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Quench Dynamics of the Ideal Bose Polaron at Zero and Nonzero Temperatures
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We give a detailed account of a stationary impurity in an ideal Bose-Einstein condensate, which we call
the ideal Bose polaron, at both zero and nonzero temperatures and arbitrary strength of the impurity-boson
coupling. The time evolution is solved exactly and it is found that, surprisingly, many of the features that have
been predicted for the real BEC are already present in this simpler setting and can be understood analytically
therein. We obtain explicit formulas for the time evolution of the condensate wave function at T = 0 and of
the one-particle density matrix at T > 0. For negative scattering length, the system is found to thermalize even
though the dynamics are perfectly coherent. The time evolution and thermal values of the Tan contact are derived
and compared to a recent experiment. We find that contrary to the Fermi polaron, the contact is not bounded at
unitarity as long as a condensate exists. An explicit formula for the dynamical overlap at T = 0 allows us to
compute the rf spectrum which can be understood in detail by relating it to the two-body problem of one boson
and the impurity.

DOI: 10.1103/PhysRevA.103.033317

I. INTRODUCTION

A particle immersed in a quantum mechanical medium,
called a polaron, is a general concept of many-body theory
and a paradigmatic example of quasiparticle formation. When
the medium particles are bosonic, Bose-Einstein condensation
occurs at sufficiently low temperatures. In this case, the reac-
tion of the bath to the local perturbation is no longer governed
by individual bath particles but by a collective excitation of
the condensed mode.

An instance of the polaron concept of particular relevance
to date is an impurity particle immersed in an ultracold atomic
gas, the realization of which has been enabled by recent exper-
imental advances in the field. While the Fermi polaron—the
case of a fermionic environment—has been thoroughly inves-
tigated (for reviews, see Refs. [1–3]), the Bose polaron is a
domain of active research. It has been realized in experiments
with strongly imbalanced mixtures of ultracold gases [4–9].

While early theoretical treatments discussed the region
of a weakly coupled impurity (see Ref. [10] for a review
and Refs. [11–14] for more recent developments), these
approaches were subsequently extended towards stronger cou-
pling [15–29] and finite temperatures [12,30–36] as well as
aspects of dynamics [37–39]. The particularly simple case of
an ideal condensate and a stationary impurity—since a mo-
bile impurity would induce effective interactions—has been
frequently treated as a limiting case to theories developed
for the interacting Bose gas [15,18,23,25,26,29,40,41], but
not received an extensive treatment on its own, with methods
specifically devoted to its solution.

In this paper, we fill this gap by focusing entirely on
this problem, to which we refer as the ideal Bose polaron.
Considering this simple setting has several benefits: First, the
comparison of ideal and real polaron (through experiments or

interacting theories) allows us to understand better the role
of boson interactions. This is most interesting for a strongly
coupled impurity, where the BEC is significantly deformed
and even weak boson interactions can have an important
effect. When relaxation effects are observed in a system, it
is not always clear whether they originate from many-body
effects, dephasing, or incoherent dynamics. In an ideal BEC,
the situation is simpler because there is no incoherence, i.e.,
an initial coherent or product state keeps this form as time
evolves. This leads to insights on the nature of peak broad-
ening in rf spectra and of thermalization. The simplicity of
the problem allows us to understand effects analytically that
were previously predicted by interacting theories: In partic-
ular, there is a close relation to the two-body problem of
one boson and the impurity and many-body effects can be
related to the two-body modes. Last but not least, the results
we obtain are exact and require little numerical effort even at
nonzero temperature.

As one central result of this article, we solve the time
evolution after a sudden switch-on of the impurity interactions
at t = 0 (a quench) exactly and show that the condensate wave
function evolves as (h̄ = 1):
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where erfcx z = ez2
(1 − erf z) is the scaled complementary

error function, n the boson density, m the boson mass and a the
impurity-boson scattering length. Similar formulas hold for
the excited states and allow us to compute the reduced density
matrices at nonzero temperature. We find that thermalization
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occurs for a < 0 by dephasing but not for a > 0 because low-
lying bound states cannot be populated without incoherences.
From the density matrix, we obtain the Bose polaron’s Tan
contact at T > 0 and compare to results from a recent ex-
periment [9], for which we give an alternative interpretation.
We then derive the explicit formula for the dynamical overlap
at T = 0, compute the exact rf spectrum and discuss how it
emerges analytically.

The paper is organized as follows. Section II introduces the
model. Section III discusses the dynamics and the asymptotics
for long times and the question of thermalization. Section IV
presents physical observables: The Tan contact is discussed,
including the question of unitarity limitation and comparison
to experiment. The rf spectrum at T = 0 is computed and
related to the two-body problem.

The zero-temperature results of this article are based on
Ref. [42].

II. MODEL

The Hamiltonian of an ideal BEC in presence of a station-
ary impurity is the one-particle operator

H a =
∫

d3ra†
r Ha

r ar,

Ha
r = − �r

2m
+ V a(r),

where the impurity is situated at the origin, ar annihilates a
boson at position r and V a is the impurity-boson interaction
potential with scattering length a. In typical cold-atom exper-
iments, the potential range is the shortest length scale by far
and the interactions can be modeled by an effective potential
of zero range, the Fermi pseudopotential

V aψ (r) = 2πa

m
δ3(r)∂r (rψ (r)).

It can have negative or positive scattering length and has,
accordingly, zero or one bound states. Furthermore, it acts
only on s-wave states.

The resulting eigenstates of Ha are the continuum states
ψa

k , parameterized by the wave number k > 0, the bound state
ψa

b if a > 0 and the zero mode ψa
0 , which we separate from

the continuum because of its macroscopic occupation by the
condensate:

ψa
0 = 1 − a

r
, (2a)

ψa
b = exp(−r/a)

r
√

2πa
if a > 0, (2b)

ψa
k = sin(kr) − ak cos(kr)

rπ
√

2(1 + a2k2)
for k > 0 (2c)

with energies E0 = 0, Eb = −1/2ma2, and Ek = k2/2m. The
normalization is such that

∫
R3 |ψa

b |2 = 1,
∫
R3 ψa

q ψa
k =δ1(k−q)

for k, q > 0 and ψa
0 → 1 as r → ∞.

We are interested in the dynamics of a BEC which is
initially in its ground state or thermal state and which starts
to interact with the impurity at t = 0.

A. T = 0

At zero temperature, the Schrödinger equation is solved
by a product state ansatz �(r1 . . . rN , t ) = φ(r1, t ) · · · φ(rN , t )
where N is the number of bosons. The condensate wave func-
tion φ is normalized to

∫
	

|φ|2 = N , where 	 is the system
volume, which allows for convergence in the thermodynamic
limit. The dynamics of φ are determined by the two-body
Schrödinger equation of one boson and the impurity, i∂tφ =
Haφ, with an initially flat BEC, φ(t =0) = √

n, of density
n = N/	.

B. T > 0

At nonzero temperature, the condensate is best described
in terms of the m-particle density matrices [43–45]
γm(x1 . . . xm, y1 . . . ym) = 〈a†

y1 · · · a†
ym

ax1
· · · axm

〉 where
〈· · · 〉 = Tr(ρ . . .) denotes the expectation value with
respect to the density matrix ρ. Their dynamics are usually
determined by the BBGKY hierarchy [46] but since H a is a
one-particle operator, the hierarchy decouples into

i∂tγm =
[

m∑
i=1

Ha
i , γm

]
.

We may therefore restrict to γ1, which gives access to
the expectation values of one-boson operators, such as the
ground-state energy, the bosonic density profiles, the Tan con-
tact between one boson and the impurity, etc.1 The initial
state is given in terms of the modes of the free two-body
Hamiltonian H0. By separating the s-wave modes ψ0

0 , ψ0
k

from the rest, we write

γ1 = γ s-wave
1 + γ other

1 ,

γ s-wave
1 (t = 0) = n0ψ

0
0 ⊗ ψ0

0 +
∫
R+

dq
1

z−1eβEq − 1
ψ0

q ⊗ ψ0
q .

Here n0 = n(1 − (T/Tc)3/2) is the condensate density with
the critical temperature Tc and z is the fugacity, determined
by z = 1 if T�Tc and Li3/2(z) = (Tc/T )3/2 Li3/2(1) otherwise
(Li is the polylogarithm).

III. EXACT DYNAMICS

Even though the condensate wave function obeys the same
Schrödinger equation as in the two-body problem, there is
an important difference: As N,	 → ∞, the condensate wave
function φ becomes non-normalizable, which leads to qual-
itatively different dynamics. Also note that if V a allows for
a bound state, the energy is not bounded below because in
absence of boson-boson interactions, an arbitrary number of
bosons can enter the bound state.

A. T = 0

At zero temperature, the condensate is fully condensed
in the zero mode ψ0

0 = 1 and its time evolution is given by

1In fact, γ1 gives access to all γm: their initial states are given by
symmetrized tensor products of γ1, and this structure is preserved by
time evolution w.r.t. a one-particle Hamiltonian.
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φ(r, t ) = √
nψ0

0 (t ) where

ψ0
0 (t ) = e−itHa

ψ0
0 .

1. Expansion in two-body eigenstates

To solve the time evolution of ψ0
0 , we expand it in the

interacting eigenstates (2):

ψ0
0 (t ) = α0,0ψ

a
0 + α0,bψ

a
b e−itEb +

∫
R+

dk α0,kψ
a
k e−itEk (3)

with coefficients α given by2 (we will always include the
bound state in general expressions and set αb = 0 if a < 0)

α0,0 = 1, (4a)

α0,b = θ (a)2a
√

2πa, (4b)

α0,k = 2a
√

2

k
√

1 + a2k2
. (4c)

The continuum integral in Eq. (3) is solved in the next section,
which leads to (1). Three qualitative features can be directly
observed from the decomposition (3):

(i) α0,b is finite. Thus the ground state, in which an infinite
number of bosons is bound to the impurity, is never reached
with a quench but instead the system remains dynamically
stable.

(ii) Quantum mechanical systems with multiple energy
levels give rise to stable oscillations between these lev-
els while oscillations involving the continuum dephase for
long times. In Eq. (3), however, if the continuum dephases,
convergence towards ψa

0 occurs for a < 0 while for a > 0,
oscillations between ψa

0 and ψa
b remain. Thus, the zero mode

plays the role of an additional bound state. We have investi-
gated the phenomenon of stable oscillations in our previous
works [23,24]; see also Refs. [18,20,22].

(iii) There are infinitely many particles in the continuum
since n

∫
R+

dk |α0,k|2 diverges as O (n	1/3), even though this
is a vanishing fraction of all particles N = n	. This effect is
related to the vanishing of the dynamical overlap of the ground
states of H 0 and H a for a < 0, which has been termed
bosonic orthogonality catastrophe in Refs. [25,27,29].

Global phase. In a finite-volume system, the lowest scatter-
ing state has not an energy of precisely zero but of 2πa / m	

to leading order in 	. Even though this tends to zero in the
thermodynamic limit, it cannot be neglected because the mode
is occupied by a macroscopic number N0 of bosons. This
leads to a total finite energy 2πan/m which can be taken into
account by a global phase factor:

�(r1 . . . rN ) = e−it2πan/mφ(r1) · · · φ(rN ).

Even though this energy equals the mean-field result which is
approached for weak coupling for the real Bose polaron [15],
it remains exact for the ideal polaron at arbitrary coupling

2Derivation: Since ψa
0 → 1 as r → ∞ while the other modes de-

cay, it is clear that α0,0 = 1. For the bound state and continuum, it
is sufficient to project the remaining part ψ0

0 − α0,0ψ
a
0 = a/r onto

ψa
b and ψa

k , which is easily accomplished with the aid of formula (5)
below and integral (B1d) from Appendix B.

strengths. Recall that this energy, also referred to as stationary
energy, corresponds to the ground state only for a < 0 while
for a > 0, the ground state energy is −∞.

2. Solving the continuum integral

To obtain formula (1), we have to solve the continuum
integral in Eq. (3). For this calculation, we set 2m = 1; the
complete result can be recovered by scaling t appropriately.
We make use of the following alternative form of the contin-
uum modes:

ψa
k = − Re eikr (ak + i)

rπ
√

2(1 + a2k2)
. (5)

The general types of integrals that occur in the derivation are
computed in Appendix B. With this, the calculation of the
time-evolved condensate wave function proceeds as follows:∫

R+
α0,kψ

a
k (r)e−itk2

dk .

After inserting the definitions (4c) and (5), (ak + i) can be
canceled. The integrand is symmetric in k, so we can replace∫
R+

→ 1
2

∫
R. For later use, introduce an Im t < 0:

= −a

rπ
lim

Im t↗0

∫
R

e−ik2t Re
eikr

k(ak − i)
dk .

The imaginary part of the fraction is anti-symmetric in k, so
the “Re” can be omitted. This requires using a principal value
integral since the imaginary part has a pole at 0. Apply a
partial fraction decomposition:

= −a

rπ
lim

Im t↗0
P

∫
R

e−ik2t+ikr

(
i

k
− ai

ak − i

)
dk .

Use integrals (B1c) and (B1b):

= a

r

{
erf

(
r

2
√

it

)

− eit/a2−r/a

[
sgn a − erf

(√
it

a
− r

2
√

it

)]}
.

Upon re-insertion of 2m and in combination with the other
terms in Eq. (3), this yields the exact time evolution of the
condensate wave function (1).

3. Asymptotics

For long times, the wave function (1) becomes

φ(r, t ) 	
t→∞

√
n − √

n
a

r

[
1 − e− r

a erfcx

(
−1

a

√
it

2m

)]

(6a)

	 √
n

{
1 − a

r if a � 0

1 − a
r

(
1 − 2e− r

a + it
2ma2

)
if a > 0.

(6b)

The convergence from (6a) to (6b) is logarithmically slow in
amplitude but qualitatively, the features of (6b) are present
already after short times. As expected, convergence to ψa

0 is
observed for a < 0 while oscillations between ψa

0 and ψa
b

remain for a > 0: indeed, (6b) is simply Eq. (3) with the
explicit values of α0,0 and α0,b but without the continuum part,
which has dephased.
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For a > 0, the asymptotic wave function periodically has
a zero whenever the time evolution factor is −1. This leads
to a halo of depletion of the condensate density at a certain
distance r0 around the impurity. This had been observed be-
fore for an interacting Bose gas [23], and we are now able
to obtain r0 analytically: from 1 = a

r0
(1 + 2e−r0/a), we obtain

a universal halo radius of r0 / a ≈ 1.45. Comparison with
Ref. [23] indicates that this is not significantly modified by
the presence of a boson-boson interaction.

B. T > 0

At nonzero temperature, we must compute the time evo-
lution of the single-particle density matrix i∂tγ1 = [Ha, γ1].
Since the potential acts only on s-wave states, the result can
be written as

γ1(t ) = γ s-wave
1 (t ) + γ other

1 (0),

γ s-wave
1 (t ) = n0ψ

0
0 (t ) ⊗ ψ0

0 (t )

+
∫
R+

dq
1

z−1eβEq − 1
ψ0

q (t ) ⊗ ψ0
q (t ). (7)

The time evolution of the noncondensed modes ψ0
q can be

solved analogously to ψ0
0 . We obtain the decomposition

ψ0
q (t ) = αq,bψ

a
b e−itEb +

∫
R+

dk αq,kψ
a
k e−itEk (8)

with coefficients (P denotes the principal value)

αq,b = 2qa3/2

√
π (1 + a2q2)

, (9a)

αq,k = 1

π
√

1 + a2k2

[
πδ(k − q) + P

2akq

k2 − q2

]
. (9b)

The continuum integral is a bit more involved than for the
zero mode, but it can be solved with the same techniques. The
derivation can be found in Appendix A and leads to an explicit
formula for the time evolution of the noncondensed modes:

ψ0
q (t ) = e−itq2/2m sin(qr)

rπ
√

2
+ aqe−mr2/2it

rπ
√

2(1 + a2q2)

×
[

iaq − 1

2
erfcx

(
r

2

√
2m

it
+ iq

√
it

2m

)

− iaq + 1

2
erfcx

(
r

2

√
2m

it
− iq

√
it

2m

)

+ erfcx

(
r

2

√
2m

it
− 1

a

√
it

2m

)]
. (10)

The remaining integral in Eq. (7) can easily be solved numer-
ically.

1. Asymptotics and thermalization

In presence of boson interactions, one would expect the
system to finally reach its thermal state. To investigate if
thermalization can occur even for the coherent dynamics of

the ideal setting, we look at the long-time limit of ψ0
q and find

ψ0
q (t ) 	

t→∞
|1 + iaq|
1 + iaq

e−itEqψa
q + αq,be−itEbψa

b ,

similarly as for the zero mode (the t-independent phase factor
in front could as well be absorbed in the definition of ψa

q ).
For a < 0, convergence to the interacting modes results and
γ1, and with it the entire system, thermalizes. For a > 0,
on the other hand, the bound state leads once again to os-
cillations. Under the continuum integral, these oscillations
dephase and vanish for observables that have a continuous
momentum space representation. Thus, the asymptotic γ1 can
effectively be written as

γ s-wave
1 (t, T )

	
t→∞

n0

n
γ s-wave

1 (t ; T =0)

+
∫
R+

dq
1

z−1eβEq − 1

(
ψa

q ⊗ ψa
q + |αq,b|2ψa

b ⊗ ψa
b

)
.

For T < Tc, oscillations with an amplitude proportional to
n0/n remain, while for T > Tc, the reduced density matrix
converges. Still, it does not thermalize for a > 0 since the
energy is not bounded below and no thermal state exists.

IV. OBSERVABLES

We now turn to the discussion of physical observables that
can be directly inferred from the condensate wave function
(1) at T = 0 or obtained by numerically solving the integral
in Eq. (7) for T > 0.

A. Tan contact

The Tan contact was first introduced as a thermody-
namic quantity in an interacting quantum gas [47]. In
the polaron problem, the impurity-induced contact C =
〈limr→0(4πr)2a†

r ar〉 quantifies the short-distance singularity
of the host atom density around the impurity. It has been
measured for the Bose polaron via its relation to ω−3/2 tails
in the rf spectrum [9].

1. T = 0

From the analytical formula for the condensate wave func-
tion (1), we can read off the time evolution of the contact
C = |4π limr→0 rφ(r)|2 at T = 0:

C(t ) = 16π2a2n

∣∣∣∣1 − erfcx

(
−1

a

√
it

2m

)∣∣∣∣
2

. (11)

Figures 1(a) and 1(b) show the time evolution for two
scattering lengths with opposite sign. The characteristic con-
vergent or oscillating behavior of the wave function discussed
in the last section is clearly visible. For long times, the asymp-
totic curve

C(t ) 	
t→∞16π2a2n

{
1 if a � 0
|1 − 2e−itEb |2 if a � 0

(12)

is reached. Figure 1(c) displays the dependence of the final
values on the scattering length.
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FIG. 1. Impurity-induced Tan contact. (a), (b) Time evolution for a−1 = ±2.5n1/3 at various temperatures. Thermalization occurs for a < 0,
while for a > 0, stable oscillations remain whenever T < Tc. Time is measured in units of τ = 2mn−2/3. (c) Asymptotic values vs scattering
length. For a > 0, the contact keeps oscillating within the shaded regions. For growing temperatures, the amplitude of oscillations decreases
proportional to the condensate density. Below Tc, the contact diverges at unitarity. This is in contrast to the Fermi polaron, where Pauli blocking
causes a limitation even in an ideal gas. (d) Temperature dependence of the thermalized values for a < 0. In comparison the contribution from
the condensate (dotted). At weak coupling, the thermal part compensates for the decrease in condensate density and the contact is almost
constant even well above Tc. At stronger coupling, the compensation is only partly, resulting in a decay C(T ) which is strongest around Tc.

In particular, the contact diverges as the resonance 1/a = 0
is approached and an infinite number of bath particles are
attracted. This behavior is different from the Fermi polaron:
there, Pauli blocking prevents unbounded growth. This effect
is known as the unitarity limitation and leads to a universal
unitary value of the contact that is only weakly affected by
the intraspecies interactions. The question whether such a
universal value exists for the bosonic case as well has so far
been discussed only with approximate methods that contain
an a priori limitation of the number of excitations from the
condensate and therefore cannot exhibit a divergence. Here
we have shown that in absence of Pauli blocking no unitarity
limitation exists. Instead, the contact keeps growing linearly
in time as (11) takes the simple form3 C(t ) = 32πnt/m for
a−1 = 0. Only the presence of a boson repulsion can prevent
unbounded growth in a real condensate. But then, the value
of the contact at unitarity should depend on the parameters of
this boson interaction and not be universal: In particular, we
expect that it continues to grow as aBB → 0 at unitarity.

2. T > 0

Only the s-wave part of γ1 has a nonzero contribution to
the contact, which is thus given by

C(t, T ) = n0

n
C(t, T =0)

+ lim
r→0

(4πr)2
∫
R+

dq
1

z−1eβEq − 1

∣∣ψ0
q (r, t )

∣∣2
. (13)

Its time evolution and asymptotic behavior for various tem-
peratures are shown in Fig. 1. For a < 0, the contact decreases
slowly with growing temperature but retains a significant part
of its T =0 value even above Tc. For a > 0, the contribution

3Linear growth of the contact has also been predicted when the
intraspecies interactions in a Bose gas are quenched to unitarity [48].

from the zero mode keeps oscillating but the thermal part
converges as discussed before in more generality.

At unitarity, the contact continues to diverge below Tc

while it remains finite above Tc: the unitarity limitation is
present in the uncondensed Bose gas but not in a con-
densate. The asymptotic value above Tc is given by C =
4
√

2mπ/β Li1/2(z) for a−1 = 0 (a similar formula has re-
cently been derived for the Fermi polaron [49]). Below Tc,
the diverging contribution of the condensate is added but
curiously, even the thermal part diverges since Li1/2(1) = ∞.

According to (13), the contact can be split into a part orig-
inating from the condensate and a thermal part. Figure 1(d)
shows this decomposition for the thermalized values at a < 0.
For weak coupling, no temperature dependence is visible:
Here the thermal part compensates almost completely for the
reduced condensate density as the temperature is raised. At
stronger coupling, a decrease with temperature is observed,
but the thermal part still has a significant contribution.

3. Comparison to experiment

The contact was recently measured experimentally [9]. In
this work, the contact was extracted from the high-frequency
tail of rf spectra of a trapped imbalanced gas mixture at fixed
temperature and scattering lengths. By evaluating different
trap regions with different densities, a variation of T/Tc was
achieved, as the critical temperature depends on n via

kBTc(n) = 2π

m

[
n

Li3/2(1)

]2/3

.

At the same time, the local length unit n−1/3 changes, leading
to an effective variation of the impurity coupling an1/3 and
of the boson repulsion aBBn1/3. Thus, while T , a, and aBB are
fixed in absolute units, they effectively vary in units of n which
are called local units in Ref. [9].

In Fig. 2 we compare the experimental data of the four
measurement series to the asymptotic (thermalized) values
of Eq. (13), subject to the same parallel variation in Tc and
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FIG. 2. Comparison of the Tan contact of the ideal Bose polaron to the recent experiment of Yan et al. [9]. At fixed absolute temperature
T ≈ 130 nK and scattering length (see captions; a0 is the Bohr radius), the density is varied by evaluating different trap regions, leading to
a simultaneous change in T/Tc ∼ n−2/3 and an1/3. Crosses are the experimental data points with error bars [50]. The leftmost data points
correspond to the trap center and the density decreases towards the right. In (a) and (b) the dashed lines are n2/3 fits to the experiment (i.e.,
C ∼ n). From the excellent agreement we conclude that temperature and boson repulsion have no effect here and that the variation is due to the
change in an1/3. The solid lines are our exact results for the ideal polaron. The behavior in (a) and (b) agrees remarkably well up to constant
factors of about 7 and 4.5. The origin of this prefactor is not yet clarified. In (d), the experimental values remain constant below Tc. Here the
strong-coupling regime is entered, in which the limiting effect of the boson interaction aBB becomes important. This breaks the n2/3 scaling
and there is no longer qualitative agreement with the ideal polaron. Note that also the boson coupling scales as aBBn1/3 in local units and thus
has a stronger effect towards the left.

an1/3 with density. The comparison allows us to discuss the
similarities and differences between ideal and real polaron,
i.e., the effects of Boson repulsion and impurity mass. The
expectation is that the relatively low experimental value of
aBB has no significant effect for a weakly coupled impurity but
that it may become important near unitarity where it limits the
number of particles attracted by the impurity. A finite impurity
mass on the other hand should have a weaker effect at strong
coupling where it is enhanced to a larger effective mass.

4. Weak coupling (a, b)

The experimental data seem to imply, at first sight, a strong
decay of the contact with growing temperature. However,
comparison with Fig. 1(d) shows that temperature should have
vanishing effect for the coupling strengths in Figs. 2(a) and
2(b). We thus conjecture that the decrease originates from
the effective change in scattering length. To verify this, note
that the noninfluence of T manifests itself in the scaling
C ∼ na2 (12) (see also Ref. [16]) of the contact, which leads
to Cn−1/3 ∼ n2/3a2 ∼ (T/Tc)−1 for the experimental scaling
Tc ∼ n2/3. Such a 1/x fit is shown as dashed line in the figures
and agrees remarkably well.

Our exact result (solid line) shows the same 1/x behavior
but deviates by constant factors. It is not plausible that this
difference originates from the difference between ideal and
real Bose gas for a number of reasons:

(i) The difference is highest for the lowest scattering
length (a), but the limiting effect of the boson repulsion should
be most important for strong coupling.

(ii) Comparison with approaches that include boson inter-
actions [24,29] indicates that the latter has almost no effect at
these coupling strengths.

(iii) The boson coupling aBBn1/3 effectively varies with
density too, which would break the 1/x scaling.

That instead the finite impurity mass should cause the
difference would explain why the factor is smaller for the
stronger coupling (b) where the effective mass is larger. How-
ever, given that the impurities are already heavier than the
bosons in the experiment, such a large effect would be surpris-
ing. The origin is thus not yet clear and investigating the role
of the mass ratio on the Tan contact might be an interesting
topic for future work.

5. Strong coupling (d)

Near unitarity, agreement between ideal and real Bose po-
laron can no longer be expected because the former predicts
a divergence of the number of attracted particles, which is
limited by the repulsion between Bosons in the real gas.
Consequently, the experimental and theoretical results in (d)
no longer show the same qualitative behavior. Also a finite
density of impurities might have a limiting effect in the
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experiment as it allows only for a finite number of attracted
bosons per impurity.

For a simple estimate of the magnitude of these effects, let
us assume that each impurity has at its disposition a limited
volume of radius R in which it may disturb the BEC. The zero
mode then turns into ψa

0 = 1−a/r
1−a/R , which becomes ψa

0 = R/r

at unitarity and leads to a contact limited by C ∼ nR2:
(1) For the effect of the boson repulsion, we assume that

any perturbation of the BEC is limited in size to the magnitude
of the healing length ξ = 1 /

√
8πaBBn0. Setting thus R ∼ ξ

leads to Cn−1/3 ∼ n
n0

1
aBBn1/3 . In the experiment, a−1

BBn−1/3 ≈
100 at the trap center and both n/n0 and a−1

BBn−1/3 grow to-
wards the outer regions.

(2) For the impurity concentration, we set R ∼ n−1/3
I and

obtain Cn−1/3 ∼ (n/nI )2/3. In the experiment, (n/nI )2/3 ≈ 45
is constant under the assumption of similar cloud shapes.

That the measured contact is constant might lead to the
conclusion that the latter effect is dominant. However, even
for this measurement series, a2n2/3 ≈ 0.7 is much lower than
(n/nI )2/3 and the impurity concentration should have no ef-
fect. Rather, we believe that the boson repulsion is augmented
by a prefactor, which depends on the potential shape and
is larger for a van der Waals potential than for a soft one.
This expectation is motivated by the findings of Ref. [24]
but whether the suggested scaling as a−1

BBn−1/3 is valid for
arbitrary potential shapes remains to be seen.

The constant experimental values of C near unitarity may
be caused by three effects that compete as the density is
lowered from the trap center to the outer regions:

(1) The decrease in an1/3 leads to a decrease of the contact
in the same units.

(2) The increase in T/Tc also leads to a decrease; cf.
Fig. 1(d).

(3) The decrease in aBBn1/3 on the other hand leads to an
increase.

In total, these effects seem to compensate for each other
remarkably well.

6. Summary

To summarize, our results for the ideal Bose polaron allow
us to interpret the observed density dependence of the ex-
perimental data at weak coupling: comparison with Fig. 1(d)
and 1/x fits shows that the temperature has vanishing effect
at these coupling strengths and that, consequently, the varia-
tion originates from the effective change in coupling strength.
We have found a surprising deviation between ideal and real
polaron at weak coupling that may motivate research on the
influence of the impurity mass on the Tan contact. Near uni-
tarity, on the other hand, the lower experimental values are
well-interpretable by boson repulsions in a real gas that limit
the number of bosons gathering around the impurity.

B. Dynamical overlap and RF spectrum at T = 0

While the Tan contact between bosons and impurity is
a one-particle operator of the form

∫
dx dy Ox,ya†

xay, ex-
periments give also access to many-body observables which
contain an arbitrary number of creators and annihilators. The

two most relevant are the dynamical overlap

S(t ) = 〈eitH 0
e−itH a〉

(the expectation value is with respect to the initial state),
which can be measured by Ramsey interferometry [8,51,52],
and its Fourier transform [3], the rf spectrum

A(ω) =
〈∫

dE δ(E − H 0)δ(ω − E + H a)

〉
, (14)

which is measured by spectroscopy [4,5,9].
They have been computed theoretically both at zero

[4,15,18,53] and nonzero [36,54] temperatures and
Refs. [4,18,36] have compared to experiment with good
agreement. We will now derive these quantities exactly for the
ideal polaron at zero temperature and show that the features
known from the real polaron are already present—even
though some of them were believed to originate from
incoherences in the dynamics, which are absent in our case.

1. Dynamical overlap

From the decomposition (3), we obtain the dynamical over-
lap (switching from product states to coherent states):

S(t ) = 〈�(0)|�(t )〉 / 〈�|�〉

= exp

[
−it2πan / m + n|α0,b|2(e−itEb − 1)

+ n
∫
R+

dk |α0,k|2(e−itEk − 1)

]
. (15)

The solution of the continuum integral is similar as in
Sec. III A 2. We set 2m = n = 1 for the calculation:∫

R+
(e−ik2t − 1)|α0,k|2 dk .

Again, replace
∫
R+

→ 1
2

∫
R and perform a partial fraction de-

composition:

= 4a2

(∫
R

e−ik2t − 1

k2
dk − a2

∫
R

e−ik2t − 1

1 + a2k2
dk

)
.

First integral, call it I (t ): ∂
∂t I (t ) = −i

∫
R e−ik2t = −i

√
π
it , thus

I (t ) = −2
√

iπt . Second integral, use (B1a) from Appendix B:

= 4a2

[
−2

√
iπt − aπeit/a2

(
sgn a − erf

√
it

a

)
+ |a|π

]
.

Upon reinsertion of 2m and n and combining with the contri-
butions of the zero mode and bound state, we obtain the exact
formula for the dynamical overlap:

S(t ) = exp

{
−it2πan / m + 4πa3n

[
erfcx

(
−1

a

√
it

2m

)

− 1 − 2

a

√
it

2mπ

]}
. (16)

At short times, it shows oscillations for a > 0 similarly to the
contact, but for long times S decays to zero [18,25,27,29].
This is remarkable given that the dynamics are perfectly co-
herent and that the condensate wave function continues to
oscillate. This difference in behavior of contact and dynamical
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overlap originates from the former being a one-particle and
the latter a many-particle observable.

In the two limiting cases of weak and of unitary coupling
a±1 → 0, formula (16) simplifies to a stretched exponential
with a noninteger power of time:

S(t ) −−−→
a→0

exp

[
−2πan

m
it − 8a2n

√
π

(
it

2m

)1/2]
, (17a)

S(t ) −−−→
a→∞ exp

[
16

√
πn

3

(
it

2m

)3/2]
. (17b)

Note in particular that the unitary limit a−1 → 0 is well-
behaved despite the divergence of the zero-mode energy
2πan/m because the latter is canceled by the continuum con-
tribution (cf. the continuum shift in the rf spectrum discussed
below).

2. RF spectrum

The explicit formula (16) gives us access to the exact rf
spectrum via a single numerical Fourier transform,

A(ω) = 1

π
Re

∫
R+

eitωS(t ) dt .

The result is shown in Fig. 3(a) for a range of scattering
lengths. It is similar to the result previously obtained from
Bogoliubov theory for the real polaron [18]. However, since
Bogoliubov theory has a dynamical instability at strong cou-
pling [20,23], it was not clear before whether the results
remain correct near unitarity. The agreement with our exact
results shows that the instability does not affect the rf spec-
trum despite the fact that it leads to divergences in other
observables [23], such that we can confirm Ref. [18], with the
exception of one difference: In Fig. 3, the rf peaks can be seen
to be quite sharply cut off towards lower energies for weak
coupling. Also, from (14) and H 0 � 0, one can see that A(ω)
is strictly zero when ω is below the ground state energy of
H a for a < 0. In Ref. [18], however, the peaks appear to be
broadened in both directions and centered around the ground
state energy. We do not believe that this difference originates
from a difference between ideal and real BEC or from the
approximations involved in Ref. [18] but instead from the
higher resolution that our explicit formula for S(t ) allows us
to obtain with little numerical effort.

3. Analytical discussion

The emergence of the rf spectrum from the three con-
stituents of the two-body spectrum—the zero mode, the bound
state and the continuum—can be understood in detail. For
this, we split (15) into three corresponding factors S0, Sb,
and Sc, interpret them as multiplication operators acting on
the constant function 1, and Fourier transform each of these
operators independently:

S(t ) = (S0SbSc1)(t ),

A(ω) = (Â0ÂbÂcδ)(ω),

where Â... = F−1S...F and F is the Fourier transform op-
erator, scaled as (F f )(t ) = ∫

R e−itω f (ω) dω. The result is a
δ-peak centered around zero which is subsequently modified
by the operators Â0, Âb, and Âc. They can be expressed in

FIG. 3. (a) Numerically exact rf spectrum of the ideal Bose po-
laron. It can be understood as originating from discrete peaks: The
main peak corresponds to the energy of the zero mode 2πan / m
and for a > 0, additional lines appear at distances of the two-body
binding energy. Their weights follow a Poisson distribution with
more lines having appreciable weight at strong coupling. The discrete
peaks are broadened and shifted by the continuum, giving rise to the
peak shape in (c). Since continuum states have positive energy, the
lines in (b) are situated at the lower bounds of those in (a).

terms of the shift operator σE defined by σE f (ω) = f (ω − E ),
and their effects can be discussed independently.4

a. Zero mode. For the zero mode, we have

S0 = e−it2πan/m,

Â0 = σ2πan/m.

4There is a related probabilistic description: We may regard A as
probability density of a random variable which is an infinite sum
of random variables corresponding to the different modes. From
this, one can infer that A is an infinitely divisible distribution. In
accordance with this, ln S satisfies the Lévy-Khinchin formula, i.e.,
it is of the form

ln S(t ) = −σ 2

2
t2 − ibt +

∫
(e−itE − 1 + itE1|E |<1) ν(dE )

without Gaussian part, σ 2 = 0, and with the term E1|E |<1 being ν-
integrable such that it can be absorbed in b [see (15)]. While the
zero mode is responsible for the deterministic shift b, the bound state
and continuum correspond to the singular and absolutely continuous
parts of the characteristic measure ν.
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It thus shifts the δ function by 2πan / m, leading to the main
peaks in Fig. 3. At stronger coupling, they are no longer
visible due to the effect of the continuum discussed below.

b. Bound state. For a > 0, the bound state has the effect

Sb = exp[n|α0,b|2(e−itEb − 1)],

Âb = exp[n|α0,b|2(σEb − 1)].

Figure 3(b) shows the purely discrete part of the spectrum
(Â0Âbδ)(ω). Expanding the exponential yields

Âb =
∞∑
j=0

(n|α0,b|2) j

j!
e−n|α0,b|2σ jEb . (18)

We thus obtain shifts by multiples jEb of the two-body
binding energy as discussed in Ref. [18]: They correspond
to many-body eigenstates of j bosons in the bound state
and N − j in the zero-energy state. The weights of these
peaks follow a Poisson distribution5 with mean value 〈 j〉 =
n|α0,b|2 = 8πa3n. For weak coupling, this value is small,
meaning that the bound state is occupied at most once. For
stronger coupling, multiply occupied bound states gain weight
and additional lines appear in the spectrum. Close to unitarity,
the lines get denser and the broadening by the continuum
stronger, such that a smooth crossover to the attractive side
is observed [18].

c. Continuum. For the continuum, we obtain

Sc = exp

[
n

∫
R+

dk |α0,k|2(e−itEk − 1)

]
,

Âc = exp

[
n

∫
R+

dk |α0,k|2
(
σEk − 1

)]
.

The influence of the continuum on a single peak is shown
in Fig. 3(c); it is independent of the sign of a. It broadens
the peaks, but only towards positive ω because the contin-
uum states have exclusively positive energies. At the same
time, a shift occurs which cancels the mean effect of zero-
mode and bound states: This is required by the sum rule∫
ωA(ω) dω = 〈�(0)|H a|�(0)〉 = 0. In the limiting cases

a±1 → 0, the power-law exponent ∼tα in Eq. (17) means that
A is an α-stable distribution.6 Specifically for weak coupling,
we obtain the Lévy distribution (stability α = 1/2, skewness
β = 1)

(Âcδ)(ω) −−→
a→0

θ (ω)
4a2n√
2m ω3/2

exp

(
−8πa4n2

mω

)
. (19)

It exhibits the ω−3/2 tail characteristic for contact interactions.
In Fig. 3(c) the narrowest peak is of this form. At unitarity on
the other hand, A(ω) is the stable distribution with stability

5This is immediately plausible: Every boson has a probability of
|α0,b|2/	 to be found in the bound state, and the Poisson distribution
emerges through the law of rare events.

6The stable distributions are a narrower class than the infinitely
divisible distributions and are fully characterised by a stability pa-
rameter α∈(0, 2] and a skewness parameter β∈[−1, 1] as well as a
shift and a scale parameter.

α = 3/2 and skewness β = 1 and has a representation in
terms of Whittaker functions [55,56].

Interestingly, the time evolution of the system is perfectly
coherent but leads nonetheless to broad peaks near unitarity,
which arise from the coupling of the impurity to the contin-
uum. It should also be noted that while the rf spectrum does
contain information about the many-body Hamiltonian H a,
it also depends on the noninteracting Hamiltonian H 0 and
the initial state of the system. For example, the positions of
the discrete peaks are direct features of H a, but their weights
as well as the continuum effects relate to H 0. In particular,
the strong influence of the continuum and the broad peaks
near unitarity are a consequence of the fact that the difference
between H a and H 0 is most important here.

V. CONCLUSION

We have treated the problem of a stationary impurity in
an ideal BEC and derived exact results for the condensate
wave function at zero temperature and the reduced density
matrix at nonzero temperature. For attractive coupling, the
system is found to thermalize by dephasing despite the lack
of incoherence in the dynamics because the two-body spec-
trum is purely continuous. On the repulsive side oscillations
remain, which are proportional in amplitude to the condensate
fraction.

We used our results to compute the Tan contact, which
grows unboundedly at unitarity, contrary to the behavior for
the Fermi polaron. This effect vanishes above the critical tem-
perature and will be suppressed by boson interactions in a real
gas. The dependence of the contact on temperature is small
for weak coupling and increases towards unitarity. We have
compared our results to a recent experiment and interpreted
the varying contact along different trap regions as being due
to an effective change in coupling strength.

The rf spectrum at zero temperature was shown to have the
same qualitative features as they have been predicted for the
interacting Bose gas [18] and can be understood very well in
the ideal setting from its relations to the two-body problem.

For future work, the absence of unitarity limitation in an
ideal BEC reported here naturally leads to the question how
the boson interaction in a real gas would prevent unlim-
ited attraction of bosons by the impurity. We have estimated
the scaling to be a−1

BBn−1/3 which has yet to be confirmed
by explicit calculations. Also the shape of the interaction
potential can be expected to play an important role [24].
Furthermore, the influence of the impurity mass on the con-
tact promises to be interesting: Important questions are if the
contact of a mobile impurity at unitarity in an ideal Bose gas
would continue to diverge and if the mass ratio can explain
the difference reported here between the exact results for
the ideal polaron and the experimental results for the real
polaron.

Note added in proof. Recently a study of universal aspects
of the Bose polaron appeared [57] that also finds the contact
to diverge at unitarity for aBB → 0. A more recent work
on the dynamical formation of the polaron derives the same
expression (17b) for the unitary dynamical overlap [58].
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APPENDIX A: CONTINUUM INTEGRAL
FOR NONCONDENSED MODES

By similar means as in Sec. III A 2 for the zero mode, we
solve the integral in the decomposition (8) to obtain the time
evolution of the continuum modes (10). Once again, we set
2m = 1 and make use of the integrals in Appendix B:∫

R+
dk e−itk2

αq,kψ
a
k (r)

= −1

rπ2
√

2

∫
R+

dk e−itk2
Re

eikr

ak − i

[
πδ(k − q)

+P
2akq

k2 − q2

]
.

Evaluate the δ-function. For the other term, replace∫
R+

→ 1
2

∫
R and introduce Im t < 0 as before. Then apply a

partial fraction decomposition:

= −1

rπ2
√

2
lim

Im t↗0

[
πe−itq2

Re
eiqr

aq − i

+ aq

2(1 + a2q2)
P

∫
R

dk e−itk2+ikr

×
(

aq + i

k − q
− aq − i

k + q
− 2ia

ak − i

)]
.

Apply Eqs. (B1b) and (B1c):

= −1

rπ
√

2(1 + a2q2)

{
e−itq2

Re eiqr (aq + i)

+ iaq(aq + i)

2
e−itq2+iqr erf

(
r

2
√

it
+ iq

√
it

)

− iaq(aq − i)

2
e−itq2−iqr erf

(
r

2
√

it
− iq

√
it

)

+ aqeit/a2−r/a

[
sgn a + erf

(
r

2
√

it
−

√
it

a

)]}
.

Some rearrangements are made:

= e−itq2 sin(qr)

rπ
√

2
+ aqe−r2/4it

2rπ
√

2(1 + a2q2)

×
{

i(aq + i) erfcx

(
r

2
√

it
+ iq

√
it

)

− i(aq − i) erfcx

(
r

2
√

it
− iq

√
it

)

+2eit/a2−r/a+r2/4it

[
− sgn a − erf

(
r

2
√

it
−

√
it

a

)]}
.

The part of the bound state is

e−itEbαq,bψb = 2θ (a)eit/a2−r/a qa

rπ
√

2(1 + a2q2)
.

Together, this leads to Eq. (10).

APPENDIX B: DERIVATION OF REQUIRED INTEGRALS

For the solution of the continuum integrals and the projec-
tions occurring throughout the paper, the following integrals
are needed:∫

R

e−αk2

k2 + γ 2
dk = π

γ
eαγ 2

[sgn(Reγ ) − erf (γ
√

α)]

(B1a)∫
R

e−αk2+βk

k − iγ
dk = iπeαγ 2+iβγ

[
sgn(Reγ )

− erf

(
iβ

2
√

α
+ γ

√
α

)]
, (B1b)

P

∫
R

e−αk2+βk

k − q
dk = iπe−αq2+βqerf

(
iq

√
α − iβ

2
√

α

)
,

(B1c)∫
R+

eiqr dr = πδ(q) + P
i

q
, (B1d)

where α, β, γ ∈C, q ∈R with Re α > 0, Re γ =0 and (B1d)
holds in the sense of distributions.

Proof

In the following it is always easy to find dominating func-
tions to show holomorphy of integrals and exchangeability of
differentiation and integration.

(a) Denote by I1(α, γ ) the left-hand side of (B1a). We
have

∂

∂α
e−αγ 2

I1(α, γ ) = −e−αγ 2
∫
R

e−αk2
dk

= −
√

π

α
e−αγ 2

.

Consequently, (s = γ
√

α′)

I1(α, γ ) = −eαγ 2
∫ α

√
π

α′ e
−α′γ 2

dα′,

= −√
πeαγ 2

∫ γ
√

α

e−s2 2 ds

γ

= −π

γ
eαγ 2

[erf (γ
√

α) + const(γ )].
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With I1(+∞, γ ) = 0, we obtain

I1 = π

γ
eαγ 2

[sgn(Re γ ) − erf (γ
√

α)].

(b) Let I2(α, β, γ ) be the integral in Eq. (B1b). Then

∂

∂β
e−iγ β I2 = e−iγ β

∫
R

e−αk2+βk dk

=
√

π

α
e

β2

4α
−iγ β .

Therefore, (s = iβ ′

2
√

α
+ γ

√
α)

I2 = eiβγ

∫ β
√

π

α
e

β′2
4α

−iγ β ′
dβ ′,

=
√

π

α
eiβγ

∫ iβ
2
√

α
+γ

√
α

e−s2+γ 2α 2
√

α

i
ds

= −iπeiβγ+γ 2α

[
erf

(
iβ

2
√

α
+ γ

√
α

)
+ const(α, γ )

]
.

To evaluate the constant, compute I2(α, 0, γ ):

I2(α, 0, γ ) =
∫
R

e−αk2 k + iγ

k2 + γ 2
dk

= iγ
∫
R

e−αk2

k2 + γ 2

= iγ I1

= iπeαγ 2
[erf (γ

√
α) − sgn(Re γ )].

Thus,

I2 = iπeαγ 2+iβγ

[
sgn(Re γ ) − erf

(
iβ

2
√

α
+ γ

√
α

)]
.

(c) By the Sokhotski-Plemelj theorem,

P

∫
R

e−αk2+βk

k − q
dk

= lim
ε→0

I2(α, β,−iq + ε) + I2(α, β,−iq − ε)

2

= iπe−αq2+βq erf

(
iq

√
α − iβ

2
√

α

)
.

(d) Taking β = ir and q = 0 in (c), the limit α↘0 can be
taken if the integral is understood in the sense of distributions.
This yields ∫

P
eirk

k
dk = −iπ sgn(r)

⇒ 2iF−1

(
P

1

k

)
= sgn .

Consequently,∫
R+

eikr dr = (F θ )(k) = 1

2
F (1 + sgn)(k)

= πδ(k) + P
i

k
.
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