32, 33], and their exact resummation was shown to be equivalent to solving the linearized
Boltzmann equation [41]. On the other hand, the bulk viscosity has not yet been calculated taking this
singularity into account. The purpose of this paper is to give an exact microscopic computation of the bulk
viscosity in the high-temperature regime by taking into account the pinch singularity.

Before we dive into the details, we give a brief summary of the results of this paper for the bulk viscosity.
We evaluate the bulk viscosity in the high-temperature regime, where the fermion fugacity z ≡ eβµ is small
and serves as an expansion parameter with β the inverse temperature and µ the fermion chemical potential,
respectively [42]. We consider two-component fermions with a short-range interaction that is characterized
by an s-wave scattering length a. At positive scattering length a > 0 there exists a two-body bound state
of two distinct fermions forming a bound pair. In this work, we focus on the fermion-dominated regime
where the pair fugacity zpair = z2eβ/(ma

2) is smaller than the fermion fugacity z. The parameter region
in fugacity and interaction where this expansion applies is schematically shown in Fig. 1. In the following
we discuss the bulk viscosity separately for negative scattering lengths, when there is no two-body bound
state, and for positive scattering lengths when the bound state is present. At negative scattering length in
three dimensions the bulk viscosity ζ ∼ z2/λ3

T is of second order in fugacity z with the thermal de Broglie
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Free fermion regime

Unitary regime

Dimer regime

Figure 1: The regime where the quantum virial expansion is valid (the shaded region). The horizontal and vertical axis represent
the inverse dimensionless scattering length λT /a and the fugacity z = eβµ, respectively. At positive scattering length, the

expansion is valid when the pair fugacity z2eβ/(ma
2) is smaller than the fermion fugacity z, which itself should be less than

O(1). Hence, the applicability of the fermionic virial expansion is limited to z < e−β/(ma
2) for a > 0. The free-fermion and

dimer limits are often referred to as the BCS (Bardeen–Cooper–Schrieffer) and BEC (Bose–Einstein condensation) limits, but
we avoid those terms because we work above the superfluid critical temperature.

Figure 2: Bulk viscosity in the high-temperature limit for d = 3 as functions of λT /a in thermal units as λ3T ζ/z
2 (left) and in

interaction units as λT a
2ζ/z2 (right). The solid lines represent the total bulk viscosity ζ = ζpair+ζfermion, which is much larger

than the purely fermionic contribution ζfermion (dashed lines). The single data point in the right panel shows the fermionic
contribution to the bulk viscosity at unitarity derived in Ref. [25], while the present work gives the complete bulk viscosity
over the entire range of negative scattering lengths.
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wavelength λT ≡ ~
√

2πβ/m, as plotted in the left panel of Fig. 2. We find that the bulk viscosity is divided
into two contributions, ζ = ζpair + ζfermion, where ζpair and ζfermion are computed as

λ3
T ζpair = z2 2

√
2

9π
v2
[
−1− (1 + v2)ev

2

Ei(−v2)
]
, (1)

and

λ3
T ζfermion = z2 v2

384
√

2

[
2
(
4 + 9v2 + 2v4

)
+
√
πev

2

v
(
15 + 20v2 + 4v4

)
erfc(−v)

]2
2− v2 + v4 + v6ev2Ei(−v2)

v→0−→ z2v2

12
√

2
,

(2)

with dimensionless interaction parameter v ≡ λT /(
√

2πa) = ~
√
β/ma−1. The pair contribution was

computed previously from the contact correlation function [30–32] without vertex corrections. We find
that vertex corrections contribute at the same order in fugacity due to the pinch singularity and give
rise to the additional fermionic contribution ζfermion. The fermion contribution at resonant interaction,
λ3
T ζfermion(v → 0) = z2v2/12

√
2, agrees with a previous result from fermionic kinetic theory [25], but the

extension to all scattering lengths a is new. We show that both ζpair and ζfermion contributions individually
are incomplete, and only together they yield the total bulk viscosity at leading order in fugacity.

On the other hand, at positive scattering length in both two and three dimensions, there are also bound
states of pairs in addition to the scattering states of pairs included above. We show below that the bound
pairs exhibit their own version of the pinch singularity that arises for pair-pairhole excitations at vanishing
frequency and momentum exchange. This pair pinch singularity has a dramatic effect on the pair bubble
contribution to the bulk viscosity, which is reduced by one order in fugacity and thus contributes to the
bulk viscosity already at first order in z as ζ ∼ zeβ/ma2/λ3

T . This bound-pair term seems to dominate over
the O(z2) contributions from scattering pairs and from fermions at high temperature. Furthermore, we find
that the bound-pair vertex corrections are of the same order O(z) due to the pair pinch singularity, and
therefore the vertex corrections are equally important and need to be resummed. We present a self-consistent
equation to resum these vertex corrections. While the numerical solution of this self-consistent equation is
difficult and the scaling of the bound-pair contribution to the bulk viscosity remains an open question, the
combination of the Boltzmann equation for fermions with the kinetic equation for bound pairs provides a
consistent description of transport in strongly correlated many-body systems with bound states.

The paper is structured as follows: In Section 2, we start with the general formulation of two-component
fermions with a zero-range interaction and the Kubo formula for the bulk viscosity. Next, we briefly review
an order counting method with respect to the fugacity in the quantum virial expansion. We then introduce
two kinds of pinch singularities in the quantum virial expansion: the fermion pinch singularity and the pair
pinch singularity. The fermion (pair) singularity appears in the product of fermion (pair) propagators. The
fermion pinch singularity was introduced in Ref. [41] and enhances the contribution of on-shell fermions,
whereas the pair pinch singularity is a new type of singularity and enhances the contribution of bound pairs.
In Section 3, we discuss the bulk viscosity for negative scattering lengths. Since the system with a negative
scattering length has no bound state and there is no pair pinch singularity, we only need to take into account
the fermion pinch singularity. We present the complete result of the bulk viscosity up to second order in
fugacity. In Section 4, we discuss the bulk viscosity for positive scattering lengths. We show that the bulk
viscosity appears at first order in fugacity due to the pinch singularity, and derive a self-consistent equation
for a vertex function to compute the first-order bulk viscosity. We also reduce the self-consistent equation
to a kinetic equation for bound pairs by employing a simple approximation. Finally, Section 5 is devoted to
a summary of this paper.

Our study partially follows the analysis described in Ref. [41] and applies it to the bulk viscosity. In
what follows, we will set ~ = kB = 1 and implicit sums over repeated spin indices σ = ↑, ↓ are assumed
throughout this paper. The bosonic and fermionic Matsubara frequencies are denoted by ωBm = 2πm/β
and ωFm = 2π(m + 1/2)/β, respectively, for m ∈ Z. Also, an integration over d-dimensional wave vector or
momentum is denoted by

∫
p
≡
∫
dp/(2π)d for the sake of brevity.
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Figure 3: Diagrammatic representation of the bare pair propagator. The dot denotes a bare coupling constant, while the thin
single and double lines represent the bare fermion and pair propagators, respectively.

2. Preliminary

2.1. Microscopics

Let us consider a two-component Fermi gas with a zero-range interaction in d spatial dimensions, whose
Hamiltonian is provided by

Ĥ =

∫
dx ψ̂†σ(x)

(
−∇

2

2m

)
ψ̂σ(x) +

g

2

∫
dx ψ̂†σ(x)ψ̂†σ′(x)ψ̂σ′(x)ψ̂σ(x). (3)

We work in the Matsubara formalism at inverse temperature β = 1/T and chemical potential µ, and write
the bare fermion propagator in the Fourier space as

G(iωFm,p) =
1

iωFm − εp + µ
(4)

and the full fermion propagator as

G(iωFm,p) =
1

iωFm − εp + µ− Σ(iωFm,p)
, (5)

where εp = p2/(2 m) is the single-particle energy and Σ(iωFm,p) is the fermion self-energy. We also introduce
the pair propagator in vacuum, represented diagrammatically in Fig. 3, as

D(iωBm,p) =
Ωd−1

m

d− 2

a2−d − [−m(iωBm − εp/2 + 2µ)]d/2−1
, (6)

and the full pair propagator as

D(iωBm,p) =
1

D(iωBm,p)−1 −∆(iωBm,p)
, (7)

where Ωd−1 ≡ (4π)d/2/[2Γ(2 − d/2)] = 2, 2π, 4π coincides with the surface area of the unit (d − 1)-sphere
for d = 1, 2, 3 and ∆(iωBm,p) is the pair “self-energy”.1 Here, the scattering length a is related to the bare
coupling g in Eq. (3) via

g =
Ωd−1

m

d− 2

a2−d − Λd−2/[Γ(d/2)Γ(2− d/2)]
(8)

in the cutoff regularization [28]. We note that the bare pair propagator is simply the two-body scattering
T -matrix.

In the high-temperature regime, the fermion self-energy is evaluated as

Σ(iωFm,p) = z

∫
q

e−βεqD(iωFm + εq − µ,p + q) +O(z2), (9)

1Although ∆(iωBm,p) does not have dimension of energy, we call it “self-energy” in analogy with the fermion self-energy.

5



Σ = ∆ =
T3

T3 = + + · · ·

Figure 4: Diagrammatic representations of the fermion self-energy (upper left panel) and the pair self-energy (upper right
panel) in Eqs. (9) and (10). Here, T3 is the three-body scattering T -matrix in vacuum between a pair and a fermion (lower
panel).

whose diagrammatic representation is depicted in the upper-left panel of Fig. 4. Just as the fermion self-
energy Σ(iωFm,p) is expressed with the two-body scattering T -matrix, the pair self-energy ∆(iωBm,p) is
expressed with the three-body (i.e., pair-fermion) scattering T -matrix T3 as (See Appendix A for the
detailed derivation)

∆(iωBm,p) = 2z

∫
q

e−βεq [G(iωBm − εq + µ,p + q)

+ T3(iωBm,p; εq − µ, q|iωBm,p; εq − µ, q)] +O(z2).

(10)

Note that we define ∆(iωBm,p) by removing the O(z0) part because it is included in the definition of
D(iωBm,p), and thus ∆(iωBm,p) is O(z). Here, T3(iωBm,p; iωFn , q|iωBm′ ,p′; iωFn′ , q′) is the three-body scat-
tering T -matrix in vacuum between a pair and a fermion from incoming (iωBm′ ,p

′; iωFn′ , q
′) to outgoing

(iωBm,p; iωFn , q) frequencies and momenta, and is expressed by the sum of an infinite number of diagrams
depicted in the lower panel of Fig. 4.

2.2. Kubo formula

According to linear response theory [28, 43, 44], the Kubo formula for the bulk viscosity is provided by,

ζ = lim
ω→0

Im[χΠ̃(ω + i0+)]

ω
, (11)

where χO(ω + i0+) is a retarded correlation function at zero momentum for an operator Ô. Here, ˆ̃Π is the
modified trace of the stress tensor operator defined by

ˆ̃Π ≡ 1

d

d∑
i=1

Π̂ii −
(
∂P
∂N

)
E,a

N̂ −
(
∂P
∂E

)
N ,a

Ĥ, (12)

with Π̂ij and N̂ being the stress tensor and particle number operators and P, N , and E the pressure, the
particle number density, and the energy density, respectively. In the Matsubara formalism, the retarded
correlation function is obtained from the corresponding imaginary-time-ordered correlation function,

χO(iωB) =
1

Ld

∫ β

0

dτ eiω
Bτ 〈T Ô(τ)Ô(0)〉, (13)

with an analytic continuation of iωB → ω + i0+ [45].
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In the system described by Eq. (3), the stress tensor operator satisfies [46]

d∑
i=1

Π̂ii = 2Ĥ +
Ĉ

Ωd−1mad−2
, (14)

which leads to

ˆ̃Π =
Ĉ

dΩd−1mad−2
−
(
∂P
∂N

)
E,a

N̂ −
[(

∂P
∂E

)
N ,a
− 2

d

]
Ĥ, (15)

with Ĉ being the contact operator defined by [47]

Ĉ ≡ (mg)2

2

∫
dx ψ̂†σ(x)ψ̂†σ′(x)ψ̂σ′(x)ψ̂σ(x). (16)

The expression (15) enables us to calculate the bulk viscosity via the contact correlation function, ζ =
(dΩd−1ma

d−2)−2 limω→0 Im[χC(ω + i0+)]/ω + · · · , but one has to be careful that the other terms are non-
negligible.2 It is worth noting that the contact, which is a two-body operator, is essential for the bulk
viscosity. Because the correlation function of a one-body operator is dominant for the shear viscosity and
the thermal conductivity at high temperatures in contact interacting systems [29, 33, 41], the bulk viscosity
is inherently different from the other transport coefficients.3

For later use, we note that the pressure fluctuations in Eq. (15) are calculated as(
∂P
∂N

)
E,a

= z

[
d+ 4

d

∂b2
∂β

+
2

d
β
∂2b2
∂β2

]
+O(z2), (17a)(

∂P
∂E

)
N ,a
− 2

d
= −z

[
2

d
β
∂b2
∂β

+
4

d2
β2 ∂

2b2
∂β2

]
+O(z2), (17b)

with the virial expansion of the pressure P = 2
βλd

T

[z + b2(β, a)z2 + O(z3)]. The second virial coefficient

b2(β, a) is given by [30]

b2(β, a) = − 1

2d/2+1
− 2d/2−2

Ωd−1

∫ ∞
−∞

dε

π
e−βεIm

[
m2D(ε− 2µ+ i0+,0)

(−mε− i0+)2−d/2

]
. (18)

With the use of the binding energy εB ≡ 1/(ma2) and

Im

[
m2D(ε− 2µ− i0+,0)

(−mε+ i0+)2−d/2

]

=


4π2δ(ε+ εB)− θ(ε)m

3

4

|D(ε− 2µ− i0+,0)|2
mε

(d = 2),

θ(a)8π2δ(ε+ εB)− θ(ε) m
3

4πa

|D(ε− 2µ− i0+,0)|2√
mε

(d = 3),

(19)

the second virial coefficient is divided into the bound- and scattering-state contributions as

b2(β, a) = − 1

2d/2+1
+ δb

(bound)
2 (β, a) + δb

(scat)
2 (β, a), (20)

2Although the retarded correlation functions containing the number density and Hamiltonian operators vanish, when divided
by ω they can give a finite contribution in the zero-frequency limit. We see, in fact, that the terms proportional to the conserved
quantities in Eq. (15) are essential in Eq. (49).

3In long-range interacting systems, one-body operator correlation functions do not necessarily dominate for the shear
viscosity and the thermal conductivity at high temperatures [17, 48, 49].
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with

δb
(bound)
2 (β, a) =

{
eβεB (d = 2),

θ(a)
√

2eβεB (d = 3),
(21)

and

δb
(scat)
2 (β, a) =


−
∫ ∞

0

dε

ε

e−βε

[ln(ma2ε)]2 + π2
(d = 2),

− 1√
2mπa

∫ ∞
0

dε
e−βε√
ε(ε+ εB)

(d = 3).

(22)

These expressions separating the bound- and scattering-state contributions are consistent with the standard
Beth–Uhlenbeck expression for the second virial coefficient [50] and were derived for d = 2 in Refs. [27, 51, 52]
and for d = 3 in Ref. [53].4

2.3. Order counting in the quantum virial expansion

We compute the bulk viscosity via the imaginary-time-ordered correlation function in the quantum virial
expansion. When we use the propagators in the Matsubara frequency representation, the fugacity appears
through the expansion of the distribution function resulting from the Matsubara frequency summation. It
is a little tricky to find the fugacity dependence in the Matsubara frequency representation before summing
over the Matsubara frequency. For this reason, it is helpful to use the knowledge of the propagators in the
imaginary time representation only when we count the order of diagrams. The bare fermion propagator in
the imaginary-time representation has an explicit fugacity dependence,

G(τ,p) = −e−τ(εp−µ)[θ(τ)− fF (εk − µ)] =

∞∑
n=0

znG(n)(τ,p) (23)

with

G(n)(τ,p) =

{
−e−τ(εp−µ)θ(τ) (n = 0),

−e−τ(εp−µ)
(
−eβεp

)n
(n ≥ 1),

(24)

where fF (ε) = 1/(eβε−1) is the Fermi distribution function and θ(τ) the step function. Using G(n)(τ,k), we
can directly provide the coefficients of each order for the fugacity in the quantum virial expansion. In fact,
the diagrammatic computational method for the quantum virial expansion is established in the imaginary-
time representation, not in the Matsubara frequency representation [53, 55]. In particular, the zeroth-order
component G(0)(τ,p) runs only in the forward direction for the imaginary time because it involves θ(τ).
Thus, we can estimate the order of each diagram in the fugacity from the number of propagators going
backward in imaginary time when an imaginary time is assigned to each vertex. In fact, each of the
self-energy diagrams in the upper panel of Fig. 4 has just one propagator running backward in imaginary
time (running from right to left). Nevertheless, we mainly employ the Matsubara frequency representation
because it is more convenient than the imaginary-time representation for the resummation discussed later.

2.4. Pinch singularity

In the zero-frequency limit of the Kubo formula, there emerges the product of the retarded and ad-
vanced propagators with the same frequency and momentum. For the fermion propagator, the product is
decomposed into partial fractions as

GR(ε,p)GA(ε,p) =
Im[GR(ε,p)]

Im[Σ(ε+ i0+,p)]
, (25)

4In three dimensions, the second virial coefficient can also be expressed simply as b2(β, a) = − 1
4
√
2

+ 1√
2

(
1 +

erf(
√
β/ma−1)

)
eβεB , which is a monotonic function of the inverse scattering length [31, 54].

8



with GR(ε,p) = G(ε+i0+,p) and GA(ε,p) = G(ε−i0+,p). Because of Im[GR(ε,p)] = −πδ(ε−εp+µ)+O(z)
and Im[Σ(ε+ i0+,p)] ∼ O(z) in the high-temperature regime, the product is expressed as

GR(ε,p)GA(ε,p) =
πδ(ε− εp + µ)

−Im[Σ(ε+ i0+,p)]
+O(z0), (26)

and is proportional to the inverse of the fugacity. Thus, the appearance of the product (26) complicates the
order counting in fugacity; this is the so-called pinch singularity [37–40]. The order counting discussed in
the previous section is valid only at nonzero frequencies and is not valid in the zero-frequency limit due to
the pinch singularity.

We now move on to discuss the pinch singularity of the pair propagator. In contrast to the bare fermion
propagator GR(ε,p), the inverse of the bare pair propagator DR(ε,p) has a finite imaginary part,

Im[DR(ε,p)−1] = θ(ε− εp/2 + 2µ)×


m

4
(d = 2),

m

4π

√
m(ε− εp/2 + 2µ) (d = 3),

(27)

so that the product is decomposed into partial fractions as

DR(ε,p)DA(ε,p) =
Im[DR(ε,p)]

Im[∆(ε+ i0+,p)]− Im[DR(ε,p)−1]
, (28)

with DR(ε,p) = D(ε+ i0+,p) and DA(ε,p) = D(ε− i0+,p). The imaginary part of the pair propagator is
provided by

Im[DR(ε,p)] = −θ(a)
2πΩd−1

m2a4−d δ(ε− εp/2 + 2µ+ εB)

− θ(ε− εp/2 + 2µ)ρD(ε− εp/2 + 2µ) +O(z),
(29)

where ρD(ε) is the scattering continuum of DR(ε,p) defined by

ρD(ε) ≡ −Im[DR(ε− 2µ,0)]|ε>0 =


4π2

m

1

[ln(ma2ε)]2 + π2
(d = 2),

4π

m

√
mε

a−2 +mε
(d = 3).

(30)

Therefore, together with Im[∆(ε+ i0+,p)] ∼ O(z) we find that

DR(ε,p)DA(ε,p) = θ(a)
2πΩd−1

m2a4−d
δ(ε− εp/2 + 2µ+ εB)

−Im[∆(ε+ i0+,p)]
+O(z0) (31)

is also proportional to the inverse of the fugacity. This singularity appears only when the scattering length
is positive and enhances the contribution of the bound pair whose energy is given by the sum of the kinetic
energy εp/2 − 2µ and the binding energy −εB . Our goal is to give the exact bulk viscosity taking into
account the fermion and pair pinch singularities, Eqs. (26) and (31), respectively.

3. Resummation of the fermion pinch singularity

Let us first consider the case where only the fermion pinch singularity (26) is relevant, which corresponds
to systems with a negative scattering length in three dimensions. For later convenience, we proceed with
the discussion keeping it in general d dimensions.

9



+ + · · ·

Figure 5: Diagrammatic representation of the imaginary-time-ordered contact correlation function. The crossdot represents the
bare vertex for the contact density (see the caption of Fig. 3 for further notation). We refer to the first term as the pair-bubble
diagram and the second term as the box diagram. Only the pair-bubble diagram provides the lowest-order contribution at
O(z2) at nonzero frequencies.

3.1. Contact correlation function

We first consider the contact correlation function to find the fermion pinch singularity. If the expansion
with respect to the fugacity at nonzero frequencies is applied, its leading term at O(z2) is simply provided
from a pair-bubble diagram, depicted in the first term of Fig. 5, whose contribution is expressed as

χC;pair(iω
B) =

m4

β

∑
m

∫
p

D(iωBm + iωB ,p)D(iωBm,p) +O(z3). (32)

Here, it is sufficient to evaluate the correlation function with the full pair propagator replaced by the bare
one for the leading order in fugacity. The pair-bubble contribution has no fermion pinch singularity because
it has no product of the fermion propagators. With the use of the spectral representation of the pair
propagator,

D(w,p) =

∫ ∞
−∞

dε

π

Im[D(ε− i0+,p)]

w − ε , (33)

the pair-bubble contribution is calculated as [28]

χC;pair(iω
B) = −z2 2d/2m4

λdT

∫ ∞
−∞

dε

π

∫ ∞
−∞

dε′

π

e−βε − e−βε′

iωB + ε− ε′
× Im[D(ε− 2µ− i0+,0)]Im[D(ε′ − 2µ− i0+,0)] +O(z3).

(34)

The next-to-leading-order contribution at O(z3) at nonzero frequencies is provided from an infinite set
of diagrams. Among them, the diagram with one fermion pinch singularity becomes O(z2) in the zero-
frequency limit and has a comparable contribution to χC;pair(iω

B). For diagrams to have a product of the
fermion propagators with the same frequency and momentum in the zero-frequency limit, they must have
the shape where the left and right sides are connected just by the two fermion propagators, which we refer
to as the fermion-bubble shape. Among the infinite series of diagrams with O(z3), only the second term in
Fig. 5, which we call the box diagram, has such a fermion-bubble shape. The box-diagram contribution at
nonzero frequencies is given by

χC;box(iωB) =
2

β

∑
m

∫
p

CF (iωFm + iωB , iωFm;p)G(iωFm + iωB ,p)

×G(iωFm,p)CF (iωFm + iωB , iωFm;p),

(35)

with

CF (iωFm + iωB , iωFm;p) ≡ m2

β

∑
n

∫
q

D(iωBn + iωB , q)D(iωBn , q)G(iωBn − iωFm, q − p). (36)

We can regard Eq. (35) as the fermion-bubble shape; the two vertex functions CF (iωFm + iωB , iωFm;p) are
connected by the two fermion propagators. The product of the fermion propagators in Eq. (35) replaced by

10



Π̃F ΓF

ΓF = Π̃F + ΓF

= +

Figure 6: (Left) Diagrammatic representation of Eq. (39), which is the imaginary-time-ordered correlation function for Π̃ with
the fermion pinch singularity. (Upper right) Diagrammatic representation of the self-consistent equation for the vertex function
ΓF to resum all relevant contributions. (Lower right) Maki–Thompson and Aslamazov–Larkin diagrams for the four-point
function represented by the rectangle. The thick line represents the full fermion propagator, whereas the white and gray bulbs
denote the bare vertex function Π̃F and the full one ΓF , respectively. It is sufficient for the leading-order vertex function to
evaluate the four-point functions with the full propagators replaced by the free ones.

the full propagators results in the fermion pinch singularity, so that the box-diagram contribution becomes
O(z2) in the zero-frequency limit. Therefore, the box-diagram contributions need to be resummed. Since
the fermion-bubble shape is the same as that of the diagrams providing the shear viscosity and the thermal
conductivity at high temperatures [41], the box diagram allows us to find other contributions which have to
be resummed. They are provided as diagrams in which the four-point functions for the Maki–Thompson and
Aslamazov–Larkin types and their iterations are inserted between the vertex functions in the box diagram.

3.2. Pair-bubble and fermion pinch-singular contributions

To combine CF (iωFm + iωB , iωFm;p) with the second and third terms of Eq. (15), we introduce the vertex
function Π̃F (iωFm + iωB , iωFm;p) as

Π̃F (iωFm + iωB , iωFm;p) ≡ CF (iωFm + iωB , iωFm;p)

dΩd−1mad−2
−
(
∂P
∂N

)
E,a
−
[(

∂P
∂E

)
N ,a
− 2

d

]
εp. (37)

The first term is evaluated as

CF (iωFm + iωB , iωFm;p)

dΩd−1mad−2

=
zm

dΩd−1ad−2

∫
q

e−βεqD(εq − µ+ iωFm + iωB ,p + q)D(εq − µ+ iωFm,p + q) +O(z2),

(38)

so that Π̃F (iωFm+iωB , iωFm;p) together with Eq. (17) isO(z). Thus, Π̃F (iωFm+iωB , iωFm;p) can be interpreted
as an effective vertex function for Π̃ at O(z) connecting to the two fermionic propagators.

With the use of Π̃F (iωFm + iωB , iωFm;p), we can write down the correlation function for ˆ̃Π with the
fermion pinch singularity. To resum all the relevant contributions, we start with the formal expression of

the correlation function for ˆ̃Π as

χΠ̃;fermion(iωB) ≡ 2

β

∑
m

∫
p

Π̃F (iωFm + iωB , iωFm;p)G(iωFm + iωB ,p)

× G(iωFm,p)ΓF (iωFm + iωB , iωFm;p),

(39)

which includes all contributions with the fermion pinch singularity. The diagrammatic representation of
Eq. (39) is depicted in the left panel of Fig. 6. The spin degeneracy is accounted for by the prefactor of 2
and ΓF (iωFm + iωB , iωFm;p) represents the full vertex function.
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The correlation function for ˆ̃Π up to O(z2) taking into account the fermion pinch singularity are fully
incorporated in

χΠ̃(iωB) =
χC;pair(iω

B)

(dΩd−1mad−2)2
+ χΠ̃;fermion(iωB) +O(z3). (40)

Accordingly, the bulk viscosity up to O(z2) is obtained as

ζ = ζpair + ζfermion +O(z3) (41)

with

ζpair ≡ lim
ω→0

1

(dΩd−1mad−2)2

Im[χC;pair(ω + i0+)]

ω
, (42)

ζfermion ≡ lim
ω→0

Im[χΠ̃;fermion(ω + i0+)]

ω
. (43)

Eq. (41) provides the complete bulk viscosity up to O(z2) as far as the pair pinch singularity does not occur.
The substitution of Eq. (34) into (42) leads to

λdT ζpair = z2 2d/2βm2

(dΩd−1ad−2)2

∫ ∞
0

dε

π
e−βερD(ε)2, (44)

which was obtained in the previous studies [28, 30–32].
We can calculate ζfermion using the resummation method in Ref. [41], so that ζfermion is provided by

ζfermion = 2β

∫
p

e−βεpΠ̃F
RA(p)ϕ(p) +O(z3), (45)

where we introduced the rescaled on-shell vertex function

ϕ(p) ≡ zΓFRA(p)

−2Im[ΣR(p)]
, (46)

and employed shorthand notations for on-shell Π̃F
RA(p) ≡ Π̃F (εp − µ + i0+, εp − µ − i0+;p),ΓFRA(p) ≡

ΓF (εp−µ+ i0+, εp−µ− i0+;p), and ΣR(p) ≡ Σ(εp−µ+ i0+,p). Since ϕ(p) is O(z) we find that ζfermion is
of the same order as ζpair.The resummation for the fermion pinch singularity is achieved by solving the self-
consistent equation for the vertex function depicted in the upper-right panel of Fig. 6. The self-consistent
equation for the vertex function is reduced into the linearized Boltzmann equation for ϕ(p) as

Π̃F
RA(p) =

∫
q,p′,q′

e−βεqW (p, q|p′, q′)
[
ϕ(p) + ϕ(q)− ϕ(p′)− ϕ(q′)

]
, (47)

Here, W (p, q|p′, q′) is the transition rate from initial (p′, q′) to final momenta (p, q) provided by

W (p, q|p′, q′) = |D(εp + εq − 2µ+ i0+,p + q)|2(2π)d+1

× δ(εp + εq − εp′ − εq′)δ(p + q − p′ − q′).
(48)

In order for the linearized Boltzmann Eq. (47) to have a solution, the on-shell vertex function Π̃F
RA(p)

must be orthogonal to 1 and εp, which correspond to the conserved particle number and the energy, respec-
tively. Here, the orthogonality is defined in terms of the inner product of 〈A,B〉 ≡

∫
p
e−βεpA(p)B(p). From

the viewpoint of the kinetic theory, the orthogonality to each is necessary for ϕ(p) to represent fluctuations
around an equilibrium state with fixed particle number and energy. We can confirm that the orthogonality
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relations are satisfied as∫
p

e−βεpΠ̃F
RA(p) =

∫
p

e−βεp
CFRA(p)

dΩd−1mad−2
− 4z

dλdT

∂

∂β
δb

(scat)
2 (β, a) = 0, (49a)∫

p

e−βεpεpΠ̃F
RA(p) =

∫
p

e−βεpεp
CFRA(p)

dΩd−1mad−2

− z

βλdT

[
∂

∂β
δb

(scat)
2 (β, a)− 2

d
β
∂2

∂β2
δb

(scat)
2 (β, a)

]
= 0, (49b)

with CFRA(p) ≡ CF (εp − µ + i0+, εp − µ − i0+;p). Here, in each first equality, we substituted Eq. (17)
into the pressure fluctuations of Eq. (37) and used the fact that the β dependence of b2(β, a) in Eq. (20)

is contained in δb
(scat)
2 (β, a) at a negative scattering length. Also, in each second equality, the first term

after integrating over all except the radial direction of the relative momentum is equal to the derivatives of

δb
(scat)
2 (β, a). Therefore, the pressure fluctuations, i.e., the second and third terms in Eq. (37), are essential

for ensuring orthogonality and making the integrals (49) vanish. Note that these integrals become nonzero
at positive scattering lengths because, in addition to the appearance of the pair pinch singularity, the second
virial coefficient in the pressure fluctuation terms in Eq. (37) has the bound-state contribution. This means
that the resummation discussed in this section is valid only as far as the bound-state contributions are
negligible.

In particular, Π̃F
RA(p) for d = 3 near the unitary limit has the asymptotic form of

Π̃F
RA(p) =

z

πβ

λT
a

[
4

3

FD(
√
βεp)√

βεp
− 1 +

2

9
βεp

]
+O(z2, a−2), (50)

with FD(x) being the Dawson function and the use of the asymptotic form of the second virial coefficient
b2 = 3/(4

√
2)+λT /(πa)+O(a−2). In two dimensions, although the scattering length is always positive, near

the free-fermion limit (εB → 0), where the bound-state contribution is negligible, we can use the asymptotic
expansion of the second virial coefficient [27],

b2 = −1

4
− 1

ln(βεB)
+

γ

[ln(βεB)]2
+O([ln(βεB)]−3), (51)

with γ = 0.577 . . . being Euler’s constant, and Π̃F
RA(p) is given by

Π̃F
RA(p) = z

2

β

1

[ln(βεB)]3

[
−2Ei(−βεp) + 2 ln(βεp/2) + 1 + 2γ − βεp

]
+O(z2, [ln(βεB)]−4), (52)

where Ei(x) is the exponential integral. Eq. (50) is the same as Xp in Ref. [25], and Eq. (52) is also the
same as Xp in Ref. [27].5 Therefore, ζfermion agrees with the kinetic result in Refs. [25, 27]. Although ζpair

was calculated in Refs. [30–32] and ζfermion in Refs. [25, 27], it is worth emphasizing that it is their sum that
provides the complete bulk viscosity when only the fermion pinch singularity is relevant.

3.3. The resulting bulk viscosity for d = 3 at negative scattering length

Let us compute the resulting bulk viscosity for d = 3 at negative scattering length, where the pair pinch
singularity is irrelevant. First, substituting Eq. (30) into Eq. (44), we obtain an analytic expression of ζpair

as [30–32]

λ3
T ζpair = z2 2

√
2

9π
v2
[
−1− (1 + v2)ev

2

Ei(−v2)
]
, (53)

5Eq. (52) is different in the sign from Xp in Ref. [27], but it has no effect on the bulk viscosity. Also, because the bound-state

contribution δb
(bound)
2 (β, a) is approximately independent of β in Eq. (51), Π̃FRA(p) of Eq. (52) has no bound-state contribution

and results in the integrals in Eqs. (49) being zero.
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with v ≡ λT /(
√

2πa) =
√
β/ma−1. Next, to obtain ζfermion we solve the linearized Boltzmann equation (47)

by expanding ϕ(p) in terms of the generalized Laguerre polynomials Lαn(x),

ϕ(p) = z
λT
a

N+1∑
n=2

cnL
1/2
n (βεp). (54)

Here, the n = 0 and n = 1 terms are in the kernel of the collision operator and vanish when substituted into
Eqs. (45) and (47). Since even the simplest truncation N = 1 provides a good approximation as discussed
in Refs. [25, 27], we employ the same truncation and find

ϕ(p) = z
λT
a

c2
8

(
15 + 20βεp + 4(βεp)2

)
(55)

with

c2 =
1

32
√

2π

(∫ ∞
0

dx
e−xx3

1
2π (λT

a )2 + x

)−1 ∫ ∞
0

dx
e−x
√
x

1
2π (λT

a )2 + x
(15− 20x+ 4x2). (56)

Substituting Eq. (55) into Eq. (45) leads to

λ3
T ζfermion = z2

(
λT
a

)2
c2

24π3/2

∫ ∞
0

dx
e−x
√
x

1
2π (λT

a )2 + x
(15− 20x+ 4x2)

= z2 v2

384
√

2

[
2
(
4 + 9v2 + 2v4

)
+
√
πev

2

v
(
15 + 20v2 + 4v4

)
erfc(−v)

]2
2− v2 + v4 + v6ev2Ei(−v2)

(57)

with v ≡ λT /(
√

2πa) =
√
β/ma−1. This expression (57) provides the contribution to the bulk viscosity from

the fermionic kinetic theory for an arbitrary negative scattering length and is an extension of the results
near the unitary limit in Ref. [25]. The resulting bulk viscosities of Eqs. (53) and (57) are plotted in Fig. 2
as a function of the inverse scattering length. As seen in Fig. 2, ζfermion is sufficiently smaller than ζpair.
While a2ζpair diverges in the unitary limit, a2ζfermion converges to a finite value.

4. Resummation of the pair pinch singularity

We next compute the bulk viscosity taking into account not only the fermion pinch singularity but also
the pair one. To consider the pair pinch singularity, we discuss the system with a positive scattering length
hereafter that admits a paired bound state.

4.1. Fermion–pair four point function

Before we consider the bulk viscosity, let us discuss the four-point functions. We classify the four-
point functions depending on the propagators connected to the left and right sides of them, and focus on the
following three types: fermion–fermion, pair–pair, and fermion–pair four-point functions, which are depicted
by gray rectangles in the left, middle, and right of Fig. 7, respectively. Since the parallel propagators can
lead to pinch singularities, this classification is the key to considering the two types of the pinch singularities.
We show the following two properties of the fermion–pair four-point function Kf-p(∗): (i) Kf-p(∗) acquires
an additional order in the iterations of the four-point functions, and (ii) Kf-p(∗) must be at least O(z) for
the propagators on both sides to have the pinch singularities simultaneously.

4.1.1. Order counting for the iterated four-point functions

In preparation for discussing at zero frequency, where the pinch singularities appear, we introduce the
order of the four-point functions with respect to the fugacity at finite frequencies based on the order of
the closed diagrams containing them. We define the order of the four-point functions as the order of the
correlation function that its minimum order is subtracted from, as shown in Fig. 7. When we refer to a
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O(zn) ∼ O(zn+1) O(zn) ∼ O(zn+2) O(zn) ∼ O(zn+2)

Figure 7: The gray rectangles on the left, middle, and right represent the fermion–fermion, pair–pair, and fermion–pair
four-point functions, respectively. We define that each four-point function has order O(zn) at finite frequencies when the
corresponding correlation function with O(z0) vertices (black squares) has the order written on the right-hand side of each.

O(zn)O(zm)

O(zm+n)

O(zn)O(zm)

O(zm+n)

O(zn)O(zm)

O(zm+n+1)

O(zn)O(zm)

O(zm+n+1)

Figure 8: Order counting of the iterated four-point functions at finite frequencies. (Upper) Two iterations of the fermion–
fermion or pair–pair four-point function have the combined order of the original four-point functions. (Lower) Two iterations
of the fermion–pair four-point function have an order that is greater by one than the combined order of the original four-point
functions.

fermion–fermion four-point function having O(zn), we mean that the correlation function with that four-
point function and O(z0) vertices has O(zn+1). Here, since the fermion-bubble shape diagram without
four-point functions has a minimum order of z, the order of the fermion-fermion four-point function and
its closed diagram differ by one. This order counting means that one order resulting from the propagator
running backward is counted as that of the four-point function. We count Kf-p(∗) as including one order of
fugacity from the propagator running backward. The orders of the other four-point functions are defined
similarly according to Fig. 7.

Based on the order counting method discussed in Section 2.3 and the definition of the order of the four-
point functions, we find that the iterations of the four-point functions contribute at a somewhat peculiar
order shown in Fig. 8. Two iterations of the fermion–fermion or pair–pair four-point functions with O(zm)
and O(zn) have the order of the product of theirs, i.e., O(zm+n). On the other hand, two iterations of
the fermion–pair four-point function have the order O(zm+n+1), which is one order greater than the order
of their product. This additional order in fugacity can be understood from the increase or decrease of the
number of propagators running backward in imaginary time due to iterations of the four-point functions.

4.1.2. Simultaneous pinch singularities by propagators on both sides

The fermion–pair four-point function is composed of an infinite number of diagrams, as shown in the
left panel of Fig. 9. Only the first term, i.e., the bare fermion propagator, is O(z0) as the fermion–pair
four-point function, while the other terms are at least O(z1). We show that the fermion–pair four-point
function in O(z0) cannot have both the fermion and pair pinch singularities simultaneously on both sides of

15



Kf-p = + Σ + + · · · γF γB

Figure 9: (Left) Diagrammatic representation of the fermion–pair four-point function. The first term on the right-hand side is
expressed by the thin line, i.e., the bare fermion propagator, and is the only O(z0) contribution to the four-point function. The
other diagrams are at least O(z). (Right) Diagrammatic representation of Eq. (58). While the vertical thin line represents the
bare fermion propagator, the thick line and the thick double line represent the full fermion and pair propagators, respectively.
Also, γF and γB represent the vertex functions.

ΓB

ΓB = + K + K K + · · ·

= + K ΓB + O(z)

Figure 10: (Left) Diagrammatic representation of Eq. (60), which is the imaginary-time-ordered correlation function for the
contact. The gray bulb denotes the full vertex function. (Right) Diagrammatic representation of the vertex function ΓB in
terms of the pair–pair and fermion–pair four-point functions, Kp-p and Kf-p. While the four-point functions do not contain
propagators leading to the pinch singularity, the explicitly drawn propagators lead to the pinch singularity.

it. In other words, when we take the correlation function depicted in the right panel of Fig. 9 as

χf-p(iωB) ≡ − 1

β2

∑
m,n

∫
p,q

γF (iωFm + iωB , iωFm;p)G(iωFm + iωB ,p)G(iωFm,p)

×G(iωBn − iωFm, q − p)D(iωBn + iωB , q)D(iωBn , q)γB(iωBn + iωB , iωBn ; q),

(58)

and the corresponding transport coefficient as

σf-p ≡ lim
ω→0

Im[χf-p(ω + i0+)]

ω
, (59)

the transport coefficient σf-p has no contribution in which the propagators, represented by the bold lines in
the figure, lead to the two pinch singularities simultaneously. (In Appendix B, we calculate σf-p specifically
and show that σf-p indeed has no contribution with the simultaneous fermion and pair pinch singularities.)
This is understood from the fact that the energy of a bound molecule enhanced by the pair pinch singularity
differs from its on-shell energy by the binding energy εB . When the propagators on both sides of the fermion–
pair four-point function have the pinch singularities simultaneously, this binding energy is propagated in the
four-point function and is off-shell. The spectrum of the bare fermion propagator taken as the four-point
function in σf-p does not have a width, so that off-shell energy cannot be propagated and thus, two pinch
singularities do not occur simultaneously at O(z0). However, if one considers other diagrams for the four-
point function such as the ones depicted in Fig. 9, the transport coefficient can have contributions with two
pinch singularities occurring simultaneously, albeit at higher order.

Therefore, an important lesson to be learned can be summarized as follows: The fermion–pair four-
point function at O(z0) does not allow the propagators on both sides of it to have the pinch singularities
simultaneously. In other words, for two types of the pinch singularities to occur simultaneously, there must
be a four-point function of at least O(z) inserted between them.
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4.2. Contact correlation function

We consider the contact correlation function to find the pair pinch singularity. Because the pair pinch
singularity appears from the product of the pair propagators with the same frequency and momentum, the
pair-bubble diagram, i.e., the first term in Fig. 5, has this singularity. Looking ahead to the resummation,
we express the contact correlation function formally as

χC(iωB) =
1

β

∑
m

∫
p

m2D(iωBm + iωB ,p)D(iωBm,p)ΓB(iωBm + iωB , iωBm;p), (60)

which is represented diagrammatically in the left panel of Fig. 10. Here, ΓB(iωBm + iωB , iωBm;p) is the full
vertex function to be determined in the following.

Replacing the Matsubara frequency summation with the complex contour integration over iωBm → w, one
finds that the integrand can have the singularities along Im[w] = 0,−ωB [37, 41]. Deforming the integral
contour into four lines along Im[w] = ±0+,−ωB ± 0+, we can evaluate the contour integration, and then
the analytic continuation of iωB → ω + i0+ leads to

χC(ω + i0+) = m2

∫
R\{0}

dε

2πi

∫
p

fB(ε)

×
[
DR(ε+ ω,p)DR(ε,p)ΓB(ε+ ω + i0+, ε+ i0+;p)

−DR(ε+ ω,p)DA(ε,p)ΓB(ε+ ω + i0+, ε− i0+;p)

+DR(ε,p)DA(ε− ω,p)ΓB(ε+ i0+, ε− ω − i0+;p)

−DA(ε,p)DA(ε− ω,p)ΓB(ε− i0+, ε− ω − i0+;p)
]
.

(61)

The second and third terms in Eq. (61) contain the pair pinch singularity in the zero-frequency limit, so that
they have one order less in fugacity than the other terms and provide the dominant contribution. Therefore,
by applying the pair pinch singularity (31) and keeping only the leading-order contribution, we obtain

1

(dΩd−1mad−2)2
lim
ω→0

Im[χC(ω + i0+)]

ω
=

βz2eβεB

d2Ωd−1m2ad

∫
p

e−βεp/2
ΓBRA-pair(p)

−Im[∆R-pair(p)]
+O(z2), (62)

where we introduced shorthand notations for pairing-shell ΓBRA-pair(p) ≡ γB(εp/2 − 2µ − εB + i0+, εp/2 −
2µ − εB − i0+;p) and ∆R-pair(p) ≡ ∆(εp/2 − 2µ − εB + i0+,p). Eq. (62) has an O(z) contribution due
to ΓBRA-pair(p) ∼ O(z0) and Im[∆R-pair(p)] ∼ O(z). Here, the pressure fluctuation terms in Eq. (15) are

O(z) and therefore negligible compared to the vertex of O(z0), so that Eq. (62) provides the complete
leading-order bulk viscosity. Note that, as pointed out in Refs. [28, 30–32], the spectral function of the bulk
viscosity has a term proportional to θ(a)δ(ω) at O(z2). The delta function peak is caused by the pair pinch
singularity and is removed by taking the broadening of the bound-state peak into account, leading to the
O(z) contribution discussed here.

4.3. Self-consistent equation

Our remaining task is determining the full vertex function to the lowest order in fugacity. If the naive
expansion with respect to the fugacity is applied at nonzero frequencies, its leading term is simply the bare
vertex function, which is of O(z0). The other vertex functions are at least O(z) at nonzero frequencies,
and those which become O(z0) by the pinch singularity in the zero-frequency limit must be resummed.
When we write those propagators that lead to the pinch singularity explicitly in the diagrams and include
all other propagators within the four-point functions, ΓB is expanded as shown in the top row of the right
panel of Fig. 10. Here, the pair–pair and fermion–pair four-point functions, Kp-p and Kf-p, do not include
the pinch singularity. For example, the box diagram in which the fermion propagators do not lead to the
pinch singularity is included in Kp-p. Note that the fermion–pair four-point function is at least O(z) for the
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propagators on its left and right sides to have the pinch singularity. Then, diagrams such as the third term
on the right-hand side in the right panel of Fig. 10 cannot become O(z0), even when one considers the pinch
singularity. This is because the iteration of the fermion–pair four-point function Kf-p has order greater than
the product of the original four-point functions, as seen in Fig. 8. Therefore, we only need to consider the
resummation of the pair pinch singularities with Kp-p, and such a resummation can formally be achieved
by replacing the bare vertex function with the full one, as shown in the bottom row of the right panel of
Fig. 10.

The bottom row of the right panel of Fig. 10 is expressed as

ΓB(iωBm + iωB , iωBm;p) = m2 +
1

β

∑
m′

∫
p′
Kp-p(iωBm + iωB , iωBm;k|iωBm′ + iωB , iωBm′ ;p

′)

×D(iωBm′ + iωB ,p′)D(iωBm′ ,p
′)ΓB(iωBm′ + iωB , iωBm′ ;p

′), (63)

where Kp-p(∗) has to be O(z) for the lowest-order vertex function. This is the closed equation that self-
consistently determines the vertex function to lowest order in fugacity.

4.4. Towards a kinetic theory

For further computations on the self-consistent equation (63), we need a specific expression for Kp-p(∗).
However, the four-point function Kp-p(∗) is provided from infinite series of diagrams even for O(z). In
order to derive a kinetic equation as in the derivation of the linearized Boltzmann equation, we employ an
approximation that replaces Kp-p(∗) with

Kbox(iωBm + iωB , iωBm;p|iωBm′ + iωB , iωBm′ ;p
′)

= − 2

β

∑
n

∫
q

G(iωBm − iωFn ,p− q)G(iωFn + iωB , q)G(iωFn , q)G(iωBm′ − iωFn ,p′ − q). (64)

Here, Kbox(∗) is the four-point function inserted between the pair propagators in the box diagram (right
part of Fig. 5). We evaluate the self-consistent equation with the above approximation so that it can
be analytically continued into the equation for ΓBRA-pair(p) needed to compute the transport coefficients
according to Eq. (62). According to the above approximation, we write the self-consistent equation as

ΓB(iωBm + iωB , iωBm;p) = m2 +
1

β

∑
m′

∫
p′
Kbox(iωBm + iωB , iωBm;p|iωBm′ + iωB , iωBm′ ;p

′)

×D(iωBm′ + iωB ,p′)D(iωBm′ ,p
′)ΓB(iωBm′ + iωB , iωBm′ ;p

′).

(65)

Its analytic continuation with iωFm → εp/2 − εp−q − εB − µ − i0+ followed by iωB → i0+ is found as
(See Appendix C for the detailed derivation)

ΓBRA-pair(p) = m2 + z
Ωd−1

m2a4−d

∫
p′
Kbox(p|p′)

ΓBRA-pair(p
′)

−Im[∆R-pair(p′)]
, (66)

where we introduced the pairing-shell kernel Kbox(p|p′) for the box diagram as

Kbox(p|p′) ≡ 2

∫
k,k′

e−βεk
(2π)d+1δ(εp/2 + εk − εp′/2− εk′)δd(p + k − p′ − k′)

[2εp/2−k′ + εB ]2
. (67)

In analogy with Eq. (46), we introduce the rescaled pairing-shell pair vertex function

ϕpair(p) ≡ Ωd−1

m2a4−d

zΓBRA-pair(p)

−Im[∆R-pair(p)]
(68)
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and express the self-consistent equation (66) as

m2 =
−Im[∆R-pair(p)]

z

m2a4−d

Ωd−1
ϕpair(p)−

∫
p′
Kbox(p|p′)ϕpair(p

′). (69)

Here, we have employed the approximation for the pair self-energy in which T3(∗) is truncated after the
second term in the lower panel of Fig. 4; this approximation is consistent with replacing the four-point
function Kp-p(∗) with Kbox(∗). This consistency can be understood from the fact that the box diagram
of the second term in Fig. 5 is identical to the self-energy diagram with the approximated pair self-energy
∆̃(iωBm,p), shown in Fig. 11, except for the positions of the vertices.6 The imaginary part of the approximated
pairing-shell pair self-energy is provided by

− Im[∆̃R-pair(p)] = z
Ωd−1

m2a4−d

∫
p′
Kbox(p|p′) + z

Ωd−1

m2a4−dVbox(p) +O(z2), (70)

with

Vbox(p) ≡ 2
m2a4−d

Ωd−1

∫
p′,k,k′

e−βεk
(2π)dδd(p + k − p′ − k′)

[2εp/2−k′ + εB ]2
θ(ε)ρD(ε)|ε=εp/2+εk−εp′/2−εk′−εB , (71)

where ρD(ε) is the scattering continuum defined in Eq. (30) (See Appendix A for the detailed derivation).
Here, Vbox(p) is the potential representing the scattering from incoming (εp/2 − εB ,p; εk,k) to outgoing
(εp′/2,p

′; εk′ ,k
′) energies and momenta. Therefore, we obtain the self-consistent equation for ϕpair(p) as

m2 =

∫
p′
Kbox(p|p′)[ϕpair(p)− ϕpair(p

′)] + Vbox(p)ϕpair(p) +O(z). (72)

Once the solution of ϕpair(p) is determined, the bulk viscosity in Eq. (62) is provided by

ζ =
zβ

(dΩd−1ad−2)2

∫
p

e−β(εp/2−εB)ϕpair(p) +O(z2). (73)

In the analogy to the derivation of the linearized Boltzmann equation, the self-consistent equation (72) can be
considered to be the kinetic equation for the bound pairs. In contrast to the Boltzmann equation describing
the collision process from two to two fermions, our kinetic equation, in particular the first term on the
right-hand side, describes the change of state from one to one bound pair. This process can be understood
from the corresponding Feynman diagram (the right panel of Fig. 11) as breaking and recombining a bound
pair.

We comment on the bulk viscosity at positive scattering length. By solving the obtained kinetic Eq. (72)
and computing Eq. (73), we can obtain the bulk viscosity at positive scattering length. However, we do not
present the value of the bulk viscosity because Eq. (72) is more complicated than the linearized Boltzmann
equation and even a good approximation method such as the relaxation time approximation is unclear.
Note that although Eq. (73) is proportional to zeβεBa4−2d, it is controlled in the applicable regimes of the
quantum virial expansion shown in Fig. 1.

5. Summary

In this paper, we exactly evaluated the Kubo formula [Eq. (11)] for the bulk viscosity in the high-
temperature limit to leading order in fugacity. This task was achieved by summing up all contributions that

6The pairing-shell pair self-energy from the first term of T3 has no imaginary part, so that it does not contribute to the
self-consistent equation (69), see also Appendix A. For this reason, Fig. 11 shows the approximated pair self-energy, in which
only the second term in the lower panel of Fig. 4 is taken as T3(∗).
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∆̃
∆̃ =

Figure 11: (Left) Diagrammatic representation of the self-energy diagram of the contact correlation function. (Right) Diagram-
matic representation of the approximated pair self-energy ∆̃. The self-energy diagram with ∆̃ is identical to the box diagram,
depicted in the second term of Fig. 5, except for the positions of the vertices.

are of higher order in fugacity at nonzero frequencies but become comparable in the zero-frequency limit
due to the pinch singularity, as in the calculations for the shear viscosity and the thermal conductivity [41].
The key difference between the bulk viscosity and the other transport coefficients is that the bulk viscosity
is expressed in terms of a correlation function of two-body operators, i.e., the contact operators [Eq. (16)].
This difference not only makes the diagrams to be resummed more complicated than those for the other
transport coefficients, but also brings about the emergence of the pair pinch singularity [Eq. (31)] in addition
to the fermion pinch singularity [Eq. (26)] even at the lowest order in fugacity.

For negative scattering lengths, where the pair pinch singularity does not appear, we showed that the
bulk viscosity is reduced to the sum of two contributions: the pair-bubble contribution [Eq. (44)] and the
fermion kinetic contribution which is calculated from the linearized Boltzmann equation [Eqs. (45) and (47)].
Although both contribution were calculated separately in Refs. [25, 27, 28, 30–32], we showed that only their
sum provides the complete bulk viscosity. We also obtained a new analytical expression for the bulk viscosity
at arbitrary negative scattering length [Eqs. (53) and (57)] and plotted the whole bulk viscosity for negative
scattering lengths in three dimensions in Fig. 2.

For positive scattering lengths, we showed that leading-order terms arise from contributions with the
pair pinch singularity and need to be resummed. Then, under the approximation that the irreducible four-
point vertex is given by the box diagram, we reduced the self-consistent equation for the vertex function
to a linearized equation for the pair distribution ϕpair(p) [Eq. (72)]. The resulting linearized equation can
be regarded as a kinetic equation for bound molecules in analogy to the linearized Boltzmann equation
for fermions. Although the numerical solution of this kinetic equation requires further work, we identified
the pair pinch singularity, which is responsible for the peaks pointed out in previous studies [28, 30–32],
and provided a resummation method for it. We expect that this method will help to investigate the bulk
viscosity in strongly correlated quantum many-body systems also beyond the high-temperature limit.

Finally, we comment on the divergence of the bulk viscosity multiplied by the squared scattering length,
a2ζ, in the unitary limit, as seen in the right panel of Fig. 2. This divergence originates from a singularity
of the pair propagator in the unitary limit, which is different from the pair pinch singularity. We briefly
provide an intuitive understanding of this divergence. The divergence of a2ζ in the unitary limit arises from

the integral
∫∞

0
dε [−dfB(ε)

dε ]DR(ε,p)DA(ε,p), which appears in the calculation of the contact correlation
function divided by ω in the zero-frequency limit. Because of DR(ε,p)DA(ε,p) = (4π/m)2(m|ε̃|)−1 with
ε̃ = ε−εp/2+2µ being the deviation from the on-shell energy, the integral diverges. However, the broadening
of the fermion spectrum at O(z) leads in turn to a broadening χ ∼ O(z) of the pair propagator of the same
order via the diagram in Fig. 3. Hence, the product of the retarded and advanced pair propagators is
replaced as ∫

dε

[
−dfB(ε)

dε

]
DR(ε,p)DA(ε,p) ∼ z2

∫ ∞
0

dε̃√
ε̃2 + χ2

∼ z2 ln(1/z) (74)

and the integral is regularized for any value of z. The logarithmic divergence of z2 ln(1/z) for z → 0 exactly
at unitarity is consistent with the divergence of a2ζ as unitarity is approached in the right panel of Fig. 2.
This singularity is interesting as a strong coupling effect because it is peculiar to the unitary limit, and we
hope that a rigorous evaluation method for this singularity will be established in the future, as is the case
for the pinch singularity.
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Appendix A. Pair self-energy

Appendix A.1. Derivation of Eq. (10)

The pair self-energy is provided by

∆(iωBm,p) =
2

β

∑
n

∫
q

T3(iωBm,p; iωFn , q|iωBm,p; iωFn , q)G(iωFn , q)

− 2

β

∑
n

∫
q

G(iωBm − iωFn ,p− q)G(iωFn , q)

∣∣∣∣∣
O(z0) part

, (A.1)

where the second term serves to remove the contribution already included in the definition of the bare pair
propagator D(iωBm,p). We divide the pair-fermion scattering T -matrix T3 into the first term and the other
terms in the lower panel of Fig. 4 and express it as

T3(iωBm,p; iωFn , q|iωBm′ ,p′; iωFn′ , q′) = G(iωBm − iωFn′ ,p− q′)δm+n,m′+n′δ(p + q − p′ − q′)

+ T ′3 (iωBm,p; iωFn , q|iωBm′ ,p′; iωFn′ , q′). (A.2)

Accordingly, the pair self-energy is divided into

∆(iωBm,p) = ∆(1)(iωBm,p) + ∆(2)(iωBm,p) (A.3)

with

∆(1)(iωBm,p) =
2

β

∑
n

∫
q

G(iωBm − iωFn ,p− q)G(iωFn , q)

∣∣∣∣∣
removed O(z0) part

, (A.4)

∆(2)(iωBm,p) =
2

β

∑
n

∫
q

T ′3 (iωBm,p; iωFn , q|iωBm,p; iωFn , q)G(iωFn , q). (A.5)

The first term ∆(1)(iωBm,p) is calculated as

∆(1)(iωBm,p) = 2z

∫
q

e−βεq [G(iωBm − εq + µ,p + q) +G(iωBm − εq + µ,p− q)] +O(z2). (A.6)

In ∆(2)(iωB ,p), on the other hand, only the pole of the fermion propagator in Eq. (A.5) leads to an O(z)
contribution, which is calculated as

∆(2)(iωBm,p) = 2z

∫
q

e−βεqT ′3 (iωBm,p; εq − µ, q|iωBm,p; εq − µ, q) +O(z2). (A.7)

The sum of Eqs. (A.6) and (A.7) provides Eq. (10).
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Appendix A.2. Derivation of Eq. (70)

We employ an approximation of truncating T3(∗) up to the second term in Fig. 4. Then, the approximated
pair self-energy ∆̃(iωBm,p) is divided into

∆̃(iωBm,p) = ∆(1)(iωBm,p) + ∆̃(2)(iωBm,p), (A.8)

where ∆(1)(iωBm,p) is given by Eq. (A.6) and ∆(2)(iωBm,p) is approximated to ∆̃(2)(iωBm,p) by the truncation.
The second term of T3(∗) in Fig. 4 reads

T3(iωBm,p; iωFn , q|iωBm,p; iωFn , q)|second term

= − 1

β

∑
l

∫
k

G(iωBm − iωFl ,p− k)G(iωFl ,k)2D(iωFn + iωFl , q + k), (A.9)

and is calculated as

T3(iωBm,p; iωFn , q|iωBm,p; iωFn , q)|second term

=

∫
k

G(iωBm − εp−k + µ,k)2D(iωBm + iωFn − εp−k + µ, q + k) +O(z). (A.10)

Substituting this into Eq. (A.7) leads to

∆̃(2)(iωBm,p) = 2z

∫
q,k

e−βεq
D(iωBm + εq − εp−k, q + k)

[iωBm − εp−k − εk + 2µ]2
+O(z2). (A.11)

The approximated pairing-shell pair self-energy is defined as ∆̃R-pair(p) ≡ ∆̃(εp/2− 2µ− εB + i0+,p), and
its imaginary part is obtained as

− Im[∆̃R-pair(p)] = 2z

∫
q,k

e−βεq
−Im[D(εp/2 + εq − εp−k − εB − 2µ+ i0+, q + k)]

[2εk−p/2 + εB ]2
, (A.12)

where the imaginary part of ∆(1);R-pair(p) vanishes to O(z) because of

Im[G(εp/2− εq − εB − µ+ i0+,p± q)] = 0. (A.13)

Finally, by using Eq. (29), we arrive at Eq. (70).

Appendix B. Transport coefficient with the O(z0) fermion–pair four-point function

Appendix B.1. Calculation of the transport coefficient

In this appendix, we provide detailed calculations of σf-p in Eq. (59). To calculate σf-p, let us start
with χf-p(iωB) in Eq. (58). With the Matsubara frequency summation over ωFm replaced by the complex
contour integration over iωFm → w, the integrand of χf-p(iωB) has singularities only along Im[w] = 0,−ωB in
addition to pole at w = iωBn − εq−p +µ in the complex plane of w. Therefore, we can deform its contour into
four horizontal lines along Im[w] = ±0+,−ωB ± 0+ and clockwise circles around the pole. Accordingly, we
divide χf-p(iωB) and σf-p into two parts: the contribution from the pole and the contribution from integrals
on the four lines,

χf-p(iωB) = χf-p;pole(iωB) + χf-p;lines(iω
B), (B.1)

and σf-p = σf-p;pole + σf-p;lines with

σf-p;pole = lim
ω→0

Im[χf-p;pole(ω + i0+)]

ω
, σf-p;lines = lim

ω→0

Im[χf-p;lines(ω + i0+)]

ω
. (B.2)
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Evaluating the contour integrations, we find

χf-p;pole(iωB) =
1

β

∑
n

∫
p,q

fF (−εq−p + µ)

× γF (iωBn + iωB − εq−p + µ, iωBn − εq−p + µ;p)G(iωBn − εq−p + µ,p)

× G(iωBn + iωB − εq−p + µ,p)D(iωBn + iωB , q)D(iωBn , q)γB(iωBn + iωB , iωBn ; q),

(B.3)

and

χf-p;lines(iω
B)

=
1

β

∑
n

∫
p,q

∫ ∞
−∞

dε

2πi
fF (ε)D(iωBn + iωB , q)D(iωBn , q)γB(iωBn + iωB , iωBn ; q)

×
[
γF (ε+ iωB , ε+ i0+;p)G(ε+ iωB ,p)G(ε+ i0+,p)G(iωBn − ε, q − p)

− γF (ε+ iωB , ε− i0+;p)G(ε+ iωB ,p)G(ε− i0+,p)G(iωBn − ε, q − p)

+ γF (ε+ i0+, ε− iωB ;p)G(ε+ i0+,p)G(ε− iωB ,p)G(iωBn + iωB − ε, q − p)

− γF (ε− i0+, ε− iωB ;p)G(ε− i0+,p)G(ε− iωB ,p)G(iωBn + iωB − ε, q − p)
]
.

(B.4)

Furthermore, after the replacement the Matsubara frequency summation over iωBn with the contour inte-
gration over iωBn → w, the integrands have the branches along Im[w] = 0,−ωB in both χf-p;pole(iωB) and
χf-p;lines(iω

B) [37, 41]. Thus, one can evaluate the integration with the deformation of its contour into four
straight lines along the branches as before.

Let us first consider σf-p;pole, which is found as

σf-p;pole = −
∫
p,q

fF (−εq−p + µ)

∫ ∞
−∞

dε

2π

dfB(ε)

dε

× γF (ε− εq−p + µ+ i0+, ε− εq−p + µ− i0+;p)γB(ε+ i0+, ε− i0+; q)

× GR(ε− εq−p + µ,p)GA(ε− εq−p + µ,p)DR(ε, q)DA(ε, q) +O(z2),

(B.5)

where we supposed γF (∗) = γB(∗) = O(z0) in the order counting. In the omitted part as O(z2) of σf-p;pole,
there is no product of the propagators which can lead to the pinch singularities, so that we do not discuss
it.

Next, we consider σf-p;lines, but it has no O(z) contribution even when the pinch singularities are taken
into account. For this reason, we take only the contribution where both the product of the pair propagators
and the product of the fermion ones can lead to the pinch singularities, as in Eq. (B.5). Such contribution
is straightforwardly found as

σf-p;lines '
∫
p,q

∫ ∞
−∞

dε

2π
fF (ε− εq−p + µ)

dfB(ε)

dε

× γF (ε− εq−p + µ+ i0+, ε− εq−p + µ− i0+;p)γB(ε+ i0+, ε− i0+; q)

× GR(ε− εq−p + µ,p)GA(ε− εq−p + µ,p)DR(ε, q)DA(ε, q).

(B.6)

The sum of Eqs. (B.5) and (B.6) provides

σf-p ' β
∫
p,q

∫ ∞
−∞

dε

2π
[fF (−εq−p + µ)− fF (ε− εq−p + µ)]fB(ε)[1 + fB(ε)]

× GR(ε− εq−p + µ,p)GA(ε− εq−p + µ,p)DR(ε, q)DA(ε, q)

× γF (ε− εq−p + µ+ i0+, ε− εq−p + µ− i0+;p)γB(ε+ i0+, ε− i0+; q).

(B.7)
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Appendix B.2. Pinch singularities

As we see in the following, Eq. (B.7) has no contribution with both the fermion and pair pinch singularities
simultaneously, so that we consider the cases separately where there is the fermion or pair pinch singularity:
σf-p = σf-p|fermi-pinch + σf-p|pair-pinch.

First, when the product of the fermion propagators leads to the pinch singularity (26), it turns into

σf-p|fermi-pinch = β

∫
p,q

e−β(εq−p+εp) z2γFRA(p)

−2Im[ΣR(p)]
DR(εq−p + εp − 2µ, q)

×DA(εq−p + εp − 2µ, q)γB(εq−p + εp − 2µ+ i0+, εq−p + εp − 2µ− i0+; q) +O(z2),

(B.8)

where we supposed γF (∗) = γB(∗) = O(z0) in the order counting. In this expression, the product of the
pair propagators cannot have the pinch singularity because DR(εq−p + εp−2µ, q) does not have the binding
peak at O(z0):

Im[DR(εq−p + εp − 2µ, q)] = −ρD(2εq/2−p) +O(z). (B.9)

The pair propagators in Eq. (B.8) are simply replaced with the bare ones and thus we get, with γFRA(p)
denoting the on-shell vertex defined in analogy with Eq. (46),

σf-p|fermion-pinch = β

∫
p,q

e−β(εq−p+εp) z2γFRA(p)

−2Im[ΣR(p)]
|D(εq−p + εp − 2µ+ i0+, q)|2

× γB(εq−p + εp − 2µ+ i0+, εq−p + εp − 2µ− i0+; q) +O(z2).

(B.10)

Such a contribution like Eq. (B.10), where the fermion pinch singularity is incorporated, has been considered
in Section 3.

Next, when the product of the pair propagators in Eq. (B.7) leads to the pinch singularity (31), it turns
into

σf-p|pair-pinch =
βΩd−1

m2a4−d

∫
p,q

e−βεq/2

× γF (εq/2− εq−p − εB − µ+ i0+, εq/2− εq−p − εB − µ− i0+;p)

× GR(εq/2− εq−p − εB − µ,p)GA(εq/2− εq−p − εB − µ,p)
z2eβεBγBRA-pair(q)

−Im[∆R-pair(q)]
+O(z2).

(B.11)

In contrast to the previous case, the product of the fermion propagators cannot have the pinch singularity
in this expression because GR(εp/2 + εq−p − εB − µ, q) does not have the on-shell peak at O(z0):

Im[GR(εq/2− εq−p − εB − µ,p)] = Im

[
1

εq/2− εq−p − εp − εB + i0+

]
+O(z) = O(z) (B.12)

due to εq/2 − εq−p − εp − εB = −[2εq/2−p + εB ] < 0. The fermion propagators in Eq. (B.11) are simply
replaced with the bare ones as

GR(εq/2− εq−p − εB − µ,p)GA(εq/2− εq−p − εB − µ,p) =
1

[2εp−q/2 + εB ]2
+O(z), (B.13)

and thus we obtain

σf-p|pair-pinch =
βΩd−1

m2a4−d

∫
p,q

e−βεp/2
z2eβεBγBRA-pair(p)

−Im[∆R-pair(p)]

× γF (εp/2− εp−q − εB − µ+ i0+, εp/2− εp−q − εB − µ− i0+; q)

[2εq−p/2 + εB ]2
+O(z2),

(B.14)

with exchange of the integration variables. In σf-p with γB(∗) = γF (∗) = O(z0), only Eqs. (B.10) and (B.14)
give contributions at O(z). Therefore, we have shown that σf-p has no leading contribution with the fermion
and pair pinch singularities occurring simultaneously.
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Appendix C. Box diagram contribution for the bosonic vertex function

In this appendix, we derive Eq. (66) by applying the analytic continuation of iωFm → εp/2 − εp−q −
εB − µ − i0+ followed by iωB → i0+ to ΓB(iωBm + iωB , iωBm;p). We take advantage of the fact that the
box diagram with ΓB(∗) can be regarded as a diagram in the right panel of Fig. 9. That is, when we take
γB(∗) = m2 and

γF (iωFm + iωB , iωFm;p)

=
2

β

∑
l

∫
k

G(iωBl − iωFm,k − p)D(iωBl + iωB ,k)D(iωBl ,k)ΓB(iωBl + iωB , iωBl ;k)
(C.1)

in Eq. (58), χf-p(iωB) becomes the correlation function of the box diagram with ΓB(∗). Since χf-p(iωB)
with the pair pinch singularity leads to Eq. (B.14), we can read off

ΓBRA-pair(p) = m2 +

∫
q

γF (εp/2− εp−q − εB − µ+ i0+, εp/2− εp−q − εB − µ− i0+; q)

[2εq−p/2 + εB ]2
, (C.2)

by comparing Eqs. (B.14) and (62). The vertex function (C.1) is evaluated to the lowest order in fugacity
as

γF (iωFm + iωB , iωFm;p) = 2z

∫
k

e−βεk−pD(iωFm + iωB + εk−p − µ,k)

×D(iωFm + εk−p − µ,k)ΓB(iωFm + iωB + εk−p − µ, iωFm + εk−p − µ;k),

(C.3)

which is dominated by the contribution from the pole of the fermion propagator because the branch cuts of
the pair propagators contribute to O(z2). The analytic continuation of iωFm → εp/2− εp−q − εB − µ− i0+

followed by iωB → i0+ leads to

γF (εp/2− εp−q − εB − µ+ i0+, εp/2− εp−q − εB − µ− i0+; q)

= 2z
2πΩd−1

m2a4−d

∫
k

e−βεk−q
δ(εp/2− εp−q + εk−q − εk/2)

−Im[∆R-pair(k)]
ΓBRA-pair(k),

(C.4)

where the pair pinch singularity (31) is applied. Combining Eqs. (C.2) and (C.4) leads to Eq. (66).
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[25] K. Dusling, T. Schäfer, Bulk Viscosity and Conformal Symmetry Breaking in the Dilute Fermi Gas near Unitarity, Phys.
Rev. Lett. 111 (2013) 120603. doi:10.1103/PhysRevLett.111.120603.
URL https://link.aps.org/doi/10.1103/PhysRevLett.111.120603

[26] T. Enss, Transverse spin diffusion in strongly interacting Fermi gases, Phys. Rev. A 88 (2013) 033630. doi:10.1103/

PhysRevA.88.033630.
URL https://link.aps.org/doi/10.1103/PhysRevA.88.033630
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