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Abstract. The Lieb–Robinson bound implies that the unitary time evolution
of an operator can be restricted to an effective light cone for any Hamiltonian
with short-range interactions. Here we present a very efficient renormalization
group algorithm based on this light cone structure to study the time evolution of
prepared initial states in the thermodynamic limit in one-dimensional quantum
systems. The algorithm does not require translational invariance and allows for
an easy implementation of local conservation laws. We use the algorithm to
investigate the relaxation dynamics of double occupancies in fermionic Hubbard
models as well as a possible thermalization. For the integrable Hubbard model,
we find a pure power-law decay of the number of doubly occupied sites
towards the value in the long-time limit, while the decay becomes exponential
when adding a nearest-neighbor interaction. In accordance with the eigenstate
thermalization hypothesis, the long-time limit is reasonably well described by a
thermal average. We point out, however, that such a description naturally requires
the use of negative temperatures. Finally, we study a doublon impurity in a Néel
background and find that the excess charge and spin spread at different velocities,
providing an example of spin–charge separation in a highly excited state.
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1. Introduction

Using ultracold atomic gases as quantum simulators, it has become possible to prepare states
in almost perfectly isolated many-body systems and to monitor their time evolution [1–6]. At
the same time, enormous progress in numerical renormalization group methods has given us
access to the dynamics of quantum models in one dimension [7–13]. These algorithms are all
based on approximating a quantum state as a matrix product in an optimally chosen truncated
Hilbert space, an idea dating back to the density matrix renormalization group (DMRG)
by White [14]. This makes it possible now to study, both experimentally and numerically,
fundamental questions about the relaxation dynamics and the role of conservation laws [1, 15].
Furthermore, the applicability of the eigenstate thermalization hypothesis (ETH)—according to
which each generic state of a closed quantum system already contains a thermal state which is
revealed during unitary time evolution by dephasing [16–18]—can be investigated as well.

In section 2, we present a new algorithm to study the unitary time evolution of an initial
state in a one-dimensional (1D) quantum system. We concentrate on the case of a product initial
state particularly relevant for experiment, but note that the algorithm has been implemented
also for thermal initial states. The main idea is to make use of the Lieb–Robinson bound [19]
to efficiently simulate the system and to obtain results directly in the thermodynamic limit. Let
us briefly recapitulate one of the main results of [19, 20], which is the basis for our algorithm.
We are interested in the time evolution of quantum systems starting from some initial state |9I〉

where all connected correlation functions decay exponentially with a finite correlation length
ξ . The time evolution of a local operator o[ j, j+n] acting on sites j, j + 1, . . . , j + n can then be
approximated by an operator acting only in the effective light cone of the region [ j, j + n] (see
figure 1) while being the identity operator outside of the light cone. More precisely, if ol

[ j, j+n](t)
is the time evolved operator active only on sites which are at most distance l apart from the
region [ j, j + n], then

||o[ j, j+n](t) − ol
[ j, j+n](t)||6 const × exp

(
−

l − vLR|t |

ξ

)
, (1)

where vLR is the Lieb–Robinson velocity which is typically, in natural units, of the order
of the interaction parameters of the model under consideration [20]. If vLR|t | � l, then
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Figure 1. LCRG algorithm. The Trotter–Suzuki decomposition of time evolution
reveals the light cone structure.

the error of approximating o[ j, j+n](t) by ol
[ j, j+n](t) is exponentially small. We show in

section 2 that a Trotter–Suzuki decomposition of unitary time evolution immediately leads
to a light cone and that this light cone can be represented in a truncated Hilbert space using
DMRG techniques [9, 14, 21–28]. In contrast to ground state and transfer matrix DMRG
algorithms, an explicit calculation of eigenvectors of the system, which is the computationally
most costly step, is unnecessary. This makes the new light cone renormalization group
(LCRG) algorithm extremely fast and efficient. Furthermore, the implementation of local
conservation laws—important for an effective numerical study—becomes particularly simple.
The ‘speed of light’ set by the Trotter–Suzuki decomposition is typically chosen to be
much larger than the Lieb–Robinson speed vLR at which information spreads so that the
algorithm directly yields results for the thermodynamic limit. Contrary to the infinite size
time evolving block decimation (iTEBD) [13], however, it does not rely on translational
invariance. In our paper we will demonstrate these advantages of the LCRG algorithm by
studying several examples. At the same time we note that our approach does not solve the
most fundamental problem of using matrix product states to investigate the time evolution of
1D quantum systems: the linear growth of entanglement entropy with time, which restricts
the applicability of such methods to the intermediate time dynamics. It can be shown
under very general conditions that this is a fundamental property of unitary time evolution
[19, 20] which cannot easily be overcome.

In section 3, we will apply the LCRG algorithm to study the relaxation of a doublon lattice
in 1D fermionic Hubbard models. While the problem of a single doublon–holon pair has already
been studied in one dimension [29], our study is mainly motivated by the experimental and
theoretical investigation of the decay of a macroscopic number of doublons in an ultracold
fermionic gas on a 3D optical lattice [5, 30]. First, we will present a test of the algorithm
by studying the free fermion case where the time evolution can be calculated analytically.
Next, we will investigate the differences in the relaxation dynamics between the interacting
integrable and non-integrable cases as well as a possible thermalization in the long-time limit.
In section 4, we will then demonstrate one of the major advantages of the LCRG algorithm:
even for systems without translational invariance, results in the thermodynamic limit can be
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Figure 2. LCRG algorithm. The light cone C grows with each time step by
adding first a diagonal left transfer matrix L and then a diagonal right transfer
matrix R.

obtained. In section 5, we give a brief summary and an outlook on possible future applications
of the algorithm. The supplementary material contains the executable code of the LCRG for the
anisotropic Heisenberg model, which we have chosen as a simple example, as well as videos of
the time evolution for the problem studied in section 4.

2. The light cone renormalization group (LCRG) algorithm

We present the LCRG algorithm to compute the time evolution

〈o[ j, j+n]〉
I(t) ≡ 〈9I|e

iHt o[ j, j+n] e−iHt
|9I〉 (2)

of a local operator o[ j, j+n] acting on sites j, j + 1, . . . , j + n. For the initial state |9I〉 = |s1 s2 · ·· 〉

we consider a product state with s j denoting states in the local basis of dimension M . We note
that with the help of ancilla sites, thermal states can also be expressed using a product initial
state followed by an imaginary time evolution, which is also performed using the light cone
algorithm. In this way we have implemented the real-time evolution starting, e.g., from a highly
entangled quantum state such as the ground state. We consider a Hamiltonian H =

∑
j h j, j+1

with nearest-neighbor interaction; a Trotter–Suzuki decomposition of the unitary time evolution
operator then leads to the 2D lattice shown graphically in figure 1. It consists of local updates
of two neighboring sites forward in time τ j, j+1(δt) = exp(−ih j, j+1δt) (‘↑’ plaquettes) and
backward in time τ j, j+1(−δt) ≡ τ

†
j, j+1(δt) (‘↓’ plaquettes), where δt is the Trotter–Suzuki time

step. Unless there is an operator insertion, facing plaquettes trivialize and become the identity
operator, τ j, j+1(−δt) τ j, j+1(δt) = 1 (shaded plaquettes). This yields the light cone structure
emanating from the local observable o[ j, j+n] at time t . As long as the ‘speed of light’ of the
Trotter–Suzuki decomposition is larger than the Lieb–Robinson velocity vLR, the expectation
value (2) is effectively evaluated in the thermodynamic limit. Neither the translational invariance
of the initial state nor that of the Hamiltonian is required for this construction.

The LCRG algorithm is based on corner transfer matrices [31, 32] to compute the growth
of the light cone with each successive time step δt (figure 2): the light cone Ct at time t is
multiplied from the left with the diagonal left transfer matrix L and then from the right with
the diagonal right transfer matrix R to construct the new light cone for the next time step, Ct+δt .
Of course a direct implementation of this procedure would quickly break down because the
Hilbert space of light cone states grows exponentially with time. Therefore, we use ideas from
DMRG studies of dynamics in stochastic systems [25, 26] to represent both the light cone C
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Figure 3. LCRG algorithm. (a)–(c) The light cone C grows to the left by
contraction with a left transfer matrix L; the left and right transfer matrices L
and R are augmented by a local plaquette τ(δt). (d) The reduced density matrix
ρL is constructed from the forward and backward light cones by tracing only
over the right site and block indices. (e) The local density matrix is obtained by
tracing the forward and backward light cones over both the left and right block
indices.

and the transfer matrices L , R in a reduced Hilbert space of manageable dimension. A fully
working implementation of this algorithm specialized to homogeneous systems is included in
the supplementary material (available from stacks.iop.org/NJP/14/023008/mmedia).

In practice, the time evolution proceeds in two half time steps (see figure 2). In the first
step, the light cone Ct [mlmr ] has left and right block indices (figure 3(b)) representing states
in the (reduced) Hilbert space of dimension χ , while the left transfer matrix L t [mlslmr sr ] has
again two block indices but also left and right site indices sl , sr of dimension M (figure 3(a)).
L t and Ct are contracted over their common block index to yield the new light cone Ct+δt/2 half
a time step ahead (figure 3(b)):

Ct+δt/2[mlslsr mr ] =

∑
m

L t [mlslmsr ] Ct [mmr ] . (3)

The left transfer matrix L t is enlarged by adding a plaquette at its upper right site index sr

(figure 3(a)):

L t+δt/2[mlsls
′

l mr sr s ′

r ] =

∑
s

L t [mlslmr s] τ [s ′

l s
′

r ssr ] . (4)

Similarly, a local plaquette is attached to the upper left corner of the right transfer matrix Rt to
construct Rt+δt/2 (figure 3(c)). The initial conditions at t = 0 are as follows: the block indices
represent a single site with dimension ml = mr = M , the initial light cone is Ct=0[mlmr ] =

9I[mlmr ] for the product initial state |9I〉 on two neighboring sites, and the transfer
matrices have the initial forms L t=0[mlslmr sr ] =

∑
s 9I[mls] τ [slsr smr ] and Rt=0[slmlsr mr ] =∑

s τ [slsr mls] 9I[smr ].
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In order to bring C , L and R back into their original form, the old block index m (dimension
χ ) is combined with the adjacent site index s (dimension M) into a new block index m ′

= (ms)
of dimension χ ′

= Mχ . The challenge is to limit the exponential growth of χ with every time
step. This is done by a renormalization step where a reduced density matrix is used to select
the χ most important basis states within the χ ′-dimensional Hilbert space. The reduced density
matrix ρL for the left block index is formed by combining the forward and backward light cones
and tracing over the right site and block indices (figure 3(d))

ρL[(m ′s ′)(ms)] =

∑
sr mr

C∗

t+δt/2[(m ′s ′)sr mr ] Ct+δt/2[(ms)sr mr ], (5)

where we have used the fact that in unitary time evolution the backward light cone is the adjoint
of the forward light cone. The reduced density matrix ρL of dimension χ ′ is by construction
Hermitian and has unit trace. ρL is diagonalized, and the χ states with the largest eigenvalues
form the basis of the reduced Hilbert space. Optionally, one can retain all states such that
the cumulative weight of the discarded states remains below a given threshold. We use a
combination of both to obtain a reliable error control. Finally, the left block index of the light
cone C and both block indices of the left transfer matrix L are projected onto this reduced
basis, (mlsl) 7→ ml . Analogously, the reduced density matrix qR is formed by tracing over the
left block indices to find a reduced basis for the right block indices, and subsequently the right
block index of C and both block indices of R are projected onto the reduced Hilbert space. This
completes the first half time step.

The second half of the algorithm works similarly by joining a right transfer matrix R to the
right of the light cone (figure 2),

Ct+δt [mlslsr mr ] =

∑
m

Ct+δt/2[mlm] Rt+δt/2[slmsr mr ]. (6)

At this stage the local density matrix

ρlocal(t + δt)[s ′

j s
′

j+1s j s j+1] =

∑
ml mr

C∗

t+δt [mls
′

j s
′

j+1mr ] Ct+δt [mls j s j+1mr ] (7)

is formed by contracting the forward and backward light cones over the left and right block
indices, leaving open the site indices in the middle (figure 3(e)). The expectation value of a
local operator o[ j, j+n] is then obtained as

〈o[ j, j+1]〉
I (t + δt) = Tr[ j, j+1](ρlocal(t + δt) o[ j, j+1]). (8)

By multiplying further transfer matrices onto the left or right, one can form also the local density
matrix ρ[ j, j+n] spanning more than two neighboring sites. For example, the density profile to the
left of an impurity site is obtained by starting with ρL and repeatedly multiplying L from the left
onto the lower light cone and L∗ onto the upper light cone, until the desired distance from the
impurity is reached. The remaining second half time step proceeds in complete analogy with the
first part, growing L and R by one plaquette and renormalizing in turn the left and right block
indices.

Note that only summations and multiplications are required to build the light cone. This
saves the most time-consuming step in standard transfer matrix DMRG algorithms, where one
has to find the largest eigenvector of the transfer matrix. Only the density matrix ρL,R has to
be diagonalized, which dominates the computation time O(M3χ3). Our algorithm therefore
combines the speed of iTEBD [13] with the flexibility of TEBD [12] to treat non-translationally
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invariant systems. Due to the local structure of the updates, conservation laws are easily
implemented in our algorithm (see below). We note that instead of the first-order Trotter–Suzuki
decomposition shown in figure 1 also higher-order decompositions can be easily implemented.

3. Doublon decay in Hubbard models

We use the LCRG algorithm with a second-order Trotter–Suzuki decomposition to study
dynamics in the 1D fermionic Hubbard model

HU,V = − J
∑

j,σ=↑,↓

(c†
j,σ c j+1,σ + h.c.) + U

∑
j

(
n j↑ −

1

2

) (
n j↓ −

1

2

)
+ V

∑
j

(n j − 1)(n j+1 − 1), (9)

where J is the hopping amplitude, n j,σ = c†
j,σ c j,σ and n j = n j↑ + n j↓ the occupation numbers,

U the onsite and V the nearest-neighbor potential. As initial states we will consider the state
|9D〉, where doubly occupied and empty sites alternate, and the Néel state, |9N〉. These state
are given explicitly by

|9D〉 =

∏
j

c†
2 j↑c†

2 j↓|0〉, |9N〉 =

∏
j

c†
2 j+1↑

c†
2 j↓|0〉, (10)

where |0〉 denotes the vacuum. For these states, we want to investigate the time dependence of
double occupancies, d j = n j↑n j↓, the staggered magnetization, m j = (−1) j Sz

j = (−1) j(n j↑ −

n j↓)/2, and of the operator w j = (−1) j n j , measuring the charge imbalance between even
and odd sites. Before discussing the numerical results, we first want to establish a number
of relations between these three operators in the case where the nearest-neighbor repulsion
vanishes, V = 0. The model with V 6= 0 will be studied in section 3.4.

3.1. Duality relations for the integrable model

For V = 0 the model (9) becomes the integrable Hubbard model. Apart from the special
symmetries responsible for the integrability of the model by Bethe ansatz, there are other
symmetries in this case that allow us to establish various relations between the states and
operators.

(a) There is a unitary duality transformation

U =

∏
j

(
c j↑ + (−1) j c†

j↑

)
(11)

relating the repulsive (U > 0) and the attractive (U < 0) Hubbard models. This transformation
leads to U†c j↑U = (−1) j c†

j↑, U†c j↓U = c j↓ so that the kinetic energy part in equation (9) stays
invariant while U → −U . For the operators we find that

d j → n j↓ − d j , (12)

m j → (−1) j(1 − n j)/2, (13)

w j → (−1) j(1 + n j↓ − n j↑). (14)
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For the initial state it follows that U†
|9D〉 = |9N〉, U†

|9N〉 = |9D〉, assuming an even number
of lattice sites L . For the expectation values (see also equation (2))

oI
U (t) ≡

L∑
j=1

〈o j〉
I
U (t)/L , (15)

the duality transformation implies

dD
U (t) = 1/2 − dN

−U (t), (16)

mN
U (t) = −wD

−U (t)/2, (17)

mD
U (t) = −wN

−U (t)/2 ≡ 0. (18)

The expectation values in the last equation (18) have to vanish identically because of
the particle–hole (spin inversion) symmetry of the initial states, respectively. The second
identity (17), furthermore, shows that the decay of the staggered magnetization can be studied
in a realization of a fermionic Hubbard in cold atomic gases without the need to address the spin
degree of freedom directly in a measurement.

(b) On a bipartite lattice, A ⊗ B, we can furthermore apply the transformation c jσ → ±c jσ

for j ∈ A ( j ∈ B), respectively. This leads to J → −J , U → U and therefore H−U → −HU .
This results in dD

U (t) = 1/2 − dN
U (−t) and similarly for the other identities.

(c) Finally, we can use the time reversal invariance of the expectation values. Using all
three symmetries we find that

dD
U (t) = dD

−U (t) = 1/2 − dN
U (t), (19)

mN
U (t) = mN

−U (t) = −wD
U (t)/2. (20)

The relaxation dynamics we will consider here is, therefore, independent of the sign of U
and the same information is obtained by starting from either |9D〉 or |9N〉.

3.2. Testing the LCRG algorithm: the free fermion case

To test the LCRG algorithm, we first study the free spinful fermion (SFF) case U = 0 where
the dynamics can be calculated exactly. We find that dD

U=0(t) = (1 + J 2
0 (4J t))/4 and mN

U=0(t) =

J0(4J t)/2 with J0 the Bessel function of the first kind. In the free SFF case, the dynamics
of electrons with spin-up and spin-down is completely decoupled. Therefore, we can also use
free spinless fermions (SLF) to calculate mN

0 (t) with a spinless particle representing either the
presence of a spin-up or a spin-down. Then we need to keep only

√
χ states to simulate the

dynamics with the same accuracy. In figure 4(a), the LCRG results for mN
0 (t) for free SFF and

SLF are compared to the exact result. For free SLF with χ = 20 000 block states, we are able
resolve 6.5 oscillations compared to the five oscillations which have been resolved in [33] by
iTEBD. We emphasize that for the Hubbard model (M = 4) with the conservation laws for
spin and charge implemented and χ = 2000 states kept, each time step takes only ∼30 s on
a standard PC without parallelization. This is 260× faster and uses 12× less memory than
without conservation laws, because the largest diagonal block of the reduced density matrix
ρL,R has only 200 states. For SLF (M = 2) the speedup is still 40× with 5× less memory and a
largest block of 450 states. In figure 4(b), the results for dD

0 (t) are shown where χ is varied. The
error of the simulation up to tmax where the simulation starts to deviate from the exact result is
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(b)

(c) (d)

SLF (χ=20000)

exactSFF (χ=20000)

χ=100
500 2000

5000
20000

20000

exact

Figure 4. (a) mN
0 (t) for free SFF (circles) and for free SLF (squares)—note that

the time scale in [33] is stretched by a factor 2. (b) dD
0 (t) for free SFF with χ as

indicated. In both cases δt = 0.1 and lines denote the exact results. (c) Absolute
error δdD

0 (t) for free SFF with χ = 5000 and δt = 0.2, 0.1, 0.05, 0.02 (in the
arrow direction). (d) Sent(t) for free SFF with δt = 0.1 and χ as indicated.

completely dominated by the error of the Trotter–Suzuki decomposition (see figure 4(c)) and is
of order (δt)2 for the second-order decomposition used here. Importantly, tmax is determined only
by χ and results with in principle arbitrary accuracy can be obtained for t ∈ [0, tmax] by reducing
the time step δt or using a higher-order Trotter–Suzuki decomposition, since the number of RG
steps is not restricted.

The algorithm breaks down when the spectrum of the reduced density matrix ρs = ρL,R

becomes dense. A suitable measure is the entanglement entropy

Sent(t) = −Tr ρs ln ρs 6 ln(Mχ) (21)

with Mχ = dim ρs. The entanglement entropy is shown in figure 4(d) and increases linearly
with time. We recall that the linear increase of the entanglement entropy seems to be a
fundamental property of unitary time evolution [20] which cannot be easily overcome and limits
the simulation time.

The LCRG algorithm actually does provide an intuitive picture of this behavior: facing
plaquettes outside of the light cone (shown shaded in figure 1) trivialize, thereby connecting a
local degree of freedom at the edge of the lower light cone with the one on the upper light cone
by a Kronecker delta. The number of these Kronecker delta bonds between the lower and upper
light cones increases linearly with time and determines the entanglement entropy between the
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Figure 5. Evolution of double occupancy in the Hubbard model. (a) dD
U (t)

with χ = 20 000, δt = 0.1 (symbols) and fits (lines), see text. (b) Slope of the
entanglement entropy, Sent ∼ a Jt . (c) Fitted exponent α of the power-law decay,
see equation (22).

light cones. This is very similar to the entanglement entropy of a spin-1/2 Heisenberg chain:
in this case the ground state can be represented in a resonating valence bond (RVB) basis.
If the chain is now split into two semi-infinite segments, then the entanglement entropy has
been shown to be proportional to the number of RVB bonds connecting the segments [34].
A breakdown of the simulation is observable as a deviation from the linear growth of Sent and
occurs when the entanglement entropy is close to the bound, Sent(t) ∼ ln(Mv), i.e. when all
eigenvalues of ρs have comparable magnitude, thus making further RG steps impossible.

3.3. Results for the Hubbard model

Next, we study dD
U (t) in the interacting Hubbard model, a situation that can be realized

in ultracold gases [5]. For times J t � min{J/|U |, 1} the relaxation is independent of the
interaction strength and follows the short-time expansion of the free fermion result dD

0 (t) ∼

1/2 − 2(J t)2, see figure 5(a). Thus, in order to see the effect of interactions, systems at times
J t � 1/|U | have to be studied. In units of the hopping amplitude J , we can simulate for
longer times, the larger U is. This is a consequence of the slower increase of Sent(t) ∼ a J t
as shown in figure 5(b). For large U we find that the slope of the entanglement entropy is
given by a ∼ J/|U |, i.e. the simulation time is proportional to tmax ∼ |U |/J 2 and therefore set
by the inverse of the magnetic superexchange interaction ∼J 2/|U |. It is clear that the slope of
the entanglement growth becomes smaller the closer the initial state is to an eigenstate of the
Hamiltonian: the eigenstate stays invariant under time evolution and no additional entanglement
entropy is generated. Comparatively long times can therefore be simulated, in particular, if the
time evolution of the ground state with a weak perturbation is studied as, for example, in [29].
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At times J t � 1 the relaxation in the free SFF case is given by dD
0 (t) = (1 + J 2

0 (4J t))/4 ∼

[1 + (4pt)−1(1 + cos(8J t − p/2))]/4. This motivates us to fit the time dependence at finite U by
the function

dD
U (t) = dD

U (∞) + e−γ t [A+B cos(�t − φ)]/tα (22)

in the regime 1.5 < J t 6 J tmax. Such fits are shown as solid lines in figure 5(a). In all cases
γ < 10−3, i.e. we do not find evidence for a finite relaxation rate γ .4 A relaxation following a
power law has also been observed at intermediate times in a 1D Bose–Hubbard model starting
from an initial state with one boson on every second site [35]. On the other hand, the relaxation
for the X X Z model when starting from a Néel state has been interpreted in terms of an
exponential decay [33]. Our fits point to a pure power-law decay with an exponent α which
increases with increasing |U |, see figure 5(c). The asymptotic value dD

U (∞) also increases
and reaches 1/2 in the limit |U | → ∞; see the V = 0 data in figure 7(b). We emphasize
that dD

U (t) = dD
−U (t), i.e. repulsive interactions lead to a binding of doublons the same way as

attractive interactions do [36]. For doublons moving on a 3D lattice it has been argued that for
repulsive interactions, U > 0, much larger than the bandwidth, many-body scattering processes
are needed to dissipate the doublon energy, which leads to an exponentially small relaxation
rate γ ∼ exp(−U/J ) [5, 30]. In our simulations, we do not see indications of a corresponding
crossover time scale ∼1/γ at which exponential relaxation might set in. The power-law decay
in the Hubbard model (or, at least, the very small relaxation rate) might be a consequence of the
infinitely many local conservation laws leading to integrability. It is important to stress, however,
that our numerical data for the intermediate time dynamics cannot finally resolve the question
of whether or not exponential relaxation does exist. In the next paragraph we will, however, give
further support that the fits with equation (22) describe the relaxation at long times correctly by
showing that the asymptotic value dD

U (∞) obtained from the fits agrees very well with a thermal
expectation value.

3.3.1. Long-time limit and thermalization. According to the ETH [16, 17], each initial
state—which can be represented as a superposition of eigenstates of the Hamiltonian—already
contains a thermal state. This thermal state is revealed during time evolution due to dephasing
effects between the different eigenstates. We say that the system has thermalized if the long-time
average

ō = lim
τ→∞

1

τ

∫ τ

0
dt〈9I|o(t)|9I〉 (23)

is equal to the thermal average 〈o〉λi in an appropriately chosen ensemble with the intensive
variables λi. Note that this definition only demands that ō = 〈o〉λi , i.e. time-dependent
fluctuations in 〈9I|o(t)|9 I〉 can, in principle, remain large even for t → ∞. This will, in
particular, be true for free models where no relaxation mechanisms exist and the concept of
thermalization therefore has limited meaning. In interacting models, on the other hand, we
expect that o(t → ∞) ≡ ō, i.e. time-dependent fluctuations vanish in the long-time limit. In
this case, the system is expected to have truly thermalized if o(t → ∞) = 〈o〉λi .

The appropriate thermal ensemble is determined by the set of conserved quantities Qi

with [H, Qi ] = 0. Obviously, 〈9I|Qi(t)|9I〉 = const, which means that the intensive variables

4 We note that the fits for large |U | are more ambiguous because dD
U (∞) is reached more quickly.
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(Lagrange multipliers) λi have to be determined such that

〈9I|Qi |9I〉 ≡ 〈Qi〉λi . (24)

Every quantum system has two types of conserved quantities: local and non-local. We call a
conserved quantity local if it can be expressed as a sum of local densities acting only on a finite
number of lattice sites.5 For a generic system, usually only a very few local conserved quantities
such as the particle number operator and the Hamiltonian itself exist. Any quantum system in
the thermodynamic limit has, on the other hand, infinitely many non-local conserved quantities,
such as, for example, the projection operators |En〉〈En| onto the eigenstates of the system. It is
not clear whether these non-local conserved quantities play a role in determining thermalization
or transport [10, 11, 37]. In studies of thermalization they are usually simply neglected.

The 1D Hubbard model is integrable by Bethe ansatz and has infinitely many local
conserved quantities that can be constructed explicitly from a family of commuting transfer
matrices [38, 39]. In this case, one should, in principle, consider a generalized Gibbs ensemble
with a Lagrange multiplier λi for each local conservation law. However, such ensembles
are impossible to handle in the thermodynamic limit except for the simplest free particle
models [18]. Here we will instead consider the usual canonical ensemble. The effective
temperature Teff then acts as a Lagrange multiplier determined such that

〈9D|H |9D〉/L =
1

L Z
Tr

{
He−H/Teff

}
, (25)

where Z = Tre−H/Teff is the partition function and the energy 〈9D|H |9D〉/L = U/4 is conserved
during time evolution. Since the spectrum of eigenenergies per site is bounded for a lattice
model, the use of negative temperatures is natural with 1/T → 0± corresponding to the case of
maximum entropy. In the following, we denote the thermal average in the canonical ensemble by
〈d〉U,T and it is easy to see that 〈d〉U,T = 〈d〉−U,−T holds. The duality transformation (11), (16)
furthermore implies that 〈d〉U,T + 〈d〉−U,T = 1/2 for all T . In particular, 〈d〉U>0,T >0 < 1/4 and
〈d〉U<0,T >0 > 1/4 with both being equal to 1/4 in the limit T → ∞. We calculate the thermal
average 〈d〉U,T using a transfer-matrix DMRG algorithm [21, 22, 40, 41] and find that Teff is
negative (positive) for the repulsive (attractive) model, respectively. The dependence of the
effective temperature Teff on interaction strength is shown in figure 7(a) together with the results
for the extended Hubbard model, which are discussed in the next subsection. A comparison of
the double occupancy extrapolated in time, dD

U (∞), and the thermal double occupancy 〈d〉Teff

shown in figure 7(b) reveals excellent agreement. This seems to suggest, on the one hand, that
the extrapolation using equation (22) is appropriate, leaving very little room for an additional
exponential decay which possibly could set in at a longer-time scale. On the other hand, it
also seems to suggest that the other local conservation laws of the Hubbard model have very
little influence on the relaxation of double occupancies. To qualitatively understand the latter
property we can think of writing the operator d as a sum of projections onto all the conserved
quantities which form a basis of the operator space [10, 37]. At least for large U it is then clear
that the projection onto the Hamiltonian, which does contain the operator d itself, will give the
dominant contribution to the thermal expectation value.

5 Equivalently, a conserved quantity in a field theory is local if it can be written as an integral of a fully local
operator density.
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the fits.

3.4. Results for the extended Hubbard model

Finally, we consider the non-integrable extended Hubbard model obtained by turning on the
next-nearest neighbor repulsion V in equation (9). The duality relations used for the Hubbard
model are then no longer valid because V

∑
j(n j − 1)(n j+1 − 1) → 4V

∑
j Sz

j S
z
j+1 under the

duality transformation, equation (11). However, we still have dD
U,V (t) = dD

−U,−V (t) for the time
evolution and 〈d〉U,V,T = 〈d〉−U,−V,−T for the thermal expectation value since these relations
rely only on the lattice being bipartite and time reversal symmetry. We focus in the following
on V 6U/2 corresponding to a spin-density wave state in the ground state phase diagram
[40, 41]. We note that for V > U/2, |9D〉 is close to the charge-density wave ground state
and long simulations in time are possible with dD

U,V (t) staying close to 1/2 and showing
revival oscillations (data not shown). For the case V = U/2—which is approximately at the
phase transition line from the spin-density to a charge-density wave state [40, 41]—we find a
qualitatively different behavior than in the Hubbard model (see figure 6). Here dD

U,V (t) decreases
at long times with increasing interaction strength. In general, dD

U,V (t) can increase or decrease at
long times with increasing interaction strength depending on the ratio V/U . Using the same fit
function (22) as before, we find that it is no longer possible to describe the relaxation dynamics
by a pure power-law decay. Instead, we now find a finite relaxation rate γ as shown in the inset
of figure 6.

3.4.1. Long-time limit and thermalization. Investigating again a possible thermalization we
can shed some light on the observed dependence of the extrapolated value dD

U,V (∞) on the ratio
V/U . For V 6= 0 the model is no longer integrable and—if thermalization does occur—the final
state should be fully described by the canonical ensemble. The energy during the time evolution
is now fixed to

〈9D|H |9D〉/L =
U

4
− V (26)
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and determines via the relation (25) the effective temperature shown in figure 7(a). For V = U/4
it follows that 1/Teff = 0 and 〈d〉U,V =U/4 = 1/4. In the repulsive case, U > 0, the energy (26)
is negative for V > U/4, leading to Teff > 0. For V < U/4, on the other hand, the energy is
positive and therefore Teff < 0. For U < 0 the signs of Teff are reversed. Using again a transfer
matrix DMRG algorithm to calculate the thermal expectation value 〈d〉Teff at temperatures Teff,
we can compare with the extrapolated value dD

U,V (∞) from the time evolution, see figure 7(b).
Compared to the pure Hubbard model the agreement is not quite as good and the deviations
increase the closer the ratio of the interactions is to the critical line V = U/2 and also the
larger U is. This does suggest—assuming that the system will finally thermalize—that the
numerically obtained intermediate time dynamics is not sufficient to fully extract the long
time behavior. A possible explanation is that two different relaxation processes exist in this
case: a fast one at short time scales leading to a pre-thermalized state and a slower one
setting in at J t � exp(U/J ) [5, 30]. This might also explain the non-monotonic behavior of
γ (U, V/U = const) obtained when fitting with a single relaxation rate, see the inset of figure 6.

4. Application to a non-translationally invariant case

One of the main advantages of the LCRG algorithm is that it allows us to study the time
evolution of 1D quantum systems in the thermodynamic limit even if the initial state and/or the
Hamiltonian are not translationally invariant. As an example, we consider the time evolution in
the V = 0 Hubbard model (9) of the non-translationally invariant state

|9̃N〉 = c†
0↑

|9N〉 = c†
0↑

∏
j

c†
2 j+1↑

c†
2 j↓|0〉 (27)

obtained by adding an additional electron at site j = 0 to the Néel state, equation (10). In
figure 8, LCRG results for the dynamics of the excess charge and the excess spin defined by

〈nexc
j 〉 = 〈n j〉 − 〈nbg

j 〉; 〈sexc
j 〉 = 〈s j〉 − 〈sbg

j 〉 (28)

are shown for U/J = 2. Here 〈nbg
j 〉 ≡ 1 (〈sbg

j 〉) are the background charge (spin) densities,
respectively, obtained from the time evolution of |9N〉, i.e. from a system without the additional
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electron. Movies of the time evolution for several other interaction strengths U/J are given
in the supplementary material (available from stacks.iop.org/NJP/14/023008/mmedia). We
observe that 〈nexc

j 〉 and 〈sexc
j 〉 spread out into the lattice with different velocities, clearly revealing

the light cone structure. For the non-translationally invariant problem considered here, we have
not implemented the conservation laws yet and the results shown in figure 8 have been obtained
by keeping a relatively moderate number of states, χ = 1024. Although the simulation time is
therefore smaller than in the translationally invariant cases discussed in the previous chapters,
we want to stress that the evolution of the Néel background is simulated in the thermodynamic
limit and thus very different from that in a small system tractable, for example, by exact
diagonalization.

Different charge and spin velocities for the 1D Hubbard model starting from an initial
non-equilibrium state have already been observed in [42]. In this case, an initial state was
considered where the ground state was perturbed by a small local charge and spin imbalance,
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thus allowing us to extract the velocities of the elementary spin and charge excitations which
can also be obtained by Bethe ansatz. Our initial state, on the other hand, is a highly excited
state and the charge and spin velocities are not related to those of the elementary excitations.

To extract the charge velocity vc and the spin velocity vs for our initial state, we take the
point xc(s)(t) where the tail has reached half of the height of the first peak of the charge (spin)
distribution as the reference point. Figure 9(a) shows that xc(s)(t) depends linearly on time.
The dependence of the velocities on the interaction strength U/J is shown in figure 9(b). We
find a charge velocity vc ≈ 2J independent of U . For U = 0 the charge and spin distributions
are identical for all times and vs = vc, but for increasing U the spin velocity vs decreases.
These results can be qualitatively understood as follows: the excess charge sees a uniformly
charged background and therefore moves unimpeded with the Fermi velocity vF of the non-
interacting system, vc ≈ vF = 2J . The excess magnetization, on the other hand, moves with a
velocity proportional to the effective spin superexchange ∼J 2/U , which therefore decreases
with increasing U . For large U we find, furthermore, that the spin dynamics becomes more
complicated. While most of the excess magnetization remains inert in this limit, an additional
small staggered part appears which spreads out with a velocity close to the charge velocity (data
not shown).

5. Conclusions

The development of new spectroscopic techniques to study ultracold quantum gases on optical
lattices with very good spatial and time resolution has put the topic of non-equilibrium dynamics
in quantum systems firmly back on the agenda. Particularly interesting from a fundamental
perspective is the dynamics in one dimension where many of the standard lattice models such
as the Heisenberg, the t − J and the Hubbard model are integrable, i.e. these systems have an
infinite number of local conservation laws. Since a conserved quantity stays invariant under
time evolution, the presence of many conserved quantities is expected to severely restrict the
dynamics of the quantum system as a whole and might even prevent the system from reaching
thermal equilibrium. To investigate such questions numerically, different algorithms have been
developed: the time-dependent DMRG and the TEBD, in particular, allow one to access the
intermediate time dynamics by representing the time evolved state as a matrix product state.
Among the aims in developing numerical algorithms to study the time evolution are (a) the
thermodynamic limit, (b) the flexibility to simulate different systems, (c) a high computational
efficiency and (d) to simulate the system for as long as possible.

Here we have presented a new algorithm which makes progress concerning many of the
points mentioned above. The LCRG algorithm is highly efficient by simulating at each time
step only that part of the lattice (a light cone) which is affected by the time evolution. The
results obtained are directly for the thermodynamic limit. Contrary to the infinite size TEBD,
the LCRG algorithm does not rely on translational invariance. It is therefore extremely flexible
and can, in particular, also deal with non-translationally invariant problems. It cannot, however,
simulate the quantum system for times significantly longer than other algorithms based on
matrix product states. We have shown that the lattice path integral representation of unitary
time evolution—forming the basis for the LCRG algorithm—provides a simple picture of the
linear entanglement growth with time which restricts the simulation time of such algorithms. An
executable sample code for the anisotropic Heisenberg model is provided in the supplementary
material (available from stacks.iop.org/NJP/14/023008/mmedia).
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We used the LCRG algorithm to study quench dynamics in the integrable Hubbard model
starting from a state with every second site doubly occupied, and found indications of a
pure power-law relaxation. For the extended non-integrable Hubbard model, in contrast, the
relaxation appears to be exponential. In both cases we found that the time evolved state in the
long-time limit seems to be close to a thermal state supporting the ETH.

Finally, we demonstrated that the LCRG algorithm can also be used to study the time
evolution of non-translationally invariant initial states. For the Néel state with one site occupied
by a doublon, we showed that the excess charge and excess spin spread with finite, but different,
velocities. We extracted the dependence of the velocities on the strength of the Hubbard
interaction U which can be used for comparison with future experiments. Movies of the time
evolution for different parameter sets can be found in the supplementary material.

As an outlook, we want to emphasize that future applications of the LCRG algorithm
to other non-translationally invariant setups such as impurity problems, disorder, and also to
systems with trapping potentials are feasible.
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Esslinger T 2010 Phys. Rev. B 82 224302
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[24] Enss T and Schollwöck U 2001 J. Phys. A: Math. Gen. 34 7769
[25] Kemper A, Gendiar A, Nishino T, Schadschneider A and Zittartz J 2003 J. Phys. A: Math. Gen. 36 29
[26] Enss T, Henkel M, Picone A and Schollwöck U 2004 J. Phys. A: Math. Gen. 37 10479
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