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We observe many-body pairing in a two-dimensional gas of ultracold fermionic atoms at tem-
peratures far above the critical temperature for superfluidity. For this, we use spatially resolved
radio-frequency spectroscopy to measure pairing energies over a wide range of temperatures and in-
teraction strengths. In the strongly interacting regime where the scattering length between fermions
is on the same order as the inter-particle spacing, the pairing energy in the normal phase signifi-
cantly exceeds the intrinsic two-body binding energy of the system and shows a clear dependence on
local density. This implies that pairing in this regime is driven by many-body correlations, rather
than two-body physics. We find this effect to persist at temperatures close to the Fermi tempera-
ture which demonstrates that pairing correlations in strongly interacting two-dimensional fermionic
systems are remarkably robust against thermal fluctuations.

Fermion pairing is the key ingredient for superconduc-
tivity and superfluidity in fermionic systems [1]. In a
system with s-wave interactions, two fundamentally dif-
ferent scenarios can occur: In the first one, as realized for
weakly attractive fermions that are described by the the-
ory of Bardeen-Cooper-Schrieffer (BCS), formation and
condensation of pairs both take place at the same criti-
cal temperature (Tc) [2]. While the mean-field BCS pic-
ture successfully describes a large class of superconduct-
ing materials, strongly correlated electron systems may
follow a different pattern. In this second case, preformed
pairs suppress the density of states at the Fermi sur-
face at temperatures exceeding the critical temperature.
Finding a description of this so-called ’pseudogap’ phase,
especially for two-dimensional (2D) systems, is thought
to be a promising route to understanding the complex
physics of unconventional superconductivity [3, 4]. This
is of particular interest in the context of recent ARPES
experiments on Iron Chalcogenide films [5, 6], where the
combined effect of strong s-wave interactions and reduced
dimensionality has been shown to result in preformed
pairing and superconductivity at remarkably high tem-
peratures.

The Bose–Einstein Condensation (BEC)-BCS
crossover of ultracold atoms constitutes a versatile
framework to explore the normal phase of strongly
correlated fermions (Fig. 1 A). The crossover smoothly
connects two distinct regimes of pairing: the BEC regime
of tightly bound molecules and the BCS regime of weakly
bound Cooper pairs. In 2D (unlike 3D) systems with
contact interactions, a two-body bound state with
binding energy EB exists for arbitrarily small attraction
between the atoms. The interactions in the many-body
system are captured by the dimensionless parameter
ln (kFa2D) where kF is the Fermi momentum and a2D
is the 2D scattering length. As we tune the interaction
strength from the BEC (large negative ln (kFa2D)) to

the BCS side (large positive ln (kFa2D)), the behavior of
the system smoothly changes from bosonic to fermionic
character [7]. The fascinating strongly interacting region
lies in between these two weakly interacting limits where
a2D is on the same order as the inter-particle spacing
(∼ kF

−1). In our previous works, we used a matter-
wave focusing method to measure the pair momentum
distribution of a 2D Fermi gas across the crossover and
observed the Berezinskii–Kosterlitz–Thouless (BKT)
transition to a superfluid phase at low temperatures
[8, 9]. An outstanding question concerns the nature of
the normal phase above the critical temperature - is it
a gapless Fermi Liquid of quasiparticles or a gapped
liquid of preformed pairs [10]? While previous cold
atom experiments have explored this regime both in 3D
[11–15] and 2D [16, 17] systems, a consensus is yet to
emerge.

Here, we address these questions by studying the nor-
mal phase of such a 2D ultracold Fermi gas trapped in a
harmonic potential. The underlying potential leads to an
inhomogeneous density distribution and by making use
of a local density approximation, we can directly mea-
sure the density dependence of many-body properties.
We perform our experiments with a two-component mix-
ture of 6Li atoms with approximately 3 × 104 particles
per spin state that are loaded into a single layer of an
anisotropic harmonic optical trap. The trap frequencies
ωz ≈ 2π × 6.95 kHz and ωz ≈ 2π × 22 Hz in the axial
and radial directions result in an aspect ratio of about
300:1. The kinematic 2D regime is reached by ensuring
that the thermodynamic energy scales, temperature (T )
and chemical potential (µ), are smaller than the axial
confinement energy. We tune the scattering length a2D
by means of a broad magnetic Feshbach resonance [18].

To investigate fermion pairing in our system, we use
radio–frequency (RF) spectroscopy. The idea underlying
this technique is that the bare atomic transition frequen-
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FIG. 1. Exploring fermion pairing in a strongly interacting 2D Fermi gas. A: Schematic phase diagram of the BEC
BCS crossover. In this work we investigate the nature of pairing in the normal phase of the crossover regime between the
weakly interacting Bose and Fermi liquids. B: Illustration of radio-frequency (RF) spectroscopy of a 2D two-component Fermi
gas. Pairing and many-body effects shift the atomic transition frequencies between the hyperfine states |b〉 − |c〉, which results
in observable signatures in the RF response of the system. C: Absorption images of the cloud without RF (reference) and
with RF at a particular frequency, and the difference between the two images. The ring feature in δn(r) reveals the density
dependence of the RF response. D: Spatially resolved spectral response function reconstructed from absorption images taken
at different RF frequencies. At low temperatures in the spin-balanced sample, the occupation of the free particle branch is too
low to be observable, which makes it difficult to distinguish between mean-field shifts and pairing effects.

cies between distinct hyperfine states are shifted due to
interactions or pairing between atoms in an ensemble (see
Fig. 1 B). For this we start with a mixture of atoms in
hyperfine states |a〉 and |b〉. An RF pulse transfers atoms
from state |b〉 to a third unoccupied hyperfine state |c〉,
and we subsequently image the remaining density distri-
bution in |b〉. By measuring the spectral response to an
applied RF pulse, we gain insight into pairing and corre-
lations in the many-body system. The response functions
are affected by interactions between atoms in the initial
and final states during the RF pulse. In 6Li gases, this
is due to overlapping Feshbach resonances between the
three lowest hyperfine states (labeled |1〉|2〉 and |1〉|3〉).
We perform our measurements on two different initial
state mixtures (|a〉|b〉 ≡ |1〉|2〉 or |a〉|b〉 ≡ |1〉|3〉), choos-
ing them in such a way that the final state interactions
are small for each given interaction strength [19].

In our inhomogeneous 2D system, the Fermi energy
depends on the local density n(r) in each spin state
according to EF = ~2kF2/2m = (2π~2/m)n(r), where
m is the mass of a 6Li atom [20]. As a consequence,
the thermodynamic quantities T/TF and ln (kFa2D) also
vary spatially across the cloud. We apply the thermom-
etry developed in our previous work [19, 21] to extract
these local observables. We measure the local spectral re-
sponse [22] by choosing a RF pulse duration (τRF = 4 ms)
that is sufficiently short to prevent significant diffusion
of transferred atoms, but also sufficiently long that we

obtain an adequate Fourier limited frequency resolution
δωRF ≈ 2π×220 Hz (see [19] for details). In Fig. 1 C, we
show a typical absorption image of the 2D cloud which
is used as a reference and one with a RF pulse applied at
a particular frequency. The difference between the two
images features a spatial ring structure, which qualita-
tively shows that for a given frequency, the depletion of
atoms in initial state |b〉 occurs at a well-defined den-
sity/radius. By performing this measurement for a range
of RF frequencies, we can tomographically reconstruct
the spatially resolved spectral response function

I(r, ωRF) = (n0(r)− n′(r, ωRF))/n0(r), (1)

where n0(r) and n′(r, ωRF) are the density distribution
of atoms in state |b〉 without and with the RF pulse.
An example of the tomographically reconstructed spec-
tra is shown in Fig. 1 D. We see that the frequency of
maximum response depends smoothly on the radius and
thereby the local density. These density-dependent shifts
may arise either from pairing in the system or from inter-
action induced mean-field shifts. One way to distinguish
between the two contributions is to measure the RF tran-
sitions from both paired and unpaired atoms to the free
particle continuum [19]. However, we find that in the
temperature regime (T/TF < 1.5) explored in our exper-
iments, the thermal occupation of the free branch is too
small to observe.
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FIG. 2. Quasiparticle spectroscopy in the BEC and
BCS limits. A: We create a slightly imbalanced mixture
of hyperfine states to artificially populate the free particle
branch. The density distributions of the majority and minor-
ity spins are shown, and the corresponding local imbalance
(inset). B, C: Schematic illustration of single particle disper-
sion relations in the BEC and BCS limits at zero temperature.
Paired atoms reside in the lowest branch (bound), and are
transferred to the continuum of unoccupied states. The ex-
cess majority atoms are unpaired and occupy the upper quasi-
particle (free) branch in the spectrum at k ∼ 0 (BEC) and
k ∼ kF (BCS). D, E: The transition of paired atoms into the
continuum yields an asymmetric response with a sharp thresh-
old in the RF spectral function. The quasi-particle transition
contributes another peak. Their relative difference yields the
pairing energy ∆E which reveals the distinction between two-
body (∆E ∼ EB) and many-body pairing (∆E > EB) in the
two limits.

In order to achieve a sufficient population of the un-
paired branch, we apply the quasiparticle spectroscopy
method pioneered in [23] for the measurement of the su-
perfluid gap of a 3D Fermi gas. Although our system is in
the normal phase, the same technique can be used to de-
termine the pairing gap. The key idea of this method lies
in creating a slightly spin-imbalanced mixture so that the
excess majority atoms necessarily remain unpaired due to
the density mismatch. These unpaired atoms (or dressed
quasiparticles) contribute a second absorption maximum
in the RF response function besides the one from pairs.
Since mean-field interactions shift the whole spectrum
[19], the difference ∆E between the two branches is man-

ifestly independent of it and corresponds only to the pair-
ing energy of the system. In our experiments, we create a
slight spin-imbalance P = (n|b〉−n|a〉)/(n|b〉+n|a〉) . 0.15
using a sequence of Landau-Zener sweeps, where n|b〉 and
n|a〉 are densities in hyperfine states |b〉 and |a〉. We show
typical density profiles of majority and minority compo-
nents in Fig. 2 A.

The pairing energy ∆E between the two branches dis-
tinguishes between two different pairing scenarios. If ∆E
coincides with the two-body bound state EB, we are in
the two-body regime. In contrast, we associate the situa-
tion of a density (EF)-dependent ∆E exceeding EB with
many-body pairing. In Fig. 2 B and C, we illustrate these
two scenarios using idealized single-particle dispersion re-
lations in the BEC and BCS limits at zero temperature.
We provide a brief theoretical account of pairing in these
two limits in [19]. The crucial difference between the two
cases lies in the occupation of the quasiparticle branch
which occurs preferentially at k ∼ 0 in the BEC [24] and
at k ∼ kF in BCS [25] regimes. While the corresponding
RF spectra, shown in Fig. 2 D and E, appear qualita-
tively similar, the value of ∆E reveals the fundamental
difference in the nature of pairing in the two regimes.
We note that the actual dispersion relations at strong in-
teractions and high temperatures which determine the
RF response in the experiment do not necessarily follow
this mean-field description [26, 27]. However, the general
criteria to distinguish two-body and many-body pairing
scenarios using ∆E remain valid.

In Fig. 3 A and B, we show the measured spectra
I(r, ωRF) for magnetic fields 670 G and 690 G using a
|1〉|3〉 mixture, which corresponds to central values of
ln (kFa2D) ∼ −0.5 and ln (kFa2D) ∼ 1, respectively.
The response from unpaired quasiparticles appears at
frequency ωRF ∼ 0, while the pairing branch with an
asymmetric lineshape appears at larger frequencies. Ex-
amples of spectra at fixed radii are shown in Fig. 3 C and
D. We fit these local spectra with a combined fit function
that includes a symmetric Gaussian (for the quasiparti-
cle peak) and an asymmetric threshold function (for the
paired peak) that is convolved with a Gaussian to account
for spectral broadening arising from finite RF frequency
resolution and final state effects [28]. The choice of fit
function has a systematic effect on the quantitative re-
sults presented here, which cannot be eliminated at this
point since a reliable theoretical prediction of the shape
of the spectral function only exists in the weakly coupled
BEC [24] and BCS [25] limits. We present a detailed
account of our data analysis in [19].

At a qualitative level, the main observations from Fig.
3 are the following. Both branches in the spectra show
density dependence, which can partially be attributed to
a mean-field shift. Adding the binding energy EB to the
quasi-particle branch yields the two-body expectation for
the threshold position. This picture is applicable to the
whole spectrum in Fig 3 A, which corresponds to a mea-
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FIG. 3. From two-body dimers to many-body pairing. The spatially resolved response function I(r, ωRF) shows qualita-
tively different behavior for two different scattering lengths. A, B: I(r, ωRF) for central ln (kFa2D) ∼ −0.5 and 1.0, respectively.
The 3D visualization is obtained using a linear interpolation between 3000 data points each of which is an average of 30 realiza-
tions. The black solid line is the peak position of the free branch, the orange line is the threshold position of the bound branch
and the black dashed line is displaced from the free peak by the two-body binding energy EB. The energy difference between
free and bound branches is the pairing energy ∆E, which is seen to agree with EB in A (BEC regime), but signigicantly exceeds
EB in B (crossover regime). In addition,∆E is strongly density dependent in B, implying that it originates from many-body
correlations. C, D: Local spectra at a fixed radius corresponding to a homogeneous system with T/TF ∼ 0.7 and 1 respectively
(gray region). The solid blue curves are the fits to the data; the black and red curves are gaussian and threshold fits to the two
branches.

surement on the BEC side of the crossover. In contrast,
for the spectrum displayed in Fig 3 B, corresponding to
the crossover regime, we observe ∆E ∼ EB only in the
outer regions of the cloud where the density is low enough
that only the two-body bound state plays a role. To-
wards the center of the cloud, ∆E begins to significantly
exceed EB and shows a strong dependence on the local
density (EF), indicating that pairing in this regime is a
many-body phenomenon. At very low temperatures, the
measurement of ∆E is difficult since the occupation of
the free branch is too low, as seen in Fig. 1 D. However,
we qualitatively observe that the threshold position of
the bound branch increases continuously with decreasing
temperature, even as we cross the superfluid transition.
This indicates that in the crossover regime, a many-body
gap opens up far in the normal phase rather than at Tc
as expected from BCS theory. This observation is the
first main result of this work.

To quantitatively study the change in the nature of
pairing from the BEC to the BCS side, we measure the
spectra at different magnetic fields and extract ∆E in
units of the two-body binding energy EB. In Fig. 4
A, we plot the temperature dependence of ∆E/EB for
different interaction strengths, and Fig. 4 B shows the
variation of ∆E/EB as a function of ln (kFa2D) for a

fixed ratio T/TF ≈ 0.5. This constitutes an extremely
high temperature regime even in the context of ultracold
fermion superfluidity, where the largest observed critical
temperatures are Tc/TF ≈ 0.17 [8, 9]. We perform our
measurements with both |1〉|2〉 and |1〉|3〉 mixtures (blue
and red points in Fig. 4 B) in an overlapping interac-
tion regime. The two mixtures differ vastly in their final
state interaction strengths and the fact that we observe
consistent behavior with both mixtures demonstrates the
robustness of the quantity ∆E against these final state
effects. Details of the experimental parameters used for
the two mixtures are tabulated in [19].

In Fig. 4, we observe that for ln (kFa2D) . 0.5
the spectra are well-described by two-body physics. In
contrast, the pronounced density-dependent gap signif-
icantly exceeding EB for ln (kFa2D) ≥ 0.5 signals the
crossover to a many-body pairing regime. In particular,
we observe that ∆E/EB peaks at ln (kFa2D) ∼ 1, where
∆E ≈ 2.6EB and is a significant fraction of EF (0.6EF).
The identification of this strongly correlated many-body
pairing regime and the observation of many-body induced
pairing at temperatures several times the critical temper-
ature is the second main result of this work. For larger
ln (kFa2D), we see a downward trend in ∆E/EB, and for
ln (kFa2D) ≥ 1.5, we observe only a single branch in the
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in A and bars in B are obtained from the fitting procedure
explained in [19]. For ln (kFa2D) ≤ 0.5 (strong attraction) we
have ∆E/EB ∼ 1 with negligible density-dependence, indicat-
ing two-body pairing. For larger ln (kFa2D) (less attraction),
∆E/EB significantly exceeds 1 and reaches a maximum of 2.6
before showing a downward trend. At ln (kFa2D) ∼ 1, we have
a critical temperature of Tc ≈ 0.17TF [8], which indicates the
onset of many-body pairing at temperatures several times Tc.

spectra near ωRF ∼ 0, suggesting the absence of a gap
larger than the scale of our experimental resolution [19].
Our qualitative observation of a vanishing gap for weaker
attraction is consistent with the picture of the normal
phase in the BCS limit being a gapless Fermi liquid [29].

We now turn to a discussion of our results in the
context of current theoretical understanding and
previous experimental work. In [16], Sommer et al.
performed trap-averaged RF spectroscopy in the 3D-2D
crossover and found good agreement with mean-field
BCS theory in the regime ln (kFa2D) ≤ 0.5. In [17],
Feld et al. observed pairing in the normal phase using
momentum-resolved (but trap-averaged) spectroscopy
also mostly in the regime ln (kFa2D) ≤ 0.5. Beyond this
previously explored interaction regime where pairing
is purely described by two-body physics [24, 30], our
measurements reveal that many-body effects enhance
the pairing energy far above the critical temperature.
In fact, we show that the most strongly correlated

region where many-body pairing occurs in the normal
phase lies where ln (kFa2D) is close to unity rather
than zero. With regard to the long-standing question
concerning the nature of the normal phase of a strongly
interacting Fermi gas [10], our experiments reveal the
existence of a large region in the phase diagram where
the behavior deviates from both Bose Liquid and Fermi
liquid descriptions. Finding a complete description of
this strongly correlated phase is an exciting challenge
for both theory and experiment.
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SUPPLEMENTARY MATERIALS

EXPERIMENTAL DESIGN

Preparing the Sample

We use the three lowest Zeeman sublevels of the hy-
perfine ground state of 6Li - labeled |1〉, |2〉 and |3〉, as
shown in Fig. S 1 A and B. The starting point for our
experiments is an almost pure molecular Bose-Einstein
condensate (mBEC) of ∼ 5 × 104 |1〉|2〉 or |1〉|3〉 dimers
produced by optical evaporation at magnetic offset fields
of B = 690 G or B = 795 G respectively. The sample
is then transferred into an optical standing wave trap
(SWT) (8 ), where we perform additional evaporation to
reach the quasi-2D regime with ∼ 3× 104 atoms in each
spin state. At B = 795 G, the trapping frequencies for
the central layers of the SWT are ωr ≈ 2π × 22 Hz and
ωz ≈ 2π × 6.95 kHz. This results in an aspect ratio of
ωr : ωz ≈ 1 : 300. Here the system is in the kinematic
quasi-2D regime, which we experimentally verified in [8].

Creating a Spin-Imbalanced Mixture

After evaporation we introduce imbalance by a se-
quence of Landau-Zener passages at B = 1000 G where
the interaction strength is relatively weak (see Fig. S 1
C). In the case of the |1〉|3〉-mixture, we transfer a small
fraction of atoms from state |1〉 to state |2〉. The ensuing
three-body collisions lead to an imbalance between state
|1〉 and state |3〉 with a majority of the atoms in state
|3〉. For the |1〉|2〉-mixture, we transfer atoms from state
|2〉 to state |3〉 and invert the resulting imbalance with
an additional Landau-Zener passage to end up with the
majority in state |2〉.
Radial profiles for both the majority and minority com-
ponent are shown in the main text in Fig. 2 for a
|1〉|3〉-mixture. We work with a local polarization ploc =
n|3〉−n|1〉
n|3〉+n|1〉

. 15 %. As we operate in the normal phase,

we do not observe a phase separation into a balanced
core and a polarized wing as one observes in a superfluid
[23, 31] but rather see a local polarization that varies
only weakly over the sample. The heat introduced due
to the three-body losses in this imbalance scheme limits
the achievable temperatures to about T/TF & 0.4.

Radio-Frequency Spectroscopy

Fig. S 1 B schematically shows the RF transitions
accessed in our experiments. In the case of a |1〉|3〉-
mixture as depicted in the upper panel, we drive the
transition from state |3〉 to |2〉. Without interactions,
the resonance energy for the transition of a free atom is

given by Efree−free which is measured in a spin-polarized,
non-interacting sample. If the atom in state |3〉 is paired
with an atom in state |2〉, the energy level is shifted
by the binding energy resulting in a reduced resonance
energy Ebound−free. Thus Ebound−free < Efree−free and
the paired branch is at negative frequencies relative
to Efree−free. For the |1〉|2〉-mixture as depicted in the
lower panel, the situation is similar. However, here
Ebound−free > Efree−free and hence the paired branch is
at positive RF frequency offsets. For the sake of brevity,
we will attribute pairing with positive frequency shifts
independent of the mixture throughout this work.

Final state effects: In an interacting system, the
non-interacting free-free transition is not a suitable
reference anymore, as interactions - both in the initial
and final state - lead to density-dependent mean-field
shifts. We address this question, as explained in the
main text, by considering only energy differences. In
addition, the final state interactions lead to a broadening
of the RF transitions which reduces the resolution. This
effect can be significant for the |1〉|3〉-mixture where
the final state is most likely a short-lived repulsive
polaron [32]. Therefore we make use of the |1〉|3〉- as
well as the |1〉|2〉-mixture to minimize the effect of
final state interactions. A plot of the broad Feshbach
resonances which have considerable overlap between the
different mixtures can be seen in Fig. S 1 C, together
with typical values for ln (kFa2D). We use the |1〉|3〉-
mixture for magnetic fields below the |1〉|3〉-resonance
where the final state interaction strength has values
of ln (kFa2D) < −7, and the |1〉|2〉 mixture for larger
fields where the final state ln (kFa2D) > 4.5. The
pairing energies measured with both mixtures in the
crossover regime show consistent behaviour independent
of the mixture used as shown in Fig. 4 B in the main text.

Spatially resolved spectroscopy: To avoid diffusion
of the transferred density, we have to use RF pulses which
are short compared to the trapping period and image
the sample directly after the pulse application. How-
ever, short RF pulses lead to a Fourier limited frequency
resolution and therefore we have to find the optimum
trade-off. To investigate this experimentally, we prepare
a |1〉|2〉-mixture at B = 854 G and record the RF spec-
trum for different pulse durations τRF as can be seen ex-
emplary in Fig. S 2 A. We apply rectangular RF pulses
which lead to a Fourier limited width ∆ν ≥ 0.886/∆t.
For all applied RF pulse durations, the density depen-
dence of the bound-free transition is readily visible. For
each pulse duration we adjust the RF power such that
a similar fraction of atoms is transferred. This leads
to Rabi frequencies between 60 Hz for the longest and
240 Hz for the shortest pulse durations and hence the ef-
fect of power broadening is small compared to the Fourier
limit. Binning the spectra over two pixels and taking a
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Fig. S 1. A: Zeeman sublevels of the 6Li 22S1/2 ground state. Indicated in color are the sublevels experimentally employed. B:

Schematic illustration of RF spectroscopy in 6Li for both the |1〉|3〉-mixture in the upper panel and the |1〉|2〉-mixture in the
lower panel. C: Upper panel: The 3D scattering length a3D in units of the Bohr radius a0 is plotted versus magnetic field for
the |1〉|2〉-(blue) and |1〉|3〉-mixture (green). Lower panel: The corresponding 2D interaction strength ln (kFa2D) is plotted as
a function of magnetic field for a typical Fermi momentum kF = 3.5µm−1.

cut at a fixed radius, we can then compare the measured
widths of the bound-free transition. This is shown in
Fig. S 2 B for the FWHM of the peak. For short RF
pulses on the order of 1 ms, the width increases as the
Fourier limit there is on the order of 1 kHz. Although
the Fourier limit decreases for longer pulse durations, the
FWHM increases which we attribute to diffusion of par-
ticles during the application of the RF pulse. At around
τRF ≈ 4 ms the minimal FWHM occurs, which is the
pulse length we used throughout this paper. This results
in a Fourier limited RF resolution of ∆ν = 222 Hz with
a typical Rabi frequency on the order of Ω = 150 Hz.
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Fig. S 2. Influence of the RF pulse duration on the mea-
sured response spectra at 854 G. In A the spectra are shown
for pulse durations of 2 ms, 4 ms and 10 ms. Along the cuts
marked as the shaded area in the spectra, the FWHM is
obtained from fits and shown in B. A pulse duration of
τRF = 4 ms gives the optimum trade-off between frequency
resolution and the effect of diffusion in the sample.

DATA ANALYSIS

Fitting Procedure

We model the RF response at a fixed density and inter-
action strength by a combination of a symmetric Gaus-
sian profile accounting for the quasi-particle peak and an
asymmetric threshold function describing the bound-free
peak. For the case of dimers as well as zero temperature
BCS theory, the line shape Γ of the bound-free peak can
be calculated from Fermi's golden rule and is given in
terms of the RF frequency ω by (see Section 3.1)

Γ(ω) ∝ θ(~ω − Eth)

ω2
, (2)

where Eth = EB denotes the threshold energy for pair
breaking, i.e. the binding energy. Due to the 1

ω2 factor,
the formula crucially depends on the exact knowledge of
the reference frequency (the free-free transition which is
set to zero here). This frequency can be affected by mean
field shifts, however, which we account for by including
a free parameter η and replacing 1

ω2 → 1
(ω−η)2 . It is im-

portant to note that the maximum of the experimentally
recorded RF response does not necessarily coincide with
Eth. The peak position is shifted towards higher energies
due to symmetric broadening of the asymmetric response
function, as given in particular by the Fourier broaden-
ing, as well as final state effects. Similar to what has
been presented in [16, 28], we account for these effects

by including an additional factor
ln2(Eth/E

f
B)

ln2((~ω−Eth)/EfB)+π2
in

terms of the final state two-body binding energy EfB .
This also accounts for the 2D nature of the scattering
process. In addition, we convolve the resulting lineshape
with a Gaussian profile to account for the aforementioned
broadening effects. Thus, our fitting function for the
bound-free peak is given by
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Fig. S 3. Example cuts through the RF response map at magnetic fields of 672G in A, 692G in B (both in the |1〉|3〉 mixture)
and 854G in C (in the |1〉|2〉 mixture). The cuts are chosen such that the local temperature is T/TF ≈ 0.5 (c.f. Fig. 4 B of
the main text). Shown are the experimental data points (blue circles), a fit of the model function (red dashed line) and the
frequency region excluded in the fit (gray area). For the features of interest we see good agreement with the model function at
all fields.

Γ(ω) =

(
Abound

θ(~ω − Eth)

(ω − η)2
ln2(Eth/E

f
B)

ln2((~ω − Eth)/EfB) + π2

)
︸ ︷︷ ︸

Threshold function

∗

(
1√

2πσ2
broad

e
− ω2

2σ2
broad

)
︸ ︷︷ ︸

Gaussian broadening

(3)

where the threshold energy Eth relative to the non-
interacting free-free transition energy, the amplitude of
the bound peak Abound, the frequency offset η and the
width σbroad of the Gaussian broadening are kept as free
parameters, while the final state binding energy EfB is
fixed for each magnetic field.

We observe the broadening to be mostly given by the
Fourier limit when using the |1〉|2〉-mixture. However,
there is additional broadening in the |1〉|3〉-mixture, pos-
sibly due to a short lived repulsive polaron final state [32].
The model describes the RF response reasonably well in
the full crossover, as presented in Fig. S 3, and gives a
consistent estimate for the onset of pairing throughout
the crossover. However, for an exact quantitative deter-
mination of the paring gap, a model capturing the spectra
of the many-body system is needed, but is currently not
available.
The observed quasi-particle peak is mostly symmetric

and we model it by a Gaussian profile with the peak posi-
tion, the amplitude and the width as free parameters. We
interpret the peak position as the quasiparticle energy.
In addition to the signal stemming from bound particles
and quasi-particle excitations in the central layer of our
2D trap, we observe additional features at intermediate
frequencies which we attribute partly to a small fraction
of the atoms being in adjacent layers of the SWT. There-
fore, we exclude the corresponding frequency range from
the fits.

Thermometry

We extract the temperature of the system with the
method established in [21] by fitting reference equations
of state (EOS) to the density distribution. Here we
slightly modify the thermometry scheme by including an
effective mass interpolation in the Boltzmann EOS:

n0 =
α

λ2T
eαβµ, (4)

where λT is the thermal de Broglie wavelength and
β = 1

kBT
. Depending on the magnetic field B, the

effective temperature exponent α specifies whether the
particles are treated as dimers or as free atoms. For
ln (kFa2D) ≤ 0 we assume the system to be molecular
and use α = 2 whereas for ln (kFa2D) ≥ 2 the system
is fermionic with α = 1. Between these two limits
we interpolate α linearly as described in [8]. Typical
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statistical errors on the extracted temperatures are on
the order of 1-2 %.

Local density approximation: Due to a spatially
inhomogeneous density distribution the thermodynamic
quantities T/TF and ln(kFa2D) vary from the centre to
the outsides of the cloud. We relate these local quanti-
ties to those of a homogeneous system by applying the
local density approximation (LDA). This approach is jus-
tified as long as the external potential varies weakly over
the correlation length of the corresponding homogeneous
system. In the normal phase this translates into the con-
dition kF(r)R � 1, where R is the typical spatial ex-
tent of the cloud which in turn accounts for the scale of
variation of the potential. For our typical experimental
parameters, we can reliably apply the LDA up to around
T/TF ≈ 1.5. Consequently we restrict our analysis of the
pairing gap in Fig. 4 of the main text to this regime.

Systematic Effects

Absorption imaging: To determine the density
n2D (r) we use high intensity absorption imaging at
intensities approximately equal to the saturation inten-
sity. To compensate for the Doppler shift the atoms
experience during the imaging, we perform a linear ramp
of the laser frequency as described in [8]. As the imaging
transitions for state |1〉 and state |2〉 are not fully
closed, especially at lower magnetic fields, we correct
our obtained densities for dark state losses. Overall, our
imaging calibration results in an uncertainty of ∼ 7 % in
the density determination.

Atoms in adjacent layers of optical trap: From to-
mographic RF measurements [8] we can estimate that a
small fraction . 10 % of atoms is transferred into adja-
cent layers of the SWT. This results in an overestimation
of the density and thus of our local Fermi momentum and
temperature. We expect small additional contributions
to the RF signal in the central region at intermediate
frequencies due to the weakly populated layers.

Experimental Parameters

We quantify the different regimes of the BEC-BCS
crossover by the local parameters T/TF and ln(kFa2D).
The temperature T of the sample is determined by the
fitting procedure described above. The Fermi momentum
and temperature are directly related to the measured lo-

cal density via kF =
√

4πn and TF =
~2k2F
2mkB

, where n is
the atomic density of a single component. In addition,
the 2D scattering length is obtained from the harmonic
oscillator length lz =

√
~/mωz in z-direction and the 3D

scattering length a3D following (7 ) as

a2D = lz

√
π

A
exp

(
−
√
π

2

lz
a3D

)
, (5)

where A ≈ 0.905. We set the scattering length by ad-
justing the magnetic offset field in the vicinity of the
broad Feshbach resonance at 690 G (832 G) in the |1〉|3〉
(|1〉|2〉) mixture as illustrated in Fig. S 1 C. The mag-
netic field is calibrated by comparing the experimentally
obtained free-free transition energies Efree−free in a spin-
polarized and thus non-interacting sample to theoretical
predictions using the Breit-Rabi formula.

For the interpretation of our data, we compare the ex-
perimentally obtained pairing gap to the two-body bound
state energy EB. It is calculated from the transcendental
equation [7]

lz
a

=

∫ ∞
0

du√
4πu3

1−
exp(−EB~ωz u)√

1
2u (1− exp(−2u))

 . (6)

An overview over the experimental parameters can be
found in Tab. S 1.

SUPPLEMENTARY INFORMATION

Theoretical Background on Pairing in the BEC and
BCS Limits

In this section, we provide a brief account of the the-
oretical aspects of pairing in the well-understood BEC
and BCS limits. The treatment presented here has been
described in detail in the references [24, 25].
The BCS quasiparticle dispersion for an attractive Fermi
gas is Ek =

√
∆2 + ξ2k, where ∆ denotes the supercon-

ducting gap, and ξk = Ek − µ is the free dispersion rela-
tion Ek = ~2k2/2m measured from the chemical poten-
tial µ. The spectral function has the form

ABCS(k,E) = v2kδ(E + Ek − µ)︸ ︷︷ ︸
bound

+u2kδ(E − Ek − µ)︸ ︷︷ ︸
free

(7)

for the bound and the free branches, with coherence fac-
tors v2k = (1 − ξk/Ek)/2 and u2k = (1 + ξk/Ek)/2.
Within 2D BCS theory the chemical potential
at zero temperature µ = EF − EB/2 and the
gap ∆ =

√
2EFEB = 2EFe

− ln(kFa2D), while
Tc = eγ∆/π = 1.13EF e

− ln(kFa2D).

On the BCS side EB � EF, µ > 0 and the disper-
sion reaches a minimum gap ∆ = Ek0 at wavevector
k0 =

√
2mµ/~ ≈ kF , cf. Fig. 2C. In the BEC limit

EB � EF one has µ→ −EB/2, and the coherence factor
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Magnetic
field (G)

Mixture
central

ln(kF a2D)
central
T/TF

two-body
EB/h (kHz)

central
EF /h (kHz)

central
ln(kF a2D)
final state

672 |1〉|3〉 -0.16 0.50 9.31 7.61 -9.54
682 |1〉|3〉 0.57 0.45 3.62 7.89 -8.15
687 |1〉|3〉 0.88 0.39 2.20 7.95 -7.53
692 |1〉|3〉 1.06 0.44 1.37 6.56 -7.05
822 |1〉|2〉 0.96 0.27 2.74 12.12 4.71
834 |1〉|2〉 1.12 0.46 1.52 8.37 4.66
854 |1〉|2〉 1.81 0.14 0.60 11.70 5.02

Tab. S I. Experimental parameters for the datasets used in the main text.

v2k → Zk = k2Fa
2
2D/(1 + k2a22D)2 approaches the square

of the bound-state wave function; thus the BCS spectral
function asymptotically crosses over into BEC spectral
function [24]

ABEC(k,E) = Zkδ(E + ξk − µ)︸ ︷︷ ︸
bound

+ (1− Zk)δ(E − ξk − µ)︸ ︷︷ ︸
free

,

(8)

for the bound and the free branch. The two branches
bend outwards in Fig.2 B, with a minimal distance EB

at k = 0.

The RF response in the absence of final-state interactions
involving species |c〉 takes the form [25]

ΓBCS(ω) = πΩ2
∑
k

ABCS(k,Ek − ω)f(ξk − ω)

=
πΩ2Nb

2EF
f(ξ(ω)− ω)

∆2

ω2
Θ(ξ(ω) + µ), (9)

where Ω is the Rabi frequency, f(E) the Fermi function,
and ξ(ω) = (ω2−∆2)/2ω. Nb denotes the number of par-
ticles in state |b〉, and we have used the constant density
of states ρ(E) = m/(2π~2) in 2D. The Θ step function
constrains the response to two branches: first, bound-
free transitions from the lower branch occur only above a
threshold frequency ω > ωth =

√
µ2 + ∆2−µ = EB > 0.

Second, free-free transitions from the thermally excited
upper branch appear at ω < 0, but are too weak to be
observed at low temperature, cf. Fig. 1D. Instead, for
small spin imbalance a region around the minimum of
the upper quasiparticle branch becomes occupied, and a
new RF peak appears at Efree = −∆ [23], cf. Fig. 2 C,E.
Furthermore, if the interacting species |b〉 experiences a
mean-field shift U < 0, the overall spectrum shifts to
Eth = EB−U and Efree = −∆−U . At zero temperature
we thus obtain

ΓBCS(ω) =
πΩ2Nb

2EF

∆2

ω2
[Θ(ω − EB + U)

+δfree(ω + ∆ + U)]. (10)

It is a remarkable consequence of pairing in 2D that,
within the BCS theory, the RF threshold remains
Eth = EB −U throughout the crossover. Hence, one can-
not distinguish between two-body and many-body pair-
ing by measuring the bound-free transition alone. Only
by occupying the upper branch and measuring the free
peak at Efree = −∆ − U can one determine the pairing
energy ∆E = Eth−Efree = EB+∆ in a way that requires
no knowledge of the mean-field shift U and quantifies the
many-body gap ∆.

Onset of Pairing

The measurement of the pairing gap presented in the
main text relies crucially on a sufficiently large popula-
tion in both the paired and the quasi-particle branch.
At finite temperature, quasiparticles are excited either
thermally or by introducing a small imbalance. For the
studied temperature range of T/TF . 1.5 we do not ob-
serve a significant thermal occupation and thus we work
with slight imbalance. This finding is illustrated in Fig. S
4 A where the RF response of a spin-balanced sample
is shown for an experimental setting corresponding to a
central ln(kFa2D) ≈ 1.4. Indeed, there is no pronounced
quasiparticle peak visible for T/TF . 1.5. Nevertheless,
as the phase-space-density decreases towards the wings
of the cloud, a regime of mostly unpaired particles is
eventually reached.
For a non-interacting gas consisting of dimers and free
atoms in thermal equilibrium, the unpaired fraction is
given by the Saha formula [24]:

n2f
nd

=
mkBT

4π~2
e
− EB
kBT , (11)

where nf (nd) denotes the free (bound) density of parti-
cles. Indicated in Fig. S 4 A is the relative temperature
T/TF ≈ 0.54, where the Saha formula predicts a signifi-
cant free particle fraction of 35 %. We observe an almost
fully paired system at this temperature, however. To fur-
ther study the onset of pairing in a density regime LDA
is still valid, we heat the system by trap depth modula-
tion. The corresponding RF spectrum is shown in Fig. S
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Fig. S 4. The onset of pairing in a balanced sample. A and C show, for different temperatures regimes (T=124 nK and
T=295 nK), the RF spectra in the |1〉|2〉-mixture at 844 G plotted against RF frequency offset and radius, where the relative
temperature and interaction parameter are indicated for a selection of radii. The vertical line in A marks the prediction for 35 %
free particle fraction according to the Saha formula. The red curve in B represents the T/TF-dependence of the free-particle
fraction for the parameters used in A. We see no significant free fraction at this radius. D shows a cut along the dotted line
in C corresponding to T/TF ≈ 2.5 where we observe a free particle fraction of ∼ 35 %. Here, the Saha formula (blue curve in
B) predicts more than 60 % unpaired particles.

4 C. We observe a free particle fraction of ∼ 35 % only
at around T/TF ≈ 2.5. While a quantitative analysis of
the onset of pairing remains subject to further studies,
the qualitative finding of significantly increased paired
fractions compared to expectations from two-body the-
ory further strengthens our interpretation of the normal
phase above Tc being strongly influenced by many-body
correlations.

Spectra in the Weakly Interacting Limit

In this section, we show the spatially resolved response
function I(r, ωRF) measured at 1000 G with a |1〉|2〉-
mixture, which corresponds to ln(kFa2D) ∼ 3.5 and
therefore represents the weakly interacting limit of the
2D BEC-BCS crossover. At this interaction strength, the
binding energy is EB/h ≈ 7 Hz, which is much smaller
than all thermodynamic scales and our experimental RF
resolution. In Fig. S 5, we observe only a single branch in
the spectrum. This branch appears close to ωRF ∼ 0 and
has a maximum value of approximately 500 Hz at the
center where the Fermi energy (EF/h) is about 7 kHz.
The response also exhibits a density-dependent mean-
field shift as expected from an interacting system of

fermions.
Although it is difficult to make a reliable statement about
pairing in this regime due to our finite resolution, the
presence of a single branch does suggest the absence of a
gap that is larger than the scale of our resolution, or in
other words ∆E . 0.05EF at the center of the trap. This
should be contrasted with the spectra at ln(kFa2D) ∼ 1,
where the measured ∆E ≈ 0.6EF.
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Fig. S 5. Spatially resolved spectra at ln kF a2D ∼ 3.5. The
Fermi energy EF/h ≈ 7 kHz at the center of the cloud. The
fact that we see a single branch suggests the absence of many-
body pairing in this regime.
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