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The bulk viscosity determines dissipation during hydrodynamic expansion. It vanishes in scale invariant
fluids, while a nonzero value quantifies the deviation from scale invariance. For the dilute Fermi gas the
bulk viscosity is given exactly by the correlation function of the contact density of local pairs. As a
consequence, scale invariance is broken purely by pair fluctuations. These fluctuations give rise also to
logarithmic terms in the bulk viscosity of the high-temperature nondegenerate gas. For the quantum
degenerate regime I report numerical Luttinger-Ward results for the contact correlator and the dynamical
bulk viscosity throughout the BEC-BCS crossover. The ratio of bulk to shear viscosity ζ=η is found to
exceed the kinetic theory prediction in the quantum degenerate regime. Near the superfluid phase transition
the bulk viscosity is enhanced by critical fluctuations and has observable effects on dissipative heating,
expansion dynamics, and sound attenuation.
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The bulk viscosity is a fundamental transport property
which determines friction and dissipation in fluids during
hydrodynamic expansion [1,2]. In particular, scale invariant
fluids can expand isotropically without dissipation
and therefore have zero bulk viscosity [3]. In a generic
interacting fluid, instead, a nonzero value of the
bulk viscosity quantifies the breaking of scale invari-
ance in physical systems ranging from QCD [4–7] to
condensed matter [8–14]. An intriguing example is the two-
dimensional dilute Fermi gas, where the classical model is
scale invariant but a quantum scale anomaly breaks this
symmetry [15–18]; this has recently been observed via
breathing dynamics in cold-atom experiments [19–21].
The bulk viscosity is necessary to understand and predict

the real-time evolution and hydrodynamic modes of
dissipative quantum fluids and to quantitatively interpret
current experiments. However, measurements of the bulk
viscosity remain challenging even for classical fluids [22].
Now a novel experimental probe via the dissipative heating
rate due to a change in scattering length has been proposed
for atomic gases [14]. It is therefore important to compute
the bulk viscosity theoretically for quantum gases, which
moreover includes predictions for the classical gas in the
high-temperature limit.
The bulk viscosity is defined as the correlation function

of local pressure (the trace of the stress tensor). Since it
vanishes in a scale invariant system, only the scale breaking
part of the pressure contributes, the so-called trace anomaly
[14,23,24]. This provides a formal link between the break-
ing of scale invariance and bulk viscosity. The bulk
viscosity of the nonrelativistic, strongly interacting Fermi
gas has been calculated from kinetic theory in the non-
degenerate high-temperature limit [11,12] and in the low-
temperature superfluid state [25,26]. Its value is largest in

the strongly coupled region of the BEC-BCS crossover [27]
near unitarity, but not precisely at unitarity where it must
vanish by scale invariance [3,9,28]. Furthermore, hydro-
dynamic fluctuations give rise to nonanalytic corrections to
the bulk viscosity at small frequencies [23,29]. However,
key open questions include the bulk viscosity in degenerate
Fermi gases at strong interaction, the relative importance of
bulk and shear viscosity, and critical scaling near the
superfluid phase transition.
In this work, I rewrite the bulk viscosity of the dilute

Fermi gas as a correlation function of the contact density of
local fermion pairs. This exact mapping explicitly links the
bulk viscosity to pairing fluctuations as the relevant degrees
of freedom and provides a genuine strong-coupling for-
mulation which is valid in the whole BEC-BCS crossover
including the quantum critical regime [30–32]. New results
include (a) dominant logarithmic corrections to the bulk
viscosity at high temperature, (b) numerical Luttinger-Ward
results for the quantum degenerate gas throughout the
BEC-BCS crossover predict a large bulk viscosity well
observable with current experimental technology, (c) the
transport ratio of bulk to shear viscosity deviates from the
kinetic theory prediction in the quantum degenerate regime,
and (d) critical scaling near the superfluid transition is less
singular than predicted [29,33], but pairing fluctuations
dynamically enhance the scale anomaly.
Bulk viscosity.—The bulk viscosity ζ is defined as the

stress correlation function [8,34,35]

ζðωÞ ¼ −
1

ωd2
Im

Z
∞

0

dteiωt
Z

ddxh½Π̂iiðx; tÞ; Π̂jjð0; 0Þ�i;

ð1Þ
where the trace of the stress tensor Π̂iiðx; tÞ ¼ d · P̂
determines the pressure operator P̂ in dimension d. The
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two-component dilute Fermi gas is described by the
Hamiltonian density [27]

Ĥ ¼
X
σ

ψ†
σ

�
−
∇2

2m

�
ψσ þ g0ψ

†
↑ψ

†
↓ψ↓ψ↑: ð2Þ

The first term denotes the kinetic energy with fermion
operators ψσðx; tÞ. The attractive contact interaction in the
second term is characterized by the s-wave scattering
length a. For a given value of a, the bare coupling strength
g0 is determined according to g−10 ¼ −ðm=2πÞ lnðaΛÞ in
two dimensions (2D) and g−10 ¼ ðm=4πÞð1=a − 2Λ=πÞ in
3D, with ultraviolet momentum cutoff Λ. The trace of the
stress tensor is given by the scale variation of the
Hamiltonian [17],

d · P̂¼ Π̂ii¼½Ĥ;iD̂�¼2Ĥþ
(

Ĉ
2πm ð2DÞ;
Ĉ

4πma ð3DÞ;
ð3Þ

where the dilatation operator D̂ ¼ R
ddxx ·mjðxÞ generates

scale transformations. The first term on the right-hand side
is the scale invariant result ½Ĥ; iD̂� ¼ 2Ĥ. If only this is
present, the pressure is proportional to the Hamiltonian and
commutes with itself in Eq. (1); hence the bulk viscosity
ζðωÞ≡ 0 vanishes identically in the scale invariant case
[3,9,28,36].
The second term, in turn, is proportional to the local pair

contact density Ĉ ¼ −m2ð∂Ĥ=∂g−10 Þ ¼ m2g20ψ
†
↑ψ

†
↓ψ↓ψ↑

[37]. Scale invariance is recovered for the ideal quantum
gas where Ĉ ¼ 0, and also for the 3D unitary Fermi gas
where 1=a ¼ 0 at the scattering resonance. A nonzero bulk
viscosity therefore quantifies the breaking of scale invari-
ance, which is generally expected in the interacting Fermi
gas, except at unitarity.
Contact correlation.—By conservation of energy, the

Hamiltonian in Eq. (3) does not contribute to the pressure
commutator (1), and the bulk viscosity is given by the
correlator of the scale breaking term. The scaling violation
in the trace of the stress tensor is the so-called trace
anomaly [14,23]

Π̂an ≡ Π̂ii − 2Ĥ ¼ cdĈ; ð4Þ
where cd ¼ −ð∂g−10 =∂ ln jajÞ=m2 denotes the scale varia-
tion of the bare coupling (beta function). For the dilute gas,
the equilibrium bulk viscosity is thus exactly given by the
contact correlator,

ζðωÞ¼−
c2d
ωd2

Im
Z

∞

0

dteiωt
Z

ddxh½Ĉðx;tÞ; Ĉð0;0Þ�i: ð5Þ

The contact operator is the term in the Hamiltonian that
couples to the scattering length. In linear response, the bulk
viscosity thus captures how the local pair contact density at

time t changes in response to a variation of the scattering
length at earlier time t ¼ 0 [14],

χðx;tÞ≡h½Ĉðx;tÞ; Ĉð0;0Þ�i¼

8>><
>>:
2πm

�
∂hĈðx;tÞi
∂ lnað0;0Þ

�
s

ð2DÞ;

−4πm
�

∂hĈðx;tÞi
∂a−1ð0;0Þ

�
s
ð3DÞ;

ð6Þ

at constant entropy per particle s ¼ S=N. The time depen-
dent contact response captures how quickly the contact
adjusts to a change in scattering length; this directly
determines the dynamical bulk viscosity according to
Eq. (5). This makes the contact correlation, and hence
the dynamical bulk viscosity, directly accessible in cold
atom experiments where the scattering length can be
controlled in time by the magnetic field near a Feshbach
resonance and the time evolution of the contact has already
been measured using rf spectroscopy [38,39].
Viscosity sum rule.—Since the pressure operator is

Hermitian, the dynamical bulk viscosity is an even and
positive function of frequency, ζðωÞ ≥ 0 [8]. The integral
over all frequencies in Eqs. (5), (6) immediately yields the
bulk viscosity sum rule [8,10] with C ¼ hĈi,

S≡2

π

Z
∞

0

dωζðωÞ¼
8<
:
− 1

8πm

�
∂C
∂ lna

�
s

ð2DÞ;
1

36πma2

�
∂C
∂a−1

�
s
ð3DÞ:

ð7Þ

Using the Tan adiabatic relation to express the contact
Πan ¼ cdC ¼ ð∂E=∂ ln jajÞs as the scale variation of the
energy density E [17,37,40], the sum rule is given by the
scale “susceptibility” S ¼ −ð1=d2Þ½∂2E=∂ðln jajÞ2�s ≥ 0 in
d dimensions. The sum rule is taken at constant entropy per
particle to ensure that the bulk viscosity of the ideal gas is
zero [8].
Pair fluctuations.—The local contact density can equiv-

alently be interpreted as the density operator Ĉ ¼ Δ̂†Δ̂ðxÞ
of the local fermion pair field Δ̂ðxÞ ¼ mg0ψ↓ðxÞψ↑ðxÞ.
The bulk viscosity thus depends directly, and only, on
pairing fluctuations within the attractive Fermi gas; it is
given exactly by the four-point pair correlation function
χðx; tÞ ¼ h½Δ̂†Δ̂ðx; tÞ; Δ̂†Δ̂ð0; 0Þ�i. One can anticipate that
the bulk viscosity has a strong signature at the superfluid
phase transition which is driven by pair fluctuations (see
below). While pair fluctuations are strong also at unitarity,
the prefactor c2d ∼ 1=a2 ensures that ζ vanishes in this case.
To summarize, the bulk viscosity is the response function

of the trace anomaly and is therefore sensitive to scaling
violation. For the dilute quantum gas, the trace anomaly is
proportional to the contact density of local pairs and
depends only on the pairing properties. This establishes
the link between pairing [41] and the quantum scale
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anomaly [21] suggested by recent experiments in 2D
Fermi gases.
Analytical results.—The contact correlations and bulk

viscosity can be computed exactly in several limiting cases:
at (i) zero density (two-body), (ii) high frequency, and
(iii) high temperature (virial expansion).
The zero-density case (i) is determined solely by two-

body physics. In this limit, the only source of dissipation is
the dissociation of a bound molecule at the two-body
binding energy εB ¼ ℏ2=ma2; this yields a high-frequency
tail above the threshold ω > εB to break a pair [10,42],

ζ2D;vacðωÞ ¼
C0

4mω
×

Θðω − εBÞ
ln2ðω=εB − 1Þ þ π2

; ð8Þ

in 2D, where C0 denotes the two-body contact. In 3D, a
two-body bound state exists only on the BEC side for
a > 0, and

ζ3D;vacðωÞ ¼
C0ΘðaÞ
36πma

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εBðω − εBÞ

p
Θðω − εBÞ

ω2
: ð9Þ

This two-body result serves to disentangle the dissipation
due to two-body pair breaking from the genuine many-
body bulk viscosity below [10].
In the limit (ii) of high frequency ω ≫ εF; T, the contact

correlator is evaluated at small times where it factorizes as
χðx; t → 0Þ ≃m2Γðx; tÞCð0; 0Þ; at large frequency, the pair
propagator Γðx; tÞ approaches the zero-density form [42]. It
follows immediately that for ω → ∞ the bulk viscosity is
proportional to the contact density and decays with a
characteristic frequency dependence,

ζðω → ∞Þ ¼
( C

4mω ln2ðω=εBÞ ð2DÞ;
C

36πa2ðmωÞ3=2 ð3DÞ: ð10Þ

This derivation reproduces earlier results [10,43,44] in a
dramatically simpler calculation. The zero-density results
(8) and (9) approach the high-frequency limit with two-
body contact density C0. However, the exact high-frequency
limit is more general and holds at arbitrary density,
temperature and interaction in terms of the total contact
density Cðn; T; aÞ. This asymptotic behavior is important
because it guarantees convergence of the sum rule (7).
Finally, the dynamical bulk viscosity can be computed

exactly in the high-temperature limit (iii) by virial expan-
sion [11,12]. To second order in fugacity z ¼ eβμ, the pair
distribution bðεÞ ¼ z2e−βðεþ2μÞ is combined with the
zero-density spectral function to yield [42]

ζ3D;virðω > 0Þ ¼ 2
ffiffiffi
2

p

9
z2λ−3v2

1 − e−βω

βω

×

�
ΘðvÞ2vev2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βω − v2

p
Θðβω − v2Þ
βω

þ 1

π

Z
∞

0

dy
e−y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðyþ βωÞp

ðyþ v2Þðyþ βωþ v2Þ
�
:

ð11Þ

Here, v ¼ ðλ=aÞ= ffiffiffiffiffiffi
2π

p
denotes the dimensionless interac-

tion parameter as the inverse scattering length in units of the
thermal length λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π=mT
p

. The dynamical viscosity has
two terms as illustrated in Fig. 1. The first, bound-
continuum contribution occurs only on the BEC side
v > 0 and arises from breaking up bound states at high
frequency jωj > εB, which leads to strong damping as seen

FIG. 1. Dynamical bulk viscosity ζðωÞ=½ ffiffiffi
2

p
z2=9πa2λ� vs

frequency ω in the high-temperature limit (11). From top to
bottom: BEC (v ¼ 0.5, green), unitary (v ¼ 0, orange), BCS
(v ¼ −0.5, blue). Inset: logarithmic plot shows exact high-
frequency asymptotics (10) proportional to C=ω3=2 (dashed).

FIG. 2. Bulk viscosity ζðvÞ vs interaction v ¼ λ=a
ffiffiffiffiffi
2π

p
in the

high-temperature limit. Viscosity ζ=½23=2z2=9πλ3� (14) (solid
blue), sum rule S=½23=2z2T=9λ3� (12) (dashed orange). Inset:
Contact correlation a2ζ (solid blue), contact sum rule a2S (dashed
orange), and contact C=½16πz2λ−4� (red).
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before in the two-body limit (9). The second term is the
continuum-continuum contribution of dissociated pairs,
which extends over all frequencies but has most of its
spectral weight at small frequencies ω≲ εB. At this order
there is no bound-bound contribution because an ideal Bose
gas of bound pairs is scale invariant; corrections arise from
atom-dimer scattering at orderOðz3Þ. Both contributions in
Eq. (11) are necessary to exhaust the sum rule (cf. Fig. 2)

S3D;vir ¼
2

ffiffiffi
2

p

9
z2Tλ−3v2

�
ð1þ 2v2Þev2 ½1þ erfðvÞ�

þ 2vffiffiffi
π

p − ΘðvÞ4v2ev2
�
: ð12Þ

This agrees with the adiabatic derivative (7) of the contact
[11,45] C3D;vir ¼ 16πz2λ−4f1þ ffiffiffi

π
p

vev
2 ½1þ erfðvÞ�g.

At unitarity v → 0, the analytical dynamical viscosity

ζunitary3D;vir ðωÞ ¼
2

ffiffiffi
2

p

9π
z2λ−3v2

sinhðβω=2Þ
βω=2

K0ðβω=2Þ: ð13Þ

At this order, the unitary contact correlation has a loga-
rithmic singularity a2ζ ∼ lnðT=ωÞz2 for small frequencies
from the modified Bessel function K0ðβω=2Þ, as shown in
Fig. 1. The logarithmic singularity for small frequencies
corresponds via Fourier transform to the logarithmic
singularity of the bulk viscosity at long times, ζðtÞ ∼
lnðtÞ=ða2tÞ [46]. Precisely at unitarity, the bulk viscosity
vanishes for all frequencies due to the v2 ∝ a−2 factor.
Throughout the BEC-BCS crossover, the dc bulk viscosity
is then given by (see Fig. 2)

ζ3D;virðvÞ¼
2

ffiffiffi
2

p

9π
z2λ−3v2½−1−ð1þv2Þev2Eið−v2Þ�: ð14Þ

The exponential integral EiðxÞ yields a logarithmic singu-
larity in scattering length a2ζ ∼ lnða2=λ2Þz2 shown in the

inset of Fig. 2. The singular coefficient of the virial
expansion is regularized by higher-order terms Oðz3Þ from
the fermionic self-energy [9,11]; these are resummed in the
Luttinger-Ward computation and yield a finite dc limit in
Fig. 3(b) below.
In 2D, there is always a bound state with binding energy

εB > 0 even for arbitrarily weak attractive interaction. The
dynamical bulk viscosity is obtained as [42]

ζ2D;virðωÞ¼2πz2λ−2
1−e−βω

βω

�
βεBeβεBΘðω−εBÞ
ln2ðω=εB−1Þþπ2

þ
Z

∞

0

dy
e−y

½ln2ðyT=εBÞþπ2�½ln2ððyTþωÞ=εBÞþπ2�
�
:

The dc bulk viscosity is then approximately given by

ζ2D;virðεB=TÞ ≃
2πz2λ−2

½ln2ðT=2εBÞ þ π2�2 : ð15Þ

This result for the bulk viscosity based on contact correla-
tions is similar in structure to the fermionic Boltzmann
calculation [12] but larger by a factor 4π2, which is necessary
to satisfy the sum rule [42] and the high-frequency asymp-
totics with the contact density [47,48] C2D;vir ¼
16π2z2λ−4fβεBeβεB þ

R
∞
0 dy½e−y=(ln2ðyT=εBÞ þ π2)�.

Luttinger-Ward results.—The Luttinger-Ward (LW)
technique is a diagrammatic strong-coupling approach to
fermions in the BEC-BCS crossover [49,50] which treats
fermions ψσ and the pair field Δ on equal footing. Its
predictions for the unitary shear viscosity [9] agree well
with recent data [51], and similarly for spin diffusion
[52,53]. In this work, I extend the previous LWapproach to
compute the bulk viscosity (5) via the contact correlation
function (6). It uses the self-consistent pair propagator Γ
and includes vertex corrections which represent the

(a) (b) (c)

FIG. 3. Bulk viscosity from Luttinger-Ward computation. (a) Dynamical bulk viscosity ζðωÞðkFaÞ2=ℏn vs frequencyω at unitarity, for
increasing temperature from top to bottom (see legend); universal high-frequency tail ζðωÞ ∼ C=ω3=2 (dashed). (b) dc bulk viscosity
ζðTÞðkFaÞ2=ℏn vs temperature for different interaction: from top to bottom BEC (1=kFa ¼ 1), unitary (1=kFa ¼ 0), and BCS
(1=kFa ¼ −1). Kinetic prediction ζkinðTÞðkFaÞ2=ℏn (16) from shear viscosity (dashed). (c) Sum rule SðTÞðkFaÞ2=nεF (solid) and
contact CðTÞ=k4F (dashed) vs temperature for different interaction; virial limit T−3=2 (dot-dash).
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scattering between pairs, resummed to arbitrary order [42].
While contact vertex corrections are subleading in the high-
temperature limit and could be neglected, they are crucial in
the quantum degenerate regime and need to be included for
an accurate numerical solution.
The dynamical bulk viscosity ζðωÞ determines the

dissipation when the scattering length in Eq. (6) is
modulated at frequency ω; the hydrodynamic limit is
obtained for ω → 0. While ζðωÞ vanishes at unitarity as
1=a2, the contact correlations a2ζðωÞ are nonzero at
unitarity as shown in Fig. 3(a). At low temperature there
is a pronounced peak at low frequencies ω≲ T that crosses
over into the universal high-frequency tail ζðωÞ ∼ Cω−3=2

(dashed) for ω≳ εF. At higher T ≳ TF the thermal peak for
ω≲ T leads directly into the tail. The peak width ∝ T is
consistent with quantum critical scaling.
The dc bulk viscosity a2ζðTÞ shown in Fig. 3(b) is one of

the central results: it is largest near the superfluid transition
and decreases toward high temperature where pair fluctua-
tions become weaker, as discussed below.
Bulk to shear ratio.—At high temperature kinetic theory

predicts the ratio of bulk viscosity ζ to shear viscosity η,

ζ=η ∝ ðΠan=ΠiiÞ2 ¼ ½ðP − 2E=3Þ=P�2; ð16Þ

to be proportional to the squared pressure deviation from
scale invariance [11,54]. Using LW bulk, shear and
thermodynamic data [9], this is tested by comparing ζ to
the kinetic theory prediction ζkin ≡ η½ðP − 2E=3Þ=P�2,
which is shown in Fig. 3(b) as the dashed line. There is
very good agreement with a proportionality factor of 1 at
high temperature T ≥ TF, where a quasiparticle picture is
expected to hold. Consequently, the shear viscosity at high
temperature is fully determined by scale breaking pair
fluctuations as reflected in ζ and in the contact.
In the quantum degenerate regime, the bulk viscosity

grows monotonically as the temperature is lowered toward
the superfluid phase transition and can reach large values
ζ ≳ ℏn near Tc. At low temperature, ζ > ζkin and also
ζ=η > 1 can exceed unity since pair fluctuations near the
superfluid phase transition affect the bulk viscosity more
strongly than the shear viscosity.
Critical pair fluctuations.—The fact that the bulk vis-

cosity is the dynamical correlator of order-parameter
fluctuations Δðx; tÞ suggests that ζ might diverge at Tc
[29]; instead, vertex corrections in the LW calculation
substantially reduce the contact vertex at low momenta and
render the bulk viscosity large but finite [42]. The absence
of divergent critical scaling might depend on how the
critical point is approached, as found in QCD [55].
Finally, Fig. 3(c) shows the viscosity sum rule S. It is

large in the quantum degenerate regime and decreases
toward high temperature as T−3=2 (12) (dot-dashed), i.e.,
faster than the contact C ∼ T−1 itself (dashed) [9,45,56].

To conclude, the bulk viscosity identifies the breaking of
scale invariance with the strength of pair fluctuations,
which become very large near Tc and on the BEC side.
This provides a strong signature in cold atom experiments,
either directly in the response of the contact [14,38,39] to a
change in scattering length, or by modulating the scattering
length periodically and measuring the dissipative heating
rate _E ¼ d2ð∂ta−1Þ2a2ζ [14] proportional to a2ζðω; TÞ
shown in Figs. 3(a),3(b), which is nonzero also at unitarity.
Further signatures of enhanced dissipation ζ can be found
in the hydrodynamic description of scaling or breathing
dynamics [10,13,18,21] and sound attenuation Ds ¼ ½4

3
ηþ

ζ þ κðc−1v − c−1p Þ�=mn [2,57].

I acknowledge fruitful discussions with M. Bluhm,
G. Bruun, J. Hofmann, M. Horikoshi, S. Jochim,
Y. Nishida, J. Pawlowski, T. Schäfer, J. Thywissen,
W. Zwerger, and M.W. Zwierlein. This work is supported
by Deutsche Forschungsgemeinschaft (DFG) via
Collaborative Research Centre “SFB1225” (ISOQUANT)
and under Germany’s Excellence Strategy “EXC-2181/1-
390900948” (Heidelberg STRUCTURES Excellence
Cluster).

Note added.—After submission, two other calculations
[58,59] of the bulk viscosity in the high-temperature limit
appeared, which agree with our results where applicable.
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