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Outline

• shear viscosity and perfect fluidity

• transport equations for the unitary Fermi gas

• analytical and numerical results, universal high-frequency behavior

• scale invariance and universal dynamics



Shear viscosity: definition

• Viscosity determines shear stress, or friction, of fluid flow: 

• dimensionless measure of shear stress: Reynolds number

• relativistic systems:
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[Schaefer, Teaney, Rep. Progr. Phys. 2009]



Shear viscosity: estimates

• kinetic theory (Boltzmann equation) for dilute gas:

                                                                                              grows with T

• superfluid:               

but phonon contribution                   [Landau, Khalatnikov 1949]

• minimum in between: at which temperature and viscosity?

• uncertainty suggests                                  (careful!)
η
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Insights from string theory

• conformal field theory (CFT) dual to           black hole:

        shear viscosity                         graviton absorption cross section  
                                                            (~ area of event horizon)
   
        CFT entropy                             Hawking-Bekenstein entropy
                                                            (~ area of event horizon)

• specifically SU(N),               SYM theory (no confinement, no running cpl)
in strong-coupling ‘t Hooft limit                   is dual to classical gravity:

                                                  [Policastro, Son, Starinets 2001;
                                                  Kovtun, Son, Starinets 2005]

• conjecture of universal lower bound

AdS5

N = 4
λ = g2N

η
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4πkB



Perfect fluidity

• Definition: “perfect fluid” saturates bound

                         

[Schaefer, Teaney, Rep. Progr. Phys. 2009]

η

s
=

�
4πkB

How to qualify?

• bound is quantum mechanical 
 ➡ need quantum-mechanical scattering mechanism

• bound is incompatible with weak coupling and kinetic theory:

 
➡ need strong interactions, no good quasi-particles
     (above Quantum Critical Point:                           [Sachdev])�/τ = CkBT

�/τ � �qp � kBT , s ∼ nkB :
η

s
∼ �qpτ

kB
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tional to the density of quasiparticles, s! kBn. Therefore,
!=s! k"1

B "mft#=n. Now #=n is the average energy per
particle. According to the uncertainty principle, the prod-
uct of the energy of a quasiparticle #=n and its mean free
time "mft cannot be smaller than !h, otherwise the quasi-
particle concept does not make sense. Therefore we obtain,
from the uncertainty principle alone, that !=s * !h=kB,
which is (15) without the numerical coefficient of
1=#4$$. We also conclude that !=s is much larger than
!h=kB in weakly coupled theories (where the mean free time
is large).

Another piece of evidence supporting the bound (15)
comes from a recent calculation [21] of !=s in the N % 4
supersymmetric SU#Nc$ Yang-Mills theories in the regime
of infinite Nc and large, but finite, ’t Hooft coupling g2Nc.
The first correction in inverse powers of g2Nc corresponds
to the first string theory correction to Einstein’s gravity.
The result reads

!
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8#2g2Nc$3=2

& ' ' '
"

; (16)

where %#3$ ( 1:2020 569 . . . is Apéry’s constant. The cor-
rection is positive, in accordance with (15). It is natural to
assume that !=s is larger than the bound for all values of
the ’t Hooft coupling (Fig. 1).

The bound (15), in contrast to the entropy bound [22]
and Bekenstein’s bound [23], does not involve the speed
of light c and hence is nontrivial when applied to non-
relativistic systems. However, the range of applicability of
(15) to nonrelativistic systems is less certain. On the one
hand, by subdividing the molecules of a gas to an ever-
increasing number of nonidentical species one can increase
the entropy density (by adding the Gibbs mixing entropy)
without substantially affecting the viscosity. On the other

hand, the conjectured bound is far below the ratio of !=s
in any laboratory liquid. For water under normal condi-
tions, !=s is 380 times larger than !h=#4$kB$. Using stan-
dard tables [24,25] one can find !=s for many liquids and
gases at different temperatures and pressures. Figure 2
shows temperature dependence of !=s, normalized by
!h=#4$kB$, for a few substances at different pressures. It
is clear that the viscosity bound is well satisfied for these
substances. Liquid helium reaches the smallest value of
!=s, but this value still exceeds the bound by a factor of
about 9. We speculate that the bound (15) is valid at least
for a single-component nonrelativistic gas of particles with
spin 0 or 1=2.

Discussion.—It is important to avoid some common
misconceptions which at first sight seem to invalidate the
viscosity bound. Somewhat counterintuitively, a near-ideal
gas has a very large viscosity due to the large mean free
path. Likewise, superfluids have finite and measurable
shear viscosity associated with the normal component,
according to Landau’s two-component theory.

The bound (15) is most useful for strongly interacting
systems where reliable theoretical estimates of the viscos-
ity are not available. One of such systems is the quark-
gluon plasma (QGP) created in heavy ion collisions which
behaves in many respects as a droplet of a liquid. There are
experimental hints that the viscosity of the QGP at tem-
peratures achieved by the Relativistic Heavy Ion Collider
is surprisingly small, possibly close to saturating the vis-
cosity bound [26]. Another possible application of the
viscosity bound is trapped atomic gases. By using the
Feshbach resonance, strongly interacting Fermi gases of
atoms have been created recently. These gases have been
observed to behave hydrodynamically [27] and should
have finite shear viscosity at nonzero temperature. It would
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FIG. 1 (color online). The dependence of the ratio !=s on the
’t Hooft coupling g2Nc in N % 4 supersymmetric Yang-Mills
theory. The ratio diverges in the limit g2Nc ! 0 and approaches
!h=4$kB from above as g2Nc ! 1. The ratio is unknown in the
regime of intermediate ’t Hooft coupling.
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FIG. 2 (color online). The viscosity-entropy ratio for some
common substances: helium, nitrogen and water. The ratio is
always substantially larger than its value in theories with gravity
duals, represented by the horizontal line marked ‘‘viscosity
bound.’’
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Perfect fluids: the contenders
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The unitary Fermi gas

• two-component Fermi gas with zero-range interactions:

• renormalized coupling

• ultracold atoms: interaction range                              scattering length

• Hubbard-Stratonovich transformation with pair field ϕ

• ϕ is massless at infinite coupling g=∞ (unitarity)
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2
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The unitary Fermi gas

• unitary Fermi gas is superfluid
below  

• single-particle properties:
spectral function A(k,ε) at Tc
from self-consistent T-matrix
[Haussmann, Punk, Zwerger 2009]

• now two-particle properties:
transport!

Tc ≈ 0.15TF

Finite temperature QMC calculations of the spectral func-
tion at unitarity by Bulgac et al. !67" indicate the presence of
a gapped particle excitation spectrum of form #4.1$ also

above the critical temperature, which is not found in our
approach. More generally, it is evident from the spectral
functions of the unitary gas above Tc which are shown in
Fig. 3 that a simple pseudogap ansatz for the spectral func-
tion !69" is not consistent with our results. As can be seen
from the lower three graphs in Fig. 3, our approach leads to
a single, broad, ungapped excitation peak with a quadratic
dispersion at temperatures T!Tc instead of two excitation
branches with a gapped BCS-like dispersion as expected
from the pseudogap approach. In particular we do not ob-
serve a strong suppression of spectral weight near the chemi-
cal potential.

Apart from the dominant peaks discussed above our spec-
tral functions show some additional structures that have
much smaller weight, however. Specifically, at unitarity and
temperatures above Tc a small second peak is visible for k
"kF in Fig. 3. At T=0.3TF this residual peak contains %17%
of the spectral weight. The situation is similar on the BEC
side of the Feshbach resonance at v=1, where above Tc a
second peak at negative energies is present for k"kF, with a
spectral weight of %22%.

Recent experiments by Stewart et al. !19" have succeeded
to perform rf spectroscopy in a momentum-resolved manner
from which one directly obtains the hole spectral function
A−#k ,#$ as a function of both momentum and energy. A

FIG. 3. #Color$ Density plots of the spectral function A#k ,#$ at unitarity !v=1 / #kFa$=0" for different temperatures. From top left to
bottom right: T /TF=0.01, 0.06, 0.14, 0.160#Tc$, 0.18, and 0.30. The white horizontal lines mark the chemical potential $. At temperatures
smaller than the superfluid transition temperature Tc two quasiparticle structures with a BCS-like dispersion can be seen. The width of the
spectral peaks is of the same order as the quasiparticle energy. With increasing temperature the two branches gradually merge into a single
quasiparticle structure with a quadratic dispersion above Tc. Note, however, that the quadratic dispersion is shifted to negative frequencies
compared to the bare fermion dispersion relation. This Hartree shift is of the order of U=−0.46#F and is essentially responsible for the
shifted rf spectra in the normal phase in Fig. 6.
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FIG. 4. #Color online$ The spectral function A#k ,#$ as a func-
tion of # for selected fixed values k at unitarity v=1 / #kFa$=0 and at
criticality T /TF=0.160#Tc$. The selected values of the wave number
k are represented by the colors of the lines corresponding to the
peaks from left to right: k /kF=0.00 #black$, 0.52 #red$, 0.77 #or-
ange$, 1.00 #green$, 1.26 #cyan$, 1.51 #blue$, and 2.02 #magenta$.
The different methods for calculating the spectral function are dis-
tinguished by the line styles: maximum-entropy method #solid
lines$ and Padé approximation #dashed lines$.
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Ultracold atom gases
BCS-BEC crossover

Eq. !130". Its dimensionless coupling constant
!n /2"1/3add=0.16kFa is much smaller than 1 in the regime
1/kFa!2. Since the dimers eventually approach an ideal
Bose gas, with density n /2 and mass 2M, the critical
temperature in the BEC limit is obtained by converting
the associated ideal BEC condensation temperature into
the original Fermi energy. In the homogeneous case this
gives Tc!a→0"=0.218TF, while in a trap the numerical
factor is 0.518. The fact that Tc is completely indepen-
dent of the coupling constant in the BEC limit is simple
to understand, On the BCS side, superfluidity is de-
stroyed by fermionic excitations, namely, the breakup of
pairs. The critical temperature is therefore of the same
order as the pairing gap at zero temperature, consistent
with the well-known BCS relation 2"0 /kBTc=3.52. A re-
lation of this type is characteristic for a situation in
which the transition to superfluidity is driven by the gain
in potential energy associated with pair formation. In
particular, the formation and condensation of fermion
pairs occur at the same temperature. By contrast, on the
BEC side, the superfluid transition is driven by a gain in
kinetic energy, associated with the condensation of pre-
formed pairs. The critical temperature is then on the
order of the degeneracy temperature of the gas, which is
completely unrelated to the pair binding energy.

To lowest order in kFa in this regime, the shift Eq. !11"
in the critical temperature due to the repulsive interac-
tion between dimers is positive and linear in kFa. The
critical temperature in the homogeneous case, therefore,
has a maximum as a function of the dimensionless in-
verse coupling constant v=1/kFa, as found in the earli-
est calculation of Tc along the BCS-BEC crossover by
Nozières and Schmitt-Rink !1985". A more recent calcu-
lation of the universal curve #c!v", which accounts for
fluctuations of the order parameter beyond the Gaussian
level due to interactions between noncondensed pairs,
has been given by Haussmann et al. !2007". The resulting
critical temperature exhibits a maximum around v#1,
which is rather small, however !see Fig. 28". The associ-
ated universal ratio Tc /TF=0.16 at the unitarity point v

=0 agrees well with the value 0.152!7" obtained from
precise quantum Monte Carlo calculations for the
negative-U Hubbard model at low filling by Burovski et
al. !2006". Considerably larger values 0.23 and 0.25 for
the ratio Tc /TF at unitarity have been found by Bulgac
et al. !2006" from auxiliary field quantum Monte Carlo
calculations and by Akkineni et al. !2007" from restricted
path-integral Monte Carlo methods, the latter working
directly with the continuum model. In the presence of a
trap, the critical temperature has been calculated by
Perali et al. !2004". In this case, no maximum is found as
a function of 1/kFa because the repulsive interaction be-
tween dimers on the BEC side leads to a density reduc-
tion in the trap center, which eliminates the Tc maximum
at fixed density.

The increasing separation between the pair formation
and the pair condensation temperature as v=1/kFa var-
ies between the BCS and the BEC limit implies that, in
the regime −2$v$ +2 near unitarity, there is a substan-
tial range of temperatures above Tc where preformed
pairs exist but do not form a superfluid. From recent
path-integral Monte Carlo calculations, the characteris-
tic temperature T! below which strong pair correlations
appear has been found to be of order T!#0.7TF at uni-
tarity !Akkineni et al., 2007", which is at least three times
the condensation temperature Tc at this point. It has
been shown by Randeria et al. !1992" and Trivedi and
Randeria !1995" that the existence of preformed pairs in
the regime Tc%T$T! leads to a normal state very dif-
ferent from a conventional Fermi liquid. For instance,
the spin susceptibility is strongly suppressed due to sin-
glet formation above the superfluid transition
temperature.23 This is caused by strong attractive inter-
actions near unitarity, which leads to pairs in the super-
fluid, whose size is of the same order as the interparticle
spacing. The temperature range between Tc and T! is a
regime of strong superconducting fluctuations. Such a
regime is present also in high-temperature supercon-
ductors, where it is called the Nernst region of the
pseudogap phase !Lee et al., 2006". Its characteristic
temperature T! approaches Tc in the regime of weak
coupling !see Fig. 28". Similarly, the Nernst region in
underdoped cuprates disappears where Tc vanishes. By
contrast, the temperature below which the spin suscep-
tibility is suppressed, increases at small doping !Lee et
al., 2006". Apart from the different nature of the pairing
in both cases !s- versus d-wave", the nature of the
pseudogap in the cuprates, which appears in the proxim-
ity of a Mott insulator with antiferromagnetic order, is
thus a rather complex set of phenomena, which still lack
a proper microscopic understanding !Lee et al., 2006".
For a discussion of the similarities and differences be-
tween the pseudogap phase in the BCS-BEC crossover
and that in high-Tc cuprates, see, e.g., the reviews by
Randeria !1998" and Chen et al. !2005".

23For a proposal to measure the spin susceptibility in trapped
Fermi gases, see Recati et al. !2006".
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FIG. 28. !Color online" Critical temperature of the homoge-
neous gas as a function of the coupling strength. The full line is
the result obtained by Haussmann et al. !2007" and gives Tc
=0.16TF at unitarity. The exact asymptotic results Eqs. !136"
and !11" in the BCS and BEC limits are indicated by triangles
!green" and squares !blue", respectively. The dashed line gives
the schematic evolution of T*. From Haussmann et al., 2007.

941Bloch, Dalibard, and Zwerger: Many-body physics with ultracold gases

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008

[Haussmann et al. 2007]

fermions in two spin

states: s-wave pairing

below Tc

4/27

normal

superfluid

Physics 2, 9 (2009)

FIG. 1: (a) In the BEC limit, all the atoms are in pairs with dif-
ferent spins (blue and red balls) that are bound together into
diatomic molecules (grey circles) that form a Bose-Einstein
condensate. In some of the diatomic molecules, the pairs are
very close together (highlighted boxes). (b) The unitary limit
is intermediate between the BEC and BCS conditions. (c) In
the BCS limit, a tiny fraction of the atoms form very large
Cooper pairs (grey circles). A small fraction of the atoms are
very close together (highlighted boxes). (Illustration: Alan
Stonebraker/stonebrakerdesignworks.com)

smooth unitary limit as as → ±∞. They derive the rate
of change of the total energy per particle with respect to
the inverse scattering length while n and the entropy are
held fixed:

d(E/N)
da−1

s
= − h̄2

m
kFh(n, T, as), (1)

where kF = (3π2n)1/3 is the Fermi wave number. This
implies that E/N and other thermodynamic functions
can be determined from h by integration. Zhang and
Leggett also showed that several other important prop-
erties of the system can be expressed as h multiplied by
a factor that is entirely determined by two-body physics,
including (i) the interaction energy per particle, (ii) the
rf spectroscopy shift, which is the shift in the radio-
frequency signal required to change the spin state of
an atom, and (iii) the rate for the photoassociation of
pairs of atoms into a diatomic molecule using a laser
beam. What these quantities have in common is that
they are sensitive to the presence of pairs of atoms with
different spins whose separations are much smaller than
the many-body length scales and the scattering length.
Thus the function h is a measure of the density of pairs
with small separations.

The existence of this function h that plays such a cen-
tral role in the strongly interacting Fermi gas was first
realized by Shina Tan in 2005. Tan showed [2] that the
momentum distribution in an arbitrary state of the sys-
tem has a large-momentum tail of the form C/k4, where
k is the wave number and C, which is called the contact,
is the same for both spin states. He derived an expres-
sion for the total energy of the system that implies item
(i) above as a simple consequence. Tan then derived a
more general result [3] than Eq. (1) that applies not only
to homogeneous states but also to any state of the sys-
tem, including few-body states:

dE
da−1

s
= − h̄2

4πm
C, (2)

where the contact C is the same quantity that appears in
the asymptotic momentum distribution. The contact is
the integral over the system of the contact density, which
is proportional to the number of pairs of atoms with dif-
ferent spins that are close together. Tan’s results reveal
that this number is much larger than one might expect.
The number in a small volume scales like (volume)4/3

instead of like (volume)2 as one might expect. In a later
paper, Tan derived a virial theorem (that is, a relation-
ship between kinetic and potential energy) for atoms
trapped in a harmonic potential [4] and it also involves
the contact.

Tan’s first two papers were almost completely ignored
for several years and were not published until 2008
[2, 3]. One contributing factor to the delayed appre-
ciation for Tan’s work was that he derived his univer-
sal results from the many-body Schrödinger equation
by using novel methods involving generalized functions
that he invented specifically for this problem. Zhang
and Leggett, apparently unaware of Tan’s work, derived
their results independently using more conventional
methods of many-body physics. The first published pa-
per that recognized the importance of Tan’s work was
by Punk and Zwerger [5], who showed that the rf spec-
troscopy shift was proportional to dE/da−1

s . This re-
sult was derived independently by Baym, Pethick, Yu,
and Zwierlein [6]. In 2008, Tan’s universal relations
were rederived by Braaten and Platter using methods
of quantum field theory [7] and by Werner, Tarruell, and
Castin using less formal methods [8]. Werner, Tarruell,
and Castin also derived independently the result on the
photoassociation rate.

The universal relations discovered by Shina Tan and
the applications that were subsequently derived [1, 5,
6, 8] are beautiful illustrations of the interplay between
few-body physics and many-body physics. They in-
volve quantities that can be expressed in a factored
form, with one factor involving many-body physics and
the other involving only two-body physics. They ex-
ploit the analytic solution of the two-body problem in
the zero-range limit. There may be important general-
izations of these universal relations for which the few-
body factors involve three or more particles. The three-
body factors may be calculable using the exact numer-
ical solutions of the three-body problem in the zero-
range limit.
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FIG. 1: (a) In the BEC limit, all the atoms are in pairs with dif-
ferent spins (blue and red balls) that are bound together into
diatomic molecules (grey circles) that form a Bose-Einstein
condensate. In some of the diatomic molecules, the pairs are
very close together (highlighted boxes). (b) The unitary limit
is intermediate between the BEC and BCS conditions. (c) In
the BCS limit, a tiny fraction of the atoms form very large
Cooper pairs (grey circles). A small fraction of the atoms are
very close together (highlighted boxes). (Illustration: Alan
Stonebraker/stonebrakerdesignworks.com)

smooth unitary limit as as → ±∞. They derive the rate
of change of the total energy per particle with respect to
the inverse scattering length while n and the entropy are
held fixed:

d(E/N)
da−1

s
= − h̄2

m
kFh(n, T, as), (1)

where kF = (3π2n)1/3 is the Fermi wave number. This
implies that E/N and other thermodynamic functions
can be determined from h by integration. Zhang and
Leggett also showed that several other important prop-
erties of the system can be expressed as h multiplied by
a factor that is entirely determined by two-body physics,
including (i) the interaction energy per particle, (ii) the
rf spectroscopy shift, which is the shift in the radio-
frequency signal required to change the spin state of
an atom, and (iii) the rate for the photoassociation of
pairs of atoms into a diatomic molecule using a laser
beam. What these quantities have in common is that
they are sensitive to the presence of pairs of atoms with
different spins whose separations are much smaller than
the many-body length scales and the scattering length.
Thus the function h is a measure of the density of pairs
with small separations.

The existence of this function h that plays such a cen-
tral role in the strongly interacting Fermi gas was first
realized by Shina Tan in 2005. Tan showed [2] that the
momentum distribution in an arbitrary state of the sys-
tem has a large-momentum tail of the form C/k4, where
k is the wave number and C, which is called the contact,
is the same for both spin states. He derived an expres-
sion for the total energy of the system that implies item
(i) above as a simple consequence. Tan then derived a
more general result [3] than Eq. (1) that applies not only
to homogeneous states but also to any state of the sys-
tem, including few-body states:

dE
da−1

s
= − h̄2

4πm
C, (2)

where the contact C is the same quantity that appears in
the asymptotic momentum distribution. The contact is
the integral over the system of the contact density, which
is proportional to the number of pairs of atoms with dif-
ferent spins that are close together. Tan’s results reveal
that this number is much larger than one might expect.
The number in a small volume scales like (volume)4/3

instead of like (volume)2 as one might expect. In a later
paper, Tan derived a virial theorem (that is, a relation-
ship between kinetic and potential energy) for atoms
trapped in a harmonic potential [4] and it also involves
the contact.

Tan’s first two papers were almost completely ignored
for several years and were not published until 2008
[2, 3]. One contributing factor to the delayed appre-
ciation for Tan’s work was that he derived his univer-
sal results from the many-body Schrödinger equation
by using novel methods involving generalized functions
that he invented specifically for this problem. Zhang
and Leggett, apparently unaware of Tan’s work, derived
their results independently using more conventional
methods of many-body physics. The first published pa-
per that recognized the importance of Tan’s work was
by Punk and Zwerger [5], who showed that the rf spec-
troscopy shift was proportional to dE/da−1

s . This re-
sult was derived independently by Baym, Pethick, Yu,
and Zwierlein [6]. In 2008, Tan’s universal relations
were rederived by Braaten and Platter using methods
of quantum field theory [7] and by Werner, Tarruell, and
Castin using less formal methods [8]. Werner, Tarruell,
and Castin also derived independently the result on the
photoassociation rate.

The universal relations discovered by Shina Tan and
the applications that were subsequently derived [1, 5,
6, 8] are beautiful illustrations of the interplay between
few-body physics and many-body physics. They in-
volve quantities that can be expressed in a factored
form, with one factor involving many-body physics and
the other involving only two-body physics. They ex-
ploit the analytic solution of the two-body problem in
the zero-range limit. There may be important general-
izations of these universal relations for which the few-
body factors involve three or more particles. The three-
body factors may be calculable using the exact numer-
ical solutions of the three-body problem in the zero-
range limit.
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Experimental procedure
To create a strongly interacting Fermi gas, spin-polarized fermionic
6Li atoms were sympathetically cooled to degeneracy by 23Na atoms
in a magnetic trap24. The Fermi cloud was then loaded into an optical
dipole trap, and an 875G external magnetic field was applied. Here
a 50%/50% spin mixture of the two lowest hyperfine states of 6Li
was prepared. Between these two states, labelled j1l and j2l, there is a
300-G-wide Feshbach resonance located at 834 G (refs 25, 26).
Evaporative cooling (achieved by reducing the laser power)
accompanied by a magnetic field ramp to 766G on the BEC-side
of the resonance typically produced a BEC of 3 £ 106 molecules3.
Previous experiments studying the rotation of atomic BECs

employed magnetic traps operating at low bias fields27–31. Because
the Feshbach resonance in our system occurs between two high-field
seeking states that cannot be trapped magnetically, an optical dipole
trap operating at high magnetic bias fields was necessary. Our set-up
employed a trapping beam with a 1/e2 radius of 123 mm (wavelength
1,064 nm), radially confining the gas with a trap frequency of 59Hz at
a power of 145 mW. Axial confinement with trap frequency
n z ¼ 23Hz was provided by an applied magnetic field curvature
that decreased the radial trap frequency to n r ¼ 57Hz. The aspect
ratio of the trapwas 2.5. In this trap, at a field of 766G, condensates of
1 £ 106 molecules (the typical number in our experiment after
rotating the cloud) have Thomas–Fermi radii of about 45 mm radially
and 110 mm axially, a peak molecular density of 2.6 £ 1012 cm23, a
chemical potential of about 200 nK, and a characteristic microscopic
length scale of 1/kF < 0.3 mm. Here, the Fermi wavevector kF is
defined by the Fermi energy (EF) of a non-interacting two-state
mixture of 6Li atoms of mass m with total atom number N in a
harmonic trap of (geometric) mean frequency !q; EF ¼ " !qð3NÞ1=3 ;
"2k2F=2m: Throughout this Article we will estimate the interaction
parameter 1/k Fa using the average number of fermion pairs
N/2 ¼ 1 £ 106. Here, a is the scattering length between atoms in
states j1l and j2l: At a field of 766G, 1/kFa ¼ 1.3. Because this gas is
strongly interacting, it is difficult to extract a temperature from the
spatial profile. For weaker interactions (at 735G) the condensate
fraction was in excess of 80%, which would isentropically connect to
an ideal Fermi gas32 at T/T F ¼ 0.07. The BEC–BCS crossover
(1=kFjaj, 1) occurs in the region between 780G and 925G.
The trapped cloud was rotated about its long axis using a blue-

detuned laser beam (wavelength 532 nm)28,29,33. A two-axis acousto-
optic deflector generated a two-beam pattern (beam separation
d ¼ 60 mm, gaussian beam waist w ¼ 16 mm) that was rotated
symmetrically around the cloud at a variable angular frequency Q.

The two beams with 0.4mW power each produced a repulsive
potential of 125 nK for the 6Li cloud, creating a strongly anisotropic
potential. This method was first tested using a weakly interacting,
atomic BEC of 23Na in the stretched upper hyperfine state in an
optical trap with n r ¼ 60Hz, n z ¼ 23Hz. Fully equilibrated lattices
of up to 80 vortices were observed. The vortex number decayedwith a
1/e lifetime of 4.2 ^ 0.2 s, while the atom number decayed, owing to
three-body losses and evaporation, with a lifetime of 8.8 ^ 0.4 s. The
roundness of the optical trap and its alignment with both the optical
stirrer and the axes of the magnetic potential were critical. Any
deviation from cylindrical symmetry owing to misalignment, optical
aberrations, or gravity rapidly damped the rotation. The generation
of vortices in sodium was comparatively forgiving, and had to be
optimized before vortices in 6Li2 could be observed.

Observation of vortex lattices
In experiments with 6Li close to the Feshbach resonance, the
interaction strength between atoms in states j1l and j2l can be freely
tuned via the magnetic field. Thus, it is possible to choose different
magnetic fields to optimize the three steps involved in the creation of
a vortex lattice: stirring of the cloud (for 800ms at a typical stirring
frequency of 45Hz), the subsequent equilibration (typically 500ms)
and time-of-flight expansion for imaging. To stay close to the

Figure 2 | Vortices in a strongly interacting gas of fermionic atoms on the
BEC- and the BCS-side of the Feshbach resonance. At the given field, the
cloud of lithium atoms was stirred for 300ms (a) or 500ms (b–h) followed
by an equilibration time of 500ms. After 2ms of ballistic expansion, the

magnetic field was ramped to 735G for imaging (see text for details). The
magnetic fields were 740G (a), 766G (b), 792G (c), 812G (d), 833G (e),
843G (f), 853G (g) and 863G (h). The field of view of each image is
880mm £ 880mm.

Figure 3 | Optimized vortex lattices in the BEC–BCS crossover. After a
vortex lattice was created at 812 G, the field was ramped in 100ms to 792G
(BEC-side), 833G (resonance) and 853G (BCS-side), where the cloud was
held for 50ms. After 2ms of ballistic expansion, the magnetic field was
ramped to 735G for imaging (see text for details). The field of view of each
image is 880mm £ 880mm.
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Baym-Kadanoff (2PI) conserving approximation

• self-consistent equations for fermionic and bosonic self-energies:

• Dyson equation:

• solve by iteration on logarithmic grid (300 frequencies & 300 radial momenta)

• conserving: number, momentum current, scale invariance, ...
fulfills Tan energy formula & adiabatic relation exactly
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at unitarity,

T (0)
σ" (τX1X

′
1) =

h̄2∇1∇′
1

m
δX1X′

1
δ(τ − τ1) , (5.8)

S(0)
" (τX1X

′
1) =

{

2ḡ(Λ)−1δX1X′

1
δ(τ − τ1) for # = 0

0 for # = 2 .

(5.9)

The response of the grand potential to the exter-
nal field in terms of the fermionic Green’s functions
Gσ,XX′ = 〈T ψσ(X)ψ†

σ(X ′)〉 and bosonic Green’s func-

tions GB,XX′ = 〈T ψB(X)ψ†
B(X ′)〉 is

δΩ = tr[(δUσ)Gσ] + tr[(δUB)GB ] (5.10)

= tr[T (0)
σ" Gσδh"(τ)] − tr[S(0)

" Γ
δh"(τ)

(1 + 2h"(τ))2
] (5.11)

where the trace includes the spin sum. In the second line
the bosonic Green’s function is replaced by the vertex
function ΓXX′ = −g̃2GB,XX′ . Hence, we obtain

− δΩ

δh"(τ)
= −

∑

σXX′

T (0)
σ" (τXX ′)Gσ,X′X

+
1

(1 + 2h"(τ))2

∑

XX′

S(0)
" (τXX ′)ΓX′X . (5.12)

In particular for a static scaling perturbation h"=0(τ) ≡ h
we recover the Tan energy formula [27] with the correct
UV regularization,

3p = 〈Πii〉 = −dΩ

dh
= 2

∑

kσ

h̄2k2

2m

(

nkσ − C

k4

)

= 2〈H〉 = 2ε .

(5.13)

The Kubo formula (3.1) in imaginary time can be re-
expressed in partial-wave components as

χ"(τ) =

∫

d3r 〈T Π"(r, τ)Π"(0, 0)〉 . (5.14)

On the other hand, the same stress correlation function
is given by the second derivative of the grand potential
(5.12),

χ"(τ) = − δ2Ω

δh"(τ)δh"(0)

∣

∣

∣

∣

h!=0

= − tr[T (0)
σ" (0)T̃σ"(τ)] (5.15)

+ tr
[

S(0)
" (0)

(

S̃"(τ) − 4δ(τ)Γ(0)
)]

where the last term in the square brackets comes from
the explicit h" dependence in the second term of equation
(5.12). Note also that this last term is crucial to obtain
a vanishing bulk viscosity at unitarity a−1 = 0, as we
will show in Appendix B using the Ward identities that

!"#

!$#

FIG. 1: [color online] Diagrammatic contributions to the
fermionic and bosonic self-energies.

follow from scale invariance. T̃" and S̃" are the fermionic
and bosonic viscosity response functions

T̃σ"(τXX ′) =
δGσ,XX′

δh"(τ)
= 〈T Π"(τ)ψσ(X)ψ†

σ(X ′)〉 ,

(5.16)

S̃"(τXX ′) =
δΓXX′

δh"(τ)
= −g̃2〈T Π"(τ)ψB(X)ψ†

B(X ′)〉 .

(5.17)

Note that for the case of the shear viscosity where S(0)
" =

0, the viscosity response function can be expressed by

the L function [47] as T̃" = LT (0)
" , and the correlation

function (5.15) reduces to the well-known form χ"(τ) =

− tr[T (0)
σ" (τ)LT (0)

σ" (0)].
Up to now the derivation of the correlation function

(5.15) has been completely general and exact, but the
challenge remains to evaluate the viscosity response func-
tions T̃" and S̃" within the microscopic model. In the
following we shall do this within the T-matrix approxi-
mation.

We start from the Dyson equation for the fermionic
Green’s function Gσ,XX′ in the Matsubara formalism,

G−1
σ,XX′ = G−1

0,σXX′ − Uσ,XX′ − Σσ,XX′ (5.18)

with bare Green’s functions G0(K)−1 = −(ih̄εn + µ −
εk) and the external field Uσ,XX′ from equation (5.6).
In the T-matrix approximation the fermionic self-energy
describes how fermions scatter off pair fluctuations (cf.
Fig. 1a),

Σσ,XX′ = G−σ,X′X ΓXX′ . (5.19)

The Bethe-Salpeter equation for the vertex function
which mediates the resonant Fermi-Fermi interaction is

Γ−1
XX′ = ḡ(Λ)−1 − UB,XX′ + G↑,XX′ G↓,XX′ . (5.20)

It contains the inverse bare coupling ḡ(Λ)−1 = g−1 −
mΛ/(2π2h̄2), the external field UB from equation (5.7),
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σ" (τX1X

′
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1
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The response of the grand potential to the exter-
nal field in terms of the fermionic Green’s functions
Gσ,XX′ = 〈T ψσ(X)ψ†

σ(X ′)〉 and bosonic Green’s func-

tions GB,XX′ = 〈T ψB(X)ψ†
B(X ′)〉 is

δΩ = tr[(δUσ)Gσ] + tr[(δUB)GB ] (5.10)

= tr[T (0)
σ" Gσδh"(τ)] − tr[S(0)

" Γ
δh"(τ)

(1 + 2h"(τ))2
] (5.11)

where the trace includes the spin sum. In the second line
the bosonic Green’s function is replaced by the vertex
function ΓXX′ = −g̃2GB,XX′ . Hence, we obtain

− δΩ

δh"(τ)
= −

∑

σXX′

T (0)
σ" (τXX ′)Gσ,X′X

+
1

(1 + 2h"(τ))2

∑

XX′

S(0)
" (τXX ′)ΓX′X . (5.12)

In particular for a static scaling perturbation h"=0(τ) ≡ h
we recover the Tan energy formula [27] with the correct
UV regularization,

3p = 〈Πii〉 = −dΩ

dh
= 2

∑

kσ

h̄2k2

2m

(

nkσ − C

k4

)

= 2〈H〉 = 2ε .

(5.13)

The Kubo formula (3.1) in imaginary time can be re-
expressed in partial-wave components as

χ"(τ) =

∫

d3r 〈T Π"(r, τ)Π"(0, 0)〉 . (5.14)

On the other hand, the same stress correlation function
is given by the second derivative of the grand potential
(5.12),

χ"(τ) = − δ2Ω

δh"(τ)δh"(0)

∣

∣

∣

∣

h!=0

= − tr[T (0)
σ" (0)T̃σ"(τ)] (5.15)

+ tr
[

S(0)
" (0)

(

S̃"(τ) − 4δ(τ)Γ(0)
)]

where the last term in the square brackets comes from
the explicit h" dependence in the second term of equation
(5.12). Note also that this last term is crucial to obtain
a vanishing bulk viscosity at unitarity a−1 = 0, as we
will show in Appendix B using the Ward identities that
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FIG. 1: [color online] Diagrammatic contributions to the
fermionic and bosonic self-energies.

follow from scale invariance. T̃" and S̃" are the fermionic
and bosonic viscosity response functions

T̃σ"(τXX ′) =
δGσ,XX′

δh"(τ)
= 〈T Π"(τ)ψσ(X)ψ†

σ(X ′)〉 ,

(5.16)

S̃"(τXX ′) =
δΓXX′

δh"(τ)
= −g̃2〈T Π"(τ)ψB(X)ψ†

B(X ′)〉 .

(5.17)

Note that for the case of the shear viscosity where S(0)
" =

0, the viscosity response function can be expressed by

the L function [47] as T̃" = LT (0)
" , and the correlation

function (5.15) reduces to the well-known form χ"(τ) =

− tr[T (0)
σ" (τ)LT (0)

σ" (0)].
Up to now the derivation of the correlation function

(5.15) has been completely general and exact, but the
challenge remains to evaluate the viscosity response func-
tions T̃" and S̃" within the microscopic model. In the
following we shall do this within the T-matrix approxi-
mation.

We start from the Dyson equation for the fermionic
Green’s function Gσ,XX′ in the Matsubara formalism,

G−1
σ,XX′ = G−1

0,σXX′ − Uσ,XX′ − Σσ,XX′ (5.18)

with bare Green’s functions G0(K)−1 = −(ih̄εn + µ −
εk) and the external field Uσ,XX′ from equation (5.6).
In the T-matrix approximation the fermionic self-energy
describes how fermions scatter off pair fluctuations (cf.
Fig. 1a),

Σσ,XX′ = G−σ,X′X ΓXX′ . (5.19)

The Bethe-Salpeter equation for the vertex function
which mediates the resonant Fermi-Fermi interaction is

Γ−1
XX′ = ḡ(Λ)−1 − UB,XX′ + G↑,XX′ G↓,XX′ . (5.20)

It contains the inverse bare coupling ḡ(Λ)−1 = g−1 −
mΛ/(2π2h̄2), the external field UB from equation (5.7),
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Viscosity in linear response: Kubo formula

• viscosity from stress correlations (cf. hydrodynamics):

with stress tensor                                                 (cf. Newton         )

• or, from transverse current correlations [Hohenberg, Martin 1965]

• equivalence via momentum balance 

Π̂xy =
�

p,σ

pxpy
m

c†pσcpσ

χ⊥(ω,q) =
ηq2

ω2 + (D⊥q2)2
, η = D⊥ρn

∂t(ρvi) + ∂jΠij = 0

η(ω) =
1

ω

�
d3x dt eiωt θ(t)
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Transport equations                                     [Enss, Haussmann, Zwerger 2010] 

• Single-particle Green functions:       Response to shear perturbations:

• correlation function (Kubo formula):

• transport via fermionic and bosonic modes:
very efficient description, satisfies conservation laws

• assumes no quasiparticles: beyond Boltzmann
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The response of the grand potential to the exter-
nal field in terms of the fermionic Green’s functions
Gσ,XX′ = 〈T ψσ(X)ψ†

σ(X ′)〉 and bosonic Green’s func-

tions GB,XX′ = 〈T ψB(X)ψ†
B(X ′)〉 is

δΩ = tr[(δUσ)Gσ] + tr[(δUB)GB ] (5.10)
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where the trace includes the spin sum. In the second line
the bosonic Green’s function is replaced by the vertex
function ΓXX′ = −g̃2GB,XX′ . Hence, we obtain
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+
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In particular for a static scaling perturbation h"=0(τ) ≡ h
we recover the Tan energy formula [27] with the correct
UV regularization,
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The Kubo formula (3.1) in imaginary time can be re-
expressed in partial-wave components as

χ"(τ) =

∫

d3r 〈T Π"(r, τ)Π"(0, 0)〉 . (5.14)

On the other hand, the same stress correlation function
is given by the second derivative of the grand potential
(5.12),
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where the last term in the square brackets comes from
the explicit h" dependence in the second term of equation
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follow from scale invariance. T̃" and S̃" are the fermionic
and bosonic viscosity response functions

T̃σ"(τXX ′) =
δGσ,XX′

δh"(τ)
= 〈T Π"(τ)ψσ(X)ψ†

σ(X ′)〉 ,

(5.16)

S̃"(τXX ′) =
δΓXX′

δh"(τ)
= −g̃2〈T Π"(τ)ψB(X)ψ†

B(X ′)〉 .

(5.17)

Note that for the case of the shear viscosity where S(0)
" =

0, the viscosity response function can be expressed by

the L function [47] as T̃" = LT (0)
" , and the correlation

function (5.15) reduces to the well-known form χ"(τ) =

− tr[T (0)
σ" (τ)LT (0)

σ" (0)].
Up to now the derivation of the correlation function

(5.15) has been completely general and exact, but the
challenge remains to evaluate the viscosity response func-
tions T̃" and S̃" within the microscopic model. In the
following we shall do this within the T-matrix approxi-
mation.

We start from the Dyson equation for the fermionic
Green’s function Gσ,XX′ in the Matsubara formalism,

G−1
σ,XX′ = G−1

0,σXX′ − Uσ,XX′ − Σσ,XX′ (5.18)

with bare Green’s functions G0(K)−1 = −(ih̄εn + µ −
εk) and the external field Uσ,XX′ from equation (5.6).
In the T-matrix approximation the fermionic self-energy
describes how fermions scatter off pair fluctuations (cf.
Fig. 1a),

Σσ,XX′ = G−σ,X′X ΓXX′ . (5.19)

The Bethe-Salpeter equation for the vertex function
which mediates the resonant Fermi-Fermi interaction is

Γ−1
XX′ = ḡ(Λ)−1 − UB,XX′ + G↑,XX′ G↓,XX′ . (5.20)

It contains the inverse bare coupling ḡ(Λ)−1 = g−1 −
mΛ/(2π2h̄2), the external field UB from equation (5.7),
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1) =

{

2ḡ(Λ)−1δX1X′

1
δ(τ − τ1) for # = 0

0 for # = 2 .

(5.9)

The response of the grand potential to the exter-
nal field in terms of the fermionic Green’s functions
Gσ,XX′ = 〈T ψσ(X)ψ†

σ(X ′)〉 and bosonic Green’s func-

tions GB,XX′ = 〈T ψB(X)ψ†
B(X ′)〉 is

δΩ = tr[(δUσ)Gσ] + tr[(δUB)GB ] (5.10)

= tr[T (0)
σ" Gσδh"(τ)] − tr[S(0)

" Γ
δh"(τ)

(1 + 2h"(τ))2
] (5.11)

where the trace includes the spin sum. In the second line
the bosonic Green’s function is replaced by the vertex
function ΓXX′ = −g̃2GB,XX′ . Hence, we obtain

− δΩ

δh"(τ)
= −

∑

σXX′

T (0)
σ" (τXX ′)Gσ,X′X

+
1

(1 + 2h"(τ))2

∑

XX′

S(0)
" (τXX ′)ΓX′X . (5.12)

In particular for a static scaling perturbation h"=0(τ) ≡ h
we recover the Tan energy formula [27] with the correct
UV regularization,

3p = 〈Πii〉 = −dΩ

dh
= 2

∑

kσ

h̄2k2

2m

(

nkσ − C

k4

)

= 2〈H〉 = 2ε .

(5.13)

The Kubo formula (3.1) in imaginary time can be re-
expressed in partial-wave components as

χ"(τ) =

∫

d3r 〈T Π"(r, τ)Π"(0, 0)〉 . (5.14)

On the other hand, the same stress correlation function
is given by the second derivative of the grand potential
(5.12),

χ"(τ) = − δ2Ω

δh"(τ)δh"(0)

∣

∣

∣

∣

h!=0

= − tr[T (0)
σ" (0)T̃σ"(τ)] (5.15)

+ tr
[

S(0)
" (0)

(

S̃"(τ) − 4δ(τ)Γ(0)
)]

where the last term in the square brackets comes from
the explicit h" dependence in the second term of equation
(5.12). Note also that this last term is crucial to obtain
a vanishing bulk viscosity at unitarity a−1 = 0, as we
will show in Appendix B using the Ward identities that
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FIG. 1: [color online] Diagrammatic contributions to the
fermionic and bosonic self-energies.

follow from scale invariance. T̃" and S̃" are the fermionic
and bosonic viscosity response functions

T̃σ"(τXX ′) =
δGσ,XX′

δh"(τ)
= 〈T Π"(τ)ψσ(X)ψ†

σ(X ′)〉 ,

(5.16)

S̃"(τXX ′) =
δΓXX′

δh"(τ)
= −g̃2〈T Π"(τ)ψB(X)ψ†

B(X ′)〉 .

(5.17)

Note that for the case of the shear viscosity where S(0)
" =

0, the viscosity response function can be expressed by

the L function [47] as T̃" = LT (0)
" , and the correlation

function (5.15) reduces to the well-known form χ"(τ) =

− tr[T (0)
σ" (τ)LT (0)

σ" (0)].
Up to now the derivation of the correlation function

(5.15) has been completely general and exact, but the
challenge remains to evaluate the viscosity response func-
tions T̃" and S̃" within the microscopic model. In the
following we shall do this within the T-matrix approxi-
mation.

We start from the Dyson equation for the fermionic
Green’s function Gσ,XX′ in the Matsubara formalism,

G−1
σ,XX′ = G−1

0,σXX′ − Uσ,XX′ − Σσ,XX′ (5.18)

with bare Green’s functions G0(K)−1 = −(ih̄εn + µ −
εk) and the external field Uσ,XX′ from equation (5.6).
In the T-matrix approximation the fermionic self-energy
describes how fermions scatter off pair fluctuations (cf.
Fig. 1a),

Σσ,XX′ = G−σ,X′X ΓXX′ . (5.19)

The Bethe-Salpeter equation for the vertex function
which mediates the resonant Fermi-Fermi interaction is

Γ−1
XX′ = ḡ(Λ)−1 − UB,XX′ + G↑,XX′ G↓,XX′ . (5.20)

It contains the inverse bare coupling ḡ(Λ)−1 = g−1 −
mΛ/(2π2h̄2), the external field UB from equation (5.7),

Maki-Thompson Aslamazov-Larkin
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FIG. 2: [color online] Diagrammatic contributions to the
renormalized viscosity response functions T! and S!. (a) The
full fermionic response function T! has Maki-Thompson and
Aslamazov-Larkin contributions, in addition to the bare ver-
tex T (0)

! . (b) The full bosonic response function S! has two
contributions which are equivalent for equal fermion masses
and populations, in addition to the bare vertex S(0)

! . (c) The
viscosity correlation function is given by a skeleton diagram
with one bare and one renormalized viscosity response vertex
and full propagators (fermionic and bosonic). In particular,
the second diagram describes transport via collective modes.

and the bosonic self-energy (cf. Fig. 1b). As mentioned
above, the dynamics of the pair field at unitarity a−1 → 0
only arises from the excitation of fermion pairs while the
dynamics of the bosons is irrelevant. Since we consider
a balanced gas with equal populations of fermion species
µ↑ = µ↓ = µ we will henceforth drop the spin index σ.

The T-matrix approximation for the exact viscosity re-
sponse vertices is then obtained by taking the derivative
of the self-consistency equations (5.18)–(5.20) with re-
spect to the external field h!(τ) (cf. Fig. 2); in this way
it is guaranteed that the conservation laws are satisfied.
The amputated viscosity response vertex

T!(τXX ′) = −δG−1
XX′

δh!(τ)
=

∑

Y Y ′

G−1
XY T̃!(τY Y ′)G−1

Y ′X′

(5.21)

is given by the variation of the Dyson equation (5.18)
with respect to h!(τ),

T!(τXX ′) = T (0)
! (τXX ′) + TMT

! (τXX ′) + TAL
! (τXX ′)

(5.22)

with the Maki-Thompson and Aslamazov-Larkin vertex

corrections

TMT
! (τXX ′) =

δGX′X

δh!(τ)
ΓXX′ = T̃!(τX ′X)Γ(XX ′) ,

(5.23)

TAL
! (τXX ′) = GX′X

δΓXX′

δh!(τ)
= GX′X S̃!(τXX ′) .

(5.24)

The amputated bosonic viscosity response vertex

S!(τXX ′) = −δΓ−1
XX′

δh!(τ)
=

∑

Y Y ′

Γ−1
XY S̃!(τY Y ′)Γ−1

Y ′X′

(5.25)

is given by the derivative of the Bethe-Salpeter equation
(5.20),

S!(τXX ′) = S(0)
! (τXX ′) − 2GXX′ T̃!(τXX ′) . (5.26)

The bosonic viscosity vertex describes the response of
the pair field to a scaling or shear perturbation. The

bare bosonic viscosity vertex S(0)
! serves to remove the

UV divergence of the particle-particle loop (second term)
which is present only for the bulk viscosity $ = 0.

The self-consistent transport equations for the two-
channel model are equivalent to those of the standard
T-matrix approximation in a purely fermionic descrip-
tion. Specifically, the two fermionic vertex corrections
TMT

! and TAL
! above are precisely those arising in the

self-consistent solution of the integral kernel of the L
function, as introduced by Baym [47, equation (60)]. In
physical terms, the first term describes the interaction be-
tween two fermions by exchange of a single pair while in
the second term two pairs are exchanged. In the context
of calculating the change in conductivity due to super-
conducting fluctuations, these terms are called the Maki-
Thompson (MT) and Aslamazov-Larkin (AL) contribu-
tions respectively [49], a notation that will be used also
in the present context. Note that the second term ex-
plicitly includes particle-hole fluctuations, and it is also
referred to as the “box diagram” in a functional renor-
malization group approach to the thermodynamics of the
unitary Fermi gas [50]. These vertex corrections are in
fact crucial to obtain an approximation which satisfies
the conservation laws of the underlying model.

The self-consistent equations (5.18)–(5.26) have a
structure similar to the equations of the Luttinger-Ward
approach to the BCS-BEC crossover developed in our
previous work [51, 52]. In particular, using Fourier trans-
forms and the convolution theorem they become alge-
braic equations which afford an efficient numerical solu-
tion.

The numerical calculations are performed in three
steps. In the first step the Green’s function GXX′ and
the vertex function ΓXX′ are calculated by solving the
self-consistent equations (5.18)–(5.20) iteratively. With-
out the external fields Uσ and UB the Dyson and Bethe-
Salpeter equations are diagonal in Fourier space, while

   η(ω) =
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! . (b) The full bosonic response function S! has two
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viscosity correlation function is given by a skeleton diagram
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and full propagators (fermionic and bosonic). In particular,
the second diagram describes transport via collective modes.

and the bosonic self-energy (cf. Fig. 1b). As mentioned
above, the dynamics of the pair field at unitarity a−1 → 0
only arises from the excitation of fermion pairs while the
dynamics of the bosons is irrelevant. Since we consider
a balanced gas with equal populations of fermion species
µ↑ = µ↓ = µ we will henceforth drop the spin index σ.

The T-matrix approximation for the exact viscosity re-
sponse vertices is then obtained by taking the derivative
of the self-consistency equations (5.18)–(5.20) with re-
spect to the external field h!(τ) (cf. Fig. 2); in this way
it is guaranteed that the conservation laws are satisfied.
The amputated viscosity response vertex

T!(τXX ′) = −δG−1
XX′

δh!(τ)
=

∑

Y Y ′

G−1
XY T̃!(τY Y ′)G−1

Y ′X′

(5.21)

is given by the variation of the Dyson equation (5.18)
with respect to h!(τ),

T!(τXX ′) = T (0)
! (τXX ′) + TMT

! (τXX ′) + TAL
! (τXX ′)

(5.22)

with the Maki-Thompson and Aslamazov-Larkin vertex

corrections

TMT
! (τXX ′) =

δGX′X

δh!(τ)
ΓXX′ = T̃!(τX ′X)Γ(XX ′) ,

(5.23)

TAL
! (τXX ′) = GX′X

δΓXX′

δh!(τ)
= GX′X S̃!(τXX ′) .

(5.24)

The amputated bosonic viscosity response vertex

S!(τXX ′) = −δΓ−1
XX′

δh!(τ)
=

∑

Y Y ′

Γ−1
XY S̃!(τY Y ′)Γ−1

Y ′X′

(5.25)

is given by the derivative of the Bethe-Salpeter equation
(5.20),

S!(τXX ′) = S(0)
! (τXX ′) − 2GXX′ T̃!(τXX ′) . (5.26)

The bosonic viscosity vertex describes the response of
the pair field to a scaling or shear perturbation. The

bare bosonic viscosity vertex S(0)
! serves to remove the

UV divergence of the particle-particle loop (second term)
which is present only for the bulk viscosity $ = 0.

The self-consistent transport equations for the two-
channel model are equivalent to those of the standard
T-matrix approximation in a purely fermionic descrip-
tion. Specifically, the two fermionic vertex corrections
TMT

! and TAL
! above are precisely those arising in the

self-consistent solution of the integral kernel of the L
function, as introduced by Baym [47, equation (60)]. In
physical terms, the first term describes the interaction be-
tween two fermions by exchange of a single pair while in
the second term two pairs are exchanged. In the context
of calculating the change in conductivity due to super-
conducting fluctuations, these terms are called the Maki-
Thompson (MT) and Aslamazov-Larkin (AL) contribu-
tions respectively [49], a notation that will be used also
in the present context. Note that the second term ex-
plicitly includes particle-hole fluctuations, and it is also
referred to as the “box diagram” in a functional renor-
malization group approach to the thermodynamics of the
unitary Fermi gas [50]. These vertex corrections are in
fact crucial to obtain an approximation which satisfies
the conservation laws of the underlying model.

The self-consistent equations (5.18)–(5.26) have a
structure similar to the equations of the Luttinger-Ward
approach to the BCS-BEC crossover developed in our
previous work [51, 52]. In particular, using Fourier trans-
forms and the convolution theorem they become alge-
braic equations which afford an efficient numerical solu-
tion.

The numerical calculations are performed in three
steps. In the first step the Green’s function GXX′ and
the vertex function ΓXX′ are calculated by solving the
self-consistent equations (5.18)–(5.20) iteratively. With-
out the external fields Uσ and UB the Dyson and Bethe-
Salpeter equations are diagonal in Fourier space, while
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Transport peak                                                    [Enss, Haussmann, Zwerger 2010]

• fit to Drude peak and tail:

• near Tc:                                               
decay rate larger than energy, no good quasiparticles!
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Contact coefficient

• generically, short-distance (UV) behavior depends on non-universal details of 
interaction potential

• for zero-range interaction (                  ) this becomes universal:
at most two particles within distance     , all others far away (medium)

• two-particle density matrix for                          :

• Tan contact C: probability of finding up and down close together
(property of strongly coupled medium)
[Tan 2005; Braaten, Platter 2008; Zhang, Leggett 2009; 
Combescot et al. 2009; Haussmann et al. 2009; 
Schneider, Randeria 2010; Son, Thompson 2010; 
Werner, Castin; Braaten 2010...]

r0 � k−1
F
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�
d3R

�
ψ†
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2
)ψ†

↓(R− r

2
)ψ↓(R− r
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2
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�
= C
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1
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− 1
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r0 < r � k−1
F

many-body few-body



Contact coefficient (2)

• determine C:

                                                [Stewart et al. 2010]

• intuitively: absorb external perturbation with large energy/momentum far 
away from coherent peak of a single particle
➡ need to hit 2 particles close together to give energy+momentum to both
➡ absorption rate ~C

• access strong coupling and arbitrary temperature
via perturbation theory

lim
p→∞

np =
C

p4
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A new perspective on strongly interacting fermions emerges from the experimental confirmation of a universal
formula.
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Some of the most vexing present-day problems in

physics center on understanding the many-body prop-

erties and phases of strongly interacting fermions. Part

of the difficulty arises from the fact that while the behav-

ior of interacting fermions is understood in certain well-

defined regions of parameter space, this understanding

often breaks down in the correlated strongly interact-

ing regime. Achieving this understanding of strongly

interacting fermions would have wide-ranging implica-

tions: the systems of interest include high-temperature

superconductors, high-density quark matter, and ultra-

cold atomic fermion gases. The latter is the subject of a

recent experimental investigation by John Stewart, John

Gaebler, Tara Drake, and Debbie Jin at JILA in the US,

appearing in Physical Review Letters[1]. Stewart et al.
succeeded in confirming the validity of certain nonper-

turbative theoretical formulas, known as the Tan rela-

tions [2], which describe the properties of fermions with

short-range interactions. The verification of these rela-

tions shows that cold-fermion experiments are partic-

ularly suited as a testing laboratory for studying the

general problem of strongly interacting fermion systems

[3, 4].

The JILA experiments studied gaseous, trapped

potassium-40 atoms in two different internal states,

spin-up and spin-down (Fig. 1, inset). The effective in-

teractions between these states are experimentally ad-

justable via a Feshbach resonance—a resonance of a

many-body system in which a bound state is achieved

under certain conditions—that can be tuned with a mag-

netic field. For this experiment, the detailed structure

of the Feshbach resonance scattering is less important

than the fact that the s-wave interfermion scattering

length a, characterizing the interactions, can be con-

trolled through a magnetic field B. The scattering length

diverges as a ∝ (B0 − B)−1 near the so-called resonance

position B0. By tuning the external magnetic field close

to the resonance position, one can achieve a divergent

FIG. 1: Schematic plot of the typical momentum distribution

n(k) of a fermion gas with short-range interactions, show-

ing the characteristic behavior of n(k) approaching a constant

value below unity at k → 0 and exhibiting a rapid variation

near the Fermi wave vector kF (that would be a sharp dis-

continuity at T → 0 for a Fermi liquid). At asymptotically

large k, as shown theoretically by Tan and confirmed experi-

mentally by Stewart et al., one has n(k) ∼ C/k4 (characteriz-

ing the fermions as they undergo collisions, seen in the inset),

with the contact C governing thermodynamic quantities like

the total energy of the gas. (Illustration: Alan Stonebraker)

scattering length that is much larger than the interparti-

cle spacing (|a|3n >> 1, with n the fermion density), de-

spite the fact that the effective range r0 of the interatomic

potential is quite small (r3
0
n << 1). This has the effect of

realizing the generic and broadly applicable situation of

fermions with large but short-ranged interactions.

The interfermion interactions are also attractive, so

that at low temperatures and for equal densities of the

up and down spin states, the system exhibits superfluid-

DOI: 10.1103/Physics.3.48
URL: http://link.aps.org/doi/10.1103/Physics.3.48

c� 2010 American Physical Society



Viscosity tail

• analytical expression for tail
[Enss, Haussmann, Zwerger 2010]

• viscosity sum rule 

provides non-perturbative check
[Enss, Haussmann, Zwerger 2010;
cf. Taylor, Randeria 2010]
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Fig. 11 Trap average 〈!s〉 = 〈"/s〉 extracted from the damping of the radial breathing mode. The
data points were obtained using equ. (91) to analyze the data published by Kinast et al. [9]. The
thermodynamic quantities (S/N) and E0/EF were taken from [22]. The solid red and blue lines
show the expected low and high temperature limits. Both theory curves include relaxation time
effects. The blue dashed curve is a phenomenological two-component model explained in the text.

If # is small then this equation is approximately solved by a damped oscillating
function. We have

b⊥(t) = 1+a⊥cos($t)exp(−% t) . (90)

Comparison with equ. (88) gives% = #$⊥. The main feature of collective modes is
that the viscous term exponentiates so that even very small values of # are experi-
mentally accessible. In Fig. (10) we show a comparison between an exact solution of
equ. (89) for # = 0.05, a⊥(0) = 0.25 and the approximate solution (90). We observe
that the approximate solution is extremely accurate.
The experimentally measured damping rate can be used to estimate 〈!s〉. We

have
〈!s〉 = (3&N)1/3

(

%
$⊥

)(

E0
EF

)(

N
S

)

. (91)

In Fig. 11 we show an analysis of the data obtained by Kinast et al. [9] using
equ. (91). This plot is very similar to our earlier analysis [37] (see also [38, 39]),
except that the temperature calibration and thermodynamic data have been updated
using the recent analysis published in [22].
There are a number of important checks on the interpretation of the damping date

in terms of viscous hydrodynamics that should be, or have already been, performed.
Viscous hydrodynamics predicts that the monopole mode in a spherical trap is not
damped at all. This prediction is quite striking, but it has never been tested. Viscous
hydrodynamics also predicts simple relationships between the damping constant of

shear viscosity 
for trapped atoms

[fit: Schaefer, Chafin 2009;
exp: Kinast et al. 2004, Luo et al. 2009]



Scale invariance

• Unitary Fermi gas: particle spacing only length scale, scale invariance

• pressure                                                                          ➡                 [Ho 2004]

• bulk viscosity
[Nishida, Son 2007]

• response of Green’s functions to scale transformation: Ward identities
[Enss, Haussmann, Zwerger 2010]

• WI provides solution of transport equation: 
conserving approximation

3p = 2�3p̂ =

�
d
3
x Π̂ii(x, t) = 2Ĥ = 2(T̂ + V̂ )

ζ(ω) =
1

9ω

�
d3x dt eiωt θ(t)

��
Π̂ii(x, t), Π̂jj(0, 0)

��
≡ 0

ωT [Πii] = (�+ µ)G(p, �)− (�+ ω + µ)G(p, �+ ω)

ωTbos[Πii] = (Ω+ ω + 2µ)Γ(p,Ω)− (Ω+ 2µ)Γ(p,Ω+ ω)



Beyond viscosity: universal dynamics

• viscosity determines several correlation functions at unitarity (small q):
[cf. Taylor, Randeria 2010]
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Conclusion and Outlook

• are cold atoms (unitary Fermi gas) the perfect fluid?

➡ most perfect real non-relativistic fluid known
 (factor ≈7 above string theory bound)

➡ strongest contender with quark-gluon plasma

• transport calculation of η(ω) beyond Boltzmann (tail, large scattering rate)

• conserves scale invariance and fulfills sum rules

• universal dynamic properties of unitary Fermi gas
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