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We consider two heavy particles immersed in a Bose-Einstein condensate in three dimensions
and compute their mutual interaction induced by excitations of the medium. For an ideal Bose
gas, the induced interaction is Newtonian up to a shift in distance which depends on the coupling
strength between impurities and Bosons. For a real BEC, we find that on short distances, the induced
potential is dominated by three-body physics of a single Boson bound to the impurities, leading to an
Efimov potential. At large distances of the order of the healing length, a Yukawa potential emerges
instead. In particular, we find that both regimes are realized for all impurity-boson couplings and
determine the corresponding crossover scales. The transition from the real to the ideal condensate at
low gas parameters is investigated.

I. INTRODUCTION

Interactions between particles in fundamental physics
emerge by local excitations of fields. When the particles
are sufficiently slow, the field’s degrees of freedom can
be integrated out, leading to an effective action-at-a-
distance, which may be described by a distance-dependant
potential. The properties of the induced potential depend
on properties of the field and become highly non-trivial
when the field itself consists of interacting particles.

Recent progress in the creation and control of ultracold
gas systems has enabled experiments where the influence
of such interacting media of particles on impurities can
be studied. In the case where the medium is a Bose-
Einstein condensate (BEC), the impurities are known as
Bose polarons and have been realized experimentally [1–4]
and studied in and out of equilibrium [5–15].

A number of theoretical works have studied interac-
tions induced by a BEC. [16] applies Bogoliubov theory
to study how the Efimov hierarchy generated by a single
Boson is modified if a whole condensate is present. In [17],
a variational wave function with a single Bogoliubov exci-
tation led to a Yukawa potential for weak impurity-boson
(IB) coupling and to an Efimov potential near a resonance.
A perturbative treatment in momentum space was given
in [18]. [19] discusses the case of an ideal condensate,
including finite temperature. In [20], general superfluids
with a linear dispersion were considered, which, when
applied to a BEC, treats the case of impurity separations
large compared to the healing length. It was shown that
first-order effects in the gas parameter, which would lead
to a Yukawa potential, are dominated at these scales
by second-order effects and a van-der-Waals potential
emerges. [21] consider a soft IB potential while in [22],
the impurities are ionic and interact via an r−4 potential
and in [23], a spinor BEC is investigated. Also related are
works on 1d condensates [24–28] and on Fermi polarons
[29–33].

In this paper, we consider the experimentally relevant
case of a short (though finite) range potential. We em-
ploy Gross-Pitaevskii theory (GPT) as well as a recently
developed non-local extension (NLGPT, [9]) to be able to
treat large deformations of the condensate. We find that
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FIG. 1. Sketch of the regimes of Efimov and Yukawa scaling
of the induced potential at a gas parameter of na3BB = 10−6.
At small impurity separations d, a three-body bound state
is formed, which has an Efimov scaling Eb ∼ d−2 for d �
|aIB | where aIB is the impurity-boson scattering length. At
separations comparable to the healing length, the induced
potential takes a Yukawa form ∼ exp(−d

√
2/ξ)/d with the

healing length ξ = 1/
√

8πnaBB. At even larger separations,
a van-der-Waals scaling has been shown to emerge [20] (not
shown in figure).

the Efimov and Yukawa scaling of the induced potential,
previously found at different coupling strengths [17], in
fact exist at every coupling but at different impurity sep-
arations as depicted in Fig. 1. For an ideal BEC, on the
other hand, the potential is shown to be Newtonian up to
a shift in distance. Approaching the ideal gas case by a
weakly interacting condensate, we show that the Newto-
nian potential emerges only at very weak gas parameters
of order 10−15 in an intermediate distance regime.

II. MODEL

The Hamiltonian for two stationary impurities in a
BEC is given by
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H =

∫
x

a†x

(
− ∆

2mB

+ V IB

x−xI,1
+ V IB

x−xI,2

)
ax

+

∫
x,y

a†xa
†
yV

BB

x−yaxay (1)

where a
(†)
x are the boson annihilation and creation oper-

ators at position x ∈ R3, mB the boson mass, V IB and
V BB the impurity-boson and boson-boson interaction po-
tentials of scattering lengths aIB and aBB, respectively,
and xI,i the impurity positions. Their distance will be
denoted d = |xI,2 − xI,1|. We are looking for the ground
state energy Ed of this Hamiltonian at different impurity
separations d = |xI,1 − xI,2| to compare it with the en-
ergy of two individual impurities E∞ and thus obtain the
medium-induced interaction

Vind(d) = Ed − E∞. (2)

A. Basic properties

Before turning to the methods applied to the Hamil-
tonian, let us recall some elementary analytical results,
which serve as a reference.

a. Single-Boson Problem. The three-body problem
of a single Boson and two stationary impurities can be
solved in the case of an IB contact potential. Clearly, the
effective potential formed by the two impurities is the
stronger the closer the impurities are. One finds, that
a bound state exists whenever a−1

IB > −d−1 (compared
to a−1

IB > 0 for a single impurity) with binding energy of
Eb = κ2/2mB where

κ =
1

aIB

+
1

d
W0(e−d/aIB) (3)

and W0 is the principal branch of the Lambert W function,
i.e. the inverse of wew defined on [−1/e,∞) [29, 32]. At
short distances or resonant coupling a−1

IB = 0, the binding
energy takes the form Eb ∼ d−2, which is reminiscent of
Efimov physics and admits a tower of bound states. We
may expect to find the same behaviour at small distances
in the many-body problem [34], as a single boson gets
bound to the impurities and repels the other bosons, c.f.
[13].
b. Ideal BEC. In absence of BB interactions, the

ground state of (1) is a product state with all bosons
being in the ground state of the single-boson problem. If
this problem allows for a bound state, the many-body
ground state energy will be −∞ as all bosons enter the
bound state and the BEC collapses. Otherwise, all bosons
are in the zero-mode, i.e. the lowest scattering state, and
the ground state energy will be finite [12]. It is not zero,
however, because in finite volume Ω, the lowest scattering
state has an energy of order 1/Ω, which, when occupied
N times, does not vanish in the thermodynamic limit.

Again, the problem can be solved explicitly for contact
interactions. Regarding the two impurities as forming

a single effective potential of scattering length aeff, the
ground state energy is given by E = 4πaeffn/2mB (c.f.
[12]). The zero mode φ0 defines aeff via φ0(x) → 1 −
aeff/|x| as |x| → ∞. It reads1

φ0
x = 1− α

|x− xI,1|
− α

|x− xI,2|

where α = 1/(a−1
IB + d−1), so we obtain aeff = 2α and

Ed =
8πn/2mB

a−1
IB + d−1

.

This formula has already been derived by a different
method in [19] and leads to a “shifted Newtonian” induced
attractive potential

Vind(d) = Ed − E∞ = −8πa2
IBn

2mB

1

aIB + d

whenever aeff < 0, i.e. aIB < 0 and |aIB| < d (otherwise,
Vind = −∞ because a bound state exists which can be
entered by all bosons).

B. Methods

For the full interacting problem, we employ Gross-
Pitaevskii theory (GPT) as well as its non-local extension
(NLGPT) developed recently in [9].

GPT. If the boson density varies on a length scale
larger than the BB interaction range, a local density
approximation can be applied, and the zero temperature
condensate can be described by a single condensate wave
function φ. Using that the ground state energy density
of a BEC is 4πaBBn

2/2mB, this leads to the well-known
Gross-Pitaevskii energy functional

EGP =

∫
x

φx

(
− ∆

2mB

+ V IB

x−xI,1
+ V IB

x−xI,2

)
φx

+
4πaBB

2mB

∫
x

|φx|4. (4)

Most results of this work are obtained by minimizing this
functional. To justify the local density approximation,
the IB potentials must not be too sharp [9]: For instance
for a contact potential, φ would have poles 1/|x − xI,i|
and the BB term would diverge. At a gas parameter of
na3

BB = 10−6, we employ a Gaussian potential V IB(r) ∼
exp(−r2/σ2) of range σ = 0.01n−1/3. Since then σ = aBB

1 Indeed, one easily checks that this formula fulfils(
−

∆

2mB

+ V IB(x− xI,1) + V IB(x− xI,2)

)
φ(x) = 0

where V IB(|r|)φ(r) = 4πaIB
2mB

δ3(r) ∂
∂|r| |r|φ(|r|er) is the contact

potential of scattering length aIB.
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is not small compared to aBB, this is, in principle, not soft
enough for GPT to be applicable and indeed, we observe
differences in energy compared to NLGPT with the same
parameters. However, this error is almost constant in d,
such that GPT yields the correct result for the induced
potential (2) for large separations even for this rather
small value of σ.
NLGPT. For the case of strong local variation of n,

we have shown in [9] how to extend GPT to a non-local
theory by not integrating out the local BB correlations.
For two static impurities, the resulting energy functional
reads

ENLGP =

∫
x

φx

(
− ∆

2mB

+ V IB

x−xI,1
+ V IB

x−xI,2

)
φx

+

∫
x,y

|φx|2|φy|2gx−y. (5)

Here, g = 1
2

[
|∇f |2
mB

+ V BB|f |2
]

where f is the zero-energy

solution to the two-boson problem:
(
− ∆
mB

+ V BB
)
f = 0.

We will employ a hard sphere potential, for which f(x) =
max(0, 1− aBB/|x|). Note that g is an approximate delta
function of range aBB and height

∫
g = 4πaBB/2mB and

if φ is almost constant on these scales, the GP functional
is recovered. We compute individual data points by mini-
mizing ENLGP with the same IB interaction potential V IB

as for GPT to assert the validity of the latter at large
distances as well as to obtain additional results for smaller
distances. Still, we limit ourselves to d & σ where the
resulting scaling of Vind is universal.

III. RESULTS

A. Scaling behaviour of the induced potential

Minimizing the GP and NLGP energy functionals at
different impurity separations d, we obtain the induced
potential shown in Fig. 2. It exhibits the following scaling
behaviour:

(a) Large-distance behaviour: Yukawa regime. At
large distances, the induced potential falls off like a
Yukawa potential [17, 21]

Vind(d) ∼ e−d
√

2/ξ

d
.

In GPT, this can be seen as follows: The energy of
a single impurity in a flat BEC is proportional to n.
At large impurity separation, each impurity feels an
almost flat density modulation caused by the other
impurity, so we should have Ed ∼ n(d) where n(d)
is the density profile of a BEC with one impurity
at zero while n0 denotes the unperturbed density.
n(d) is obtained from the zero-energy GPE with
one impurity: At distances larger than the potential

− 103

− 101

− 10− 1

− 10− 3

Attractive coupling, aIB
− 1 = − 2n1/3

Impurity separation d/n − 1/3

10− 2 10− 1 100 𝜉 101

− 103

− 101

− 10− 1

− 10− 3

Resonant coupling, aIB
− 1 = 0

In
d
u
ce

d
 p

ot
en

ti
al

 V
in

d
/(

2m
B
)

−
1
n2

/
3 NLGPT

GPT

Eb

Yukawa fit

NLGPT

GPT

Eb

Yukawa fit

FIG. 2. Induced potential at a gas parameter of na3BB = 10−6

and two different coupling strengths (more can be found in the
appendix). The circles are the results of the GP simulation
and have a Yukawa scaling at large impurity separation. The
non-local GPT (diamonds) confirms the applicability of GPT
in this regime and remains valid at shorter separations, where
GPT results are off by a factor of about 1.5. Here, the three-
body binding energy Eb is approached, which exhibits Efimov
scaling ∼ d−2 for d� |aIB|.

range, it reads (see also [35])

0 = − ∆

2mB

φ+
8πaBB

2mB

φ(φ2 − n0)

⇒ 0 = −δφ′′ − 2

d
δφ′ +

2

ξ2
δφ+ O(δφ2) (6)

where we have set φ(d) =
√
n0 + δφ(d). This is

solved by δφ ∼ e−d
√

2/ξ/d and Vind(d) ∼ n(d)−n0 '
2δφ. The linear approximation in δφ is valid when
δφ is small, which confirms that the length scale
that delimits the Yukawa regime is ξ. Note that this
argument does not require GPT to be valid close
to an impurity, as it is only used to determine the
density profile far away from one impurity.

It must be noted though that the assumption of
a finite-range impurity-boson potential was crucial
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for the derivation: if V IB has power-law tails, an
additional term 2mBV

IB
√
n appears in (6). At radii

large compared to ξ, the asymptotic solution is then
δφ ' −ξ2mB

√
nV IB, such that Vind(d) ∼ V IB(d).

This effect can bee observed in Ref. [22] where ions
in a BEC interact via an r−4 potential, resulting in
an r−4 tail in the induced interaction2. Also, since
the analysis is based on Gross-Pitaevskii theory, only
the leading order in the gas parameter is captured.
At distances large compared to the healing length,
sub-leading terms eventually become dominant as
the Yukawa potential vanishes [20].

(b) Short-distance behaviour: Efimov regime. At small
distances, the induced potential approaches the
three-body binding energy Eb. This indicates that a
single Boson gets bound to the impurity and blocks
the bound state for the others due to its repulsion
as described in [13]. When d is small against aIB,
Eb and thus also Vind scale like d−2 as in the Efimov
effect. At resonance (second panel in Fig. 2), Eb

is directly proportional to d−2 even for larger dis-
tances. Nonetheless, we find that the Efimov regime
in the many-body system has a finite range of the
order of the mean particle distance. This is natural
since the picture of one molecule surrounded by a
bath breaks down as the size of the Efimov trimer
increases and extends into the bath [34].

We are not interested here in even shorter ranges of
d < σ, where the scaling of the potential becomes non-
universal and starts to depend on the shape of V IB.

Comparing to the results of [17], we thus also find re-
gions of Yukawa and Efimov scaling, but they are not
delimited by the scattering length alone. Instead, we
always find both regimes but for different impurity sep-
arations while the scattering length controls the size of
these regimes. A sketch of this is shown in Fig. 1. The
length scale that delimits the Efimov regime is, for weak
coupling, the scattering length aIB [16], since the three-
body binding energy scales like d−2 only for d � |aIB|,
see (3). If the impurity separation becomes compara-
ble to the mean boson distance ∼ n−1/3, the picture of
an individual boson mediating the interaction no longer
applies. Thus, d � n−1/3 is another condition delimit-
ing the Efimov region and it becomes the dominant one
near the resonance. The Yukawa regime, on the other
hand, starts when the local density variation δφ from the
treatment above becomes sufficiently small for the linear
approximation in (6) to be applicable. This turns out to
be the case when d is of the order of the healing length ξ.

We note that when d is large compared to ξ, [20] finds
that the quickly decaying Yukawa potential becomes domi-

2 The above analysis with the weak-coupling single-impurity en-
ergy E(n) = 4πaIBn/2mB actually leads to a slightly different
prefactor Vind(d) = −(aIB/aBB)V IB(d) than in Ref. [22], where
aIB is replaced by its Born approximation.
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FIG. 3. Induced potential obtained with GPT for varying
gas parameters at fixed impurity coupling aIB = −0.5n−1/3.
The analytical curve for the ideal BEC exhibiting Newtonian
behaviour is approached at very low gas parameters in an
intermediate distance regime |aIB| < d < ξ.

nated by second-order effects, which lead to van-der-Waals
scaling.

B. Approach to ideal BEC

In the beginning, we have shown that attractively cou-
pled impurities in an ideal BEC lead to a shifted New-
tonian potential. This matches neither the Efimov nor
the Yukawa potential found for the real BEC, so one
may wonder how the Newtonian regime emerges as an
ideal BEC is approached. In Fig. 3, we solve the GPE
at fixed impurity coupling aIB for a sequence of BEC gas
parameters na3

BB. As it is lowered, the ideal gas result
is approached in an intermediate distance regime, which
is bounded by |aIB| from below hand and ξ from above.
However, the approach is very slow and gas parameters of
the order of 10−15 are required for it to be visible. This
is a consequence of the slow splitting of length scales in
a BEC: the healing length in units of n−1/3 scales with
order −1/6 in the gas parameter, so very small values of
the latter are required to push the Yukawa regime to suf-
ficiently large distances to make room for an intermediate
Newtonian scaling regime.

IV. CONCLUSION

We have investigated the problem of a force between
particles induced by an interacting Bose-Einstein con-
densed medium by minimizing local and non-local Gross-
Pitaevskii energy functionals. We found that both the
Efimov and Yukawa scaling of the mediated potential can
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be observed in certain distance regions with an interme-
diate cross-over regime (Fig. 1). This is in contrast to
previous studies predicting either one or the other de-
pending on the coupling strength. Our result, valid for
impurity separations up to the order of the healing length,
complements a recent study treating separations larger
than the healing length [20]. A non-interacting conden-
sate, on the other hand, was shown to induce a shifted
Newtonian potential. The cross-over from interacting to
non-interacting condensate was found to take place at
low gas parameters of order 10−15, where the Newtonian
behaviour emerges in an intermediate-distance regime.
Experimentally, induced interactions are expected to lead
to an energy shift depending on impurity concentration,
which may be probed by radio-frequency spectroscopy [1–
4]. To investigate the distance dependence, the impurities
can be confined to individual microtraps [22]. For future
work, it will be interesting to investigate the influence
of finite impurity mass in a region where it is still large
compared to the Boson mass, such that the picture of
mediated forces can be applied.
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Appendix A: Induced potential for more values of
the coupling

In Fig. 4, we show the induced potentials as in Fig. 2 for
more values of the coupling aIB, including the repulsive
side of a resonance. The scaling regimes observed from
these curves lead to Fig. 1.
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