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Particle and pair spectra for strongly correlated Fermi gases: A real-frequency solver
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The strongly attractive Fermi gas in the BCS-BEC crossover is efficiently described in terms of coupled
fermions and fermion pairs, or molecules. We compute the spectral functions of both fermions and pairs in the
normal state near the superfluid transition using a Keldysh formulation in real frequency. The mutual influence
between fermions and pairs is captured by solving the self-consistent Luttinger-Ward equations: These include
both the damping of fermions by scattering off dressed pairs and the decay of pair states by dissociation into
two dressed fermions. The pair spectra encode contact correlations between fermions and form the basis for
computing dynamical response functions and transport properties.
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I. INTRODUCTION

Strongly correlated Fermi gases are ubiquitous in nature
and appear in very diverse physical realizations ranging from
ultracold atomic gases [1,2] to dilute nuclear matter [3]. In
their theoretical description, however, universality provides a
framework to reveal the common features of these systems.
Recent experimental advances in atomic spectroscopy have
brought the dynamical properties and even transport within
reach of high-precision measurements [4].

In dilute yet strongly attractive Fermi gases, pair fluctua-
tions play a dominant role throughout the BCS-BEC crossover
[5]. Not only do they describe the condensation of fermion
pairs in the low-temperature superfluid state, but virtual pair
fluctuations also strongly renormalize the properties of the
normal state above the superfluid transition temperature Tc

[6–8]. Pair fluctuations alone, however, are not sufficient,
and density (particle-hole) fluctuations lead to a substantial
reduction of Tc at weak coupling [9]. Also at resonant scat-
tering in the unitary regime [1], the value of Tc � 0.16TF

from experiment [10] and quantum Monte Carlo [11] is
very well reproduced in field-theoretic approaches based on
the self-consistent T -matrix approximation or Luttinger-Ward
theory [12–15] (for related self-consistent GW approaches
see [16]). This approach includes particle-hole fluctuations in
the fermion and pair self-energies, which are computed self-
consistently at one-loop order with fully dressed propagator
lines. Diagrammatic Monte Carlo results confirm that further
multiloop contributions modify the density equation of state
by less than 10% even at Tc [17].

In these approaches, the coupled self-consistent equa-
tions for fermions and pairs have been solved numerically
in imaginary (Matsubara) frequency or time. This is com-
putationally convenient because convergence properties are
well understood. However, real-frequency spectra can only
be obtained by analytical continuation, which is mathe-
matically ill-defined and requires exponential precision in
imaginary frequency to obtain reliable real-frequency data.
Exponential precision, however, is not achievable in numer-
ical self-consistent solutions. We therefore propose to solve

the self-consistent equations directly in real frequency, which
circumvents analytical continuation. We present an algorithm
that computes fermion spectra and self-consistent pair spec-
tra reliably even with standard numerical precision. As we
explain below, the main idea is to represent the fermion and
pair self-energies as slowly varying functions interpolated on
a real-frequency and momentum grid and then use analytical
integration between grid points to obtain highly accurate spec-
tra that capture also sharp spectral features much narrower
than the grid spacing.

This paper is structured as follows. In Sec. II we intro-
duce the Keldysh formulation of the strongly correlated Fermi
gas in equilibrium. The self-consistent solution in real fre-
quency is developed in Sec. III. In Sec. IV we present the
resulting fermion and pair spectra for the strongly correlated
three-dimensional Fermi gas in the BCS-BEC crossover. We
conclude in Sec. V and discuss how these results can form
the basis for future self-consistent computations of dynamical
response functions and transport directly in real frequency.

II. FERMI GAS MODEL IN THE KELDYSH
FORMULATION

A. Attractive Fermi gas

We consider a two-component Fermi gas in three dimen-
sions, which is described by the Hamiltonian

H =
∑

σ

∫
dr ψ†

σ (r)

(
− h̄2∇2

2m
− μσ

)
ψσ (r)

+ g0

∫
dr ψ

†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r). (1)

Here ψσ (r) denotes the field operator for a fermion of species
σ =↑,↓ and mass m at chemical potential μσ . The second
term represents an attractive contact interaction between un-
like fermions of bare strength g0 < 0. The contact interaction
needs to be regularized at short distance in two and higher
dimensions, and in three dimensions it is related to the low-
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FIG. 1. Feynman diagrams for the fermionic and pair self-energies in Keldysh formulation, with GR (retarded), GA (advanced), and GK

(Keldysh) propagators. All propagator lines are bold and represent fully dressed fermions (single) and pairs (double lines).

energy s-wave scattering length a via

1

g0
= m

4π h̄2a
− m�

2π2h̄2 (2)

in the presence of a large-wave-number cutoff �. The at-
tractive interaction tends to form pairs of fermions, and for
positive scattering length a > 0 there exists a bound state of
two fermions at a binding energy of

Eb = h̄2

ma2
> 0. (3)

Even when the attraction is too weak to form a bound state at
negative scattering length a < 0, virtual pair fluctuations play
an important role. It is therefore natural to introduce a local
pair field

�(r) = g0ψ↓(r)ψ↑(r), �q = g0

∫
k
ψq−k↓ψk↑ (4)

in real or momentum space, respectively [the shorthand
notation

∫
k ≡ ∫

dk/(2π )d ]. After a Hubbard-Stratonovich
transformation, one obtains the Fermi-Bose action in terms
of both fermion and pair degrees of freedom [7,18,19],

S =
∫

dr
∫ β

0
dτ

[ ∑
σ

ψ∗
σ

(
∂τ − ∇2

2m
− μσ

)
ψσ

− 1

g0
|�|2 − ψ∗

↑ψ∗
↓� − �∗ψ↓ψ↑

]
, (5)

where τ denotes imaginary time (we use units where h̄ = 1
from now on). Alternatively, one can start from a two-channel
Hamiltonian for fermions and molecules in the broad reso-
nance limit [1].

B. Keldysh technique in equilibrium

The model of coupled fermions and pairs leads to a dress-
ing of both, which is reflected in their renormalized spectra.
We will use the Keldysh formulation [20] in equilibrium in
order to compute these spectra in real frequency. Although
in principle the equilibrium spectra could be obtained from
Matsubara Green’s functions [21] by analytical continuation,
this procedure is mathematically ill-defined and error prone
for noisy numerical data. By using the Keldysh formulation,
we avoid the need for analytical continuation and obtain reli-
able spectra directly in real frequency.

The bare retarded fermion Green’s function of spin com-
ponent σ ,

GR
σ0(p, ε) = 1

ε + i0 + μσ − εp
, (6)

encodes noninteracting particles with dispersion relation
εp = p2/2m and a bare spectral function Aσ0(p, ε) =
−(1/π )ImGR

σ0(p, ε) = δ(ε + μσ − εp). In the presence of
interactions the bare Green’s function turns into the fully
dressed Green’s function with self-energy �R

σ (p, ε) via the
Dyson equation

GR
σ (p, ε) = 1

ε + i0 + μσ − εp − �R
σ (p, ε)

= −i
∫ ∞

0
dt ei(ε+i0)t 〈{ψpσ (t ), ψ†

pσ (0)}〉. (7)

The bosonic Green’s function that represents fermion pairs is
analogously given by (with subscript p for pairs)

GR
p (q, ω) = 1

g−1
0 − �R

p (q, ω)

= −i
∫ ∞

0
dt ei(ω+i0)t 〈[�q(t ),�†

q(0)]〉, (8)

with bare coupling g0 and bosonic self-energy �R
p (q, ω).

In our model fermions can scatter off real or virtual pairs
and acquire a fermionic self-energy that is given by [20,22]
(here σ̄ = −σ denotes the other fermion species)

�R
σ (p, ε) = − i

2

∫
p′,ε′

[
GR

p (p + p′, ε + ε′)GK
σ̄ (p′, ε′)

+ GK
p (p + p′, ε + ε′)GA

σ̄ (p′, ε′)
]

(9)

(see Fig. 1). While the retarded and advanced Green’s func-
tions GR(p, ε) = [GA(p, ε)]∗ represent only the spectrum, the
Keldysh components GK (p, ε) represent both the spectrum
and the occupation number with the statistical factor in equi-
librium,

GK
σ (p, ε) = −i tanh(βε/2)Aσ (p, ε), (10)

GK
p (q, ω) = −i coth(βω/2)Ap(q, ω), (11)

with full spectral functions Aσ (p, ε) = −(1/π )ImGR
σ (p, ε)

and Ap(q, ω) = −(1/π )ImGR
p (q, ω). The occupation factors
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can be rewritten in terms of the Fermi and Bose functions
as tanh(βx/2) = 1 − 2 f (x) with f (x) = 1

2 [1 − tanh(βx/2)]
and as coth(βx/2) = 1 + 2b(x) with b(x) = 1

2 [coth(βx/2) −
1]. In this way, the retarded fermionic self-energy is
expressed as

�R
σ (p, ε) =

∫
p′,ε′

[
GR

p (p + p′, ε + ε′) f (ε′)Aσ̄ (p′, ε′)

− b(ε + ε′)Ap(p + p′, ε + ε′)GA
σ̄ (p′, ε′)

]
, (12)

where a contribution independent of occupation vanishes by
analyticity. For the imaginary part of the self-energy, the
occupation factors are combined with a product of spectral
functions as

Im�R
σ (p, ε) = − π

∫
p′,ε′

[ f (ε′) + b(ε + ε′)]

× Ap(p + p′, ε + ε′)Aσ̄ (p′, ε′). (13)

Once the imaginary part has been computed, the real part can
be obtained by the Kramers-Kronig relation

Re�R(p, ε) =
∫

dε′

π
P Im�R(p, ε′)

ε′ − ε
, (14)

which involves an integral over the principal value P .
The bosonic self-energy in turn arises from dissociation of

a pair into individual fermions and is computed as the particle-
particle bubble diagram (see Fig. 1),

�R
p (q, ω) = i

2

∫
p,ε

[GR
↑(q − p, ω − ε)GK

↓ (p, ε)

+ GK
↑ (q − p, ω − ε)GR

↓(p, ε)]

=
∫

p,ε

{
GR

↑(q − p, ω − ε)
[

1
2 − f (ε)

]
A↓(p, ε)

+ [
1
2 − f (ω − ε)

]
A↑(q − p, ω − ε)GR

↓(p, ε)
}
.

(15)

Both terms can be combined after a change of variables to
yield

Im�R
p (q, ω) = − π

∫
p,ε

[1 − 2 f (ε)]A↑(p, ε)

× A↓(q − p, ω − ε). (16)

Causality implies that the imaginary part of the fermionic
Green’s function is always negative, ImGR

σ (p, ε) < 0 ∀ ε,
while the imaginary part of the bosonic Green’s function
changes sign at ω = 0, ImGR

p (q, ω)sgn(ω) < 0. The same
holds for the sign of the imaginary parts of the fermionic
and bosonic self-energies, which follows from their defi-
nitions (12) and (16). Equations (7), (8), (12), and (16)
form a closed set of coupled integral equations for the
fermion and pair Green’s functions. This particular set of
equations corresponds to the self-consistent Luttinger-Ward
approach [12,23,24]. In the following we present a method
for their numerical solution in real frequency.

The Keldysh technique introduced so far applies to general
polarized Fermi gas with μ↑ = μ↓. In this work we will start

by presenting the solution for the case of a balanced (unpolar-
ized) gas with μ↑ = μ↓ = μ and G↑ = G↓ ≡ Gσ .

C. Quantum virial expansion

Since we are interested in the strongly correlated Fermi gas
at large scattering length |a|, the interaction strength is not a
good expansion parameter. Instead, in the high-temperature
normal state one can perform a quantum virial expansion in
the fermionic fugacity

z = exp(βμ) (17)

as the small parameter, where β = 1/kBT denotes the inverse
temperature and we work henceforth in units where kB ≡ 1. In
the high-temperature virial expansion we can already identify
spectral features that will be important reference points in
the discussion of the low-temperature spectra below. When
pairing is important the pair fugacity

zp = exp(βμp) = exp[β(2μ + Eb)] = z2eβEb (18)

controls the strength of pair contributions with pair chemical
potential μp = 2μ + Eb. One can distinguish the fermion-
dominated regime zp < z from the pair-dominated regime
zp > z [25]. In the expressions for the self-energy (12) and
(16), the Fermi function is expanded for small fugacity as
f (x − μ) = ze−βx + O(z2) and the Bose function as b(x −
μp) = zpe−βx + O(z2

p) = z2eβEbe−βx + O(z4).
To zeroth order in fugacity, i.e., in vacuum, the fermion

self-energy vanishes and the bosonic self-energy is known
analytically as

�R
p0(q, ω) =

∫ �

p
GR

σ0(q − p, ω + μ − εp) (19)

= m

4π

√
−m(ω + 2μ − 1

2εq + i0) − m�

2π2

for large cutoff � → ∞. The cutoff term in the definition of
the bare coupling g0 (2) cancels that in the self-energy to yield
the cutoff-independent pair Green’s function [6]

GR
p0(q, ω) = 4π/m

a−1 −
√

−m
(
ω + 2μ − 1

2εq + i0
) . (20)

The corresponding pair spectral function reads

Ap0(q, ω) = 4π

m3/2

(
2
√

Ebδ(sp + Eb)�(a)

+ 1

π

√
sp�(sp)

sp + 1/ma2

)
sp=ω+2μ−εq/2

(21)

in terms of the pair spectral parameter sp = ω + 2μ − εq/2,
which measures the energy from the onset of the scattering
continuum at sp = 0. The pair spectrum exhibits a scattering
continuum for sp > 0 from the square root branch cut, and for
positive a > 0 there is additionally the pair bound state at sp =
−Eb with pair dispersion ωq = q2/2M at twice the fermion
mass M = 2m. Note that the pair spectrum in vacuum is still
Galilean invariant, i.e., it depends only on the combination sp

and not on ω or q separately. This will no longer be the case
at finite density, as we will see below.
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At finite density the Fermi distribution has to be included in
the bosonic self-energy even when using bare fermion prop-
agators Gσ0, and the bosonic self-energy for bare fermions
reads

�(1)R
p (q, ω) =

∫
p
[1 − 2 f (εp − μ)]GR

σ0(q − p, ω + μ − εp),

(22)

Im�(1)R
p (q, ω) = m

4π

(
− √

msp

+ 2mT

q
ln

1 − f (ω/2 + √
εqsp/2)

1 − f (ω/2 − √
εqsp/2)

)
�(sp).

(23)

While the real part is not known analytically, it is eas-
ily obtained by numerical Kramers-Kronig transformation
(14) since the finite-temperature correction (second term) de-
cays exponentially for large frequency ω � T . In the limit
q → 0 the imaginary part simplifies to Im�(1)R

p (q = 0, ω) =
−(m/4π )

√
msp tanh(βω/4)�(sp). Both in this expression

and in Eq. (23) the sign of the imaginary part changes at
ω = 0 as required by causality. As is clear from Eq. (23), the
self-energy at nonzero density depends no longer only on sp

but also on ω or q separately and the pair propagator in the
medium does not have a Galilean invariant form.

As the density is further increased the attractive Fermi
gas undergoes a phase transition into a superfluid state. This
occurs when pairs can be excited at zero momentum q = 0
and zero energy ω = 0, as given by the Thouless criterion
[GR

p (q = 0, ω = 0)]−1 = 0 [6]. With bare fermions this is

equivalent to a−1 = (2/π )
∫ ∞

0 ds
√

ms
s−2μ

f (s/2 − μ). At weak

coupling a → 0− it yields the critical temperature (βμ)−1
c =

(8eγ−2/π ) exp(π/2kF a), but at stronger coupling no analyti-
cal expression is known. At unitarity, the non-self-consistent
calculation with bare propagators yields (βμ)c ≈ 1.5, while
experiment [10] and self-consistent Luttinger-Ward theory
[12] yield a value of (βμ)c ≈ 2.5, corresponding to Tc/TF ≈
0.16.

III. SELF-CONSISTENT SOLUTION IN REAL
FREQUENCY

At low temperatures in the normal state T > Tc, one can
reach z � 1 and the virial expansion does not converge. In-
stead, we will now present a real-frequency solver for the
coupled integral equations (7), (8), (12), and (16). In contin-
uous time and space, one can choose a grid of frequencies εi

to sample the full domain −∞ < ε < ∞ and a grid of radial
momenta p j for 0 � p < ∞. The challenge of a straightfor-
ward numerical solution is that the spectral function A(p, ε)
can have very narrow δ peaks at large frequencies or momenta
even in a strongly correlated system, making it difficult to
resolve these peaks on a grid. Such narrow peaks, however,
often arise as simple poles where the denominator has a zero
crossing and is well described by a linear approximation of
the denominator between grid points. Hence, we propose an
inverse integrator that interpolates the denominator of the
Green’s function. Such an approximation becomes accurate

if the self-energy �(p, ε) varies only slowly with p and ε.
Using a linear interpolation of the self-energy between grid
points, the value of the frequency or momentum integral of
the Green’s function can be computed analytically, depending
on the value of � on the adjacent grid points. Explicitly, we
obtain, with x = (p2 − p2

j )/(p2
j+1 − p2

j ),∫ p j+1

p j

d p p G(p, ε) = p2
j+1 − p2

j

2

∫ 1

0

dx

a + bx

= p2
j+1 − p2

j

2

ln(G−1
j+1Gj )

G−1
j+1 − G−1

j

, (24)

where a = G−1(p j, ε) and a + b = G−1(p j+1, ε) are given
in terms of the self-energy at the grid points. An analogous
formula applies for integration over frequency ε between grid
points. This integral is exact for noninteracting particles and
it is a good approximation for slowly varying �; note that
there is no need for � to be small and so the validity extends
to strong coupling beyond the virial expansion. The numeri-
cal results below show that � changes in frequency roughly
on the scale of the temperature T and in momentum over√

2mT , so in practice it is sufficient to use a frequency grid
ε = −100T, . . . , 100T with equidistant spacing �ε = 0.5T
and a momentum grid p = 0, . . . , 10

√
2mT with spacing

�p = 0.2
√

2mT . For the lowest temperatures in our study,
T/TF = 0.16, this corresponds to a self-energy grid spacing
�ε = 0.08εF and �p = 0.08kF .

The explicit formula for the one-loop renormalization of
the fermion and pair spectra, which has the form of a convo-
lution integral (13), can be written as

Im�R
σ (p, ε) = − π

∫ ∞

−∞
dε′ [ f (ε′) + b(ε + ε′)]

× 1

4π2 p

∫ ∞

0
dq q Ap(q, ε + ε′)

×
∫ p+q

|p−q|
d p′ p′Aσ̄ (p′, ε′). (25)

Here, the momentum integral has been expressed as an inte-
gral over the bosonic radial momentum q and the fermionic
radial momentum p′, weighted by �(|p − q| < p′ < p +
q)/(4π2 p). The principal function of the p′ integral is com-
puted first using formula (24), which takes O(N ) time for N
momentum-frequency grid points. While the spectral function
can have δ peaks, its principal function has at most steps of
unit height, such that the error from a discretization �p of the
momentum integral is at most O(�p). The subsequent q, ε′
integration for every p, ε takes O(N2) time for the complete
self-energy, which is the most time-intensive computational
step. Finally, the Kramers-Kronig transformation (14) is em-
ployed to obtain the real part of the self-energy; this ensures
exact analyticity of the self-energy even if Im� is computed
approximately.

At high temperature or weak coupling the fermionic
self-energy follows approximately the result of perturbation
theory, which has a square-root nonanalyticity, but the ab-
solute magnitude of the self-energy is small. Conversely, at
low temperature and strong coupling the self-energy is much
larger (of order T ) but at the same time the functional form

023325-4



PARTICLE AND PAIR SPECTRA FOR STRONGLY … PHYSICAL REVIEW A 109, 023325 (2024)

is smoothed by an imaginary part of order T . As a result,
the slope of the fermionic self-energy with respect to en-
ergy, |d�σ/dε|, is bounded as O(1) for all energies and
momenta. This is confirmed numerically for the self-energies
shown in Fig. 3 below. Hence, the maximum discretiza-
tion error in �σ is bounded as O(�ε) and by refining the
grid spacing the discretization error can be systematically
reduced.

The frequency integral is weighted by the fermionic and
bosonic occupation factors. While the fermionic occupation
is always positive and smooth, weighting by the bosonic
occupation requires care as b(ω) � T

ω
− 1

2 for |ω| � T . In
the Keldysh formulation, however, the Bose function appears
always in combination with a bosonic spectral function Ap(ω),
which changes sign at ω = 0 and scales linearly in ω for
|ω| � T . The product of bosonic spectrum and occupation,
therefore, is continuous and well-behaved near ω = 0. One
can easily check that also the combination f (ε′) + b(ε + ε′)
in Eq. (25) changes sign when ε + ε′ = 0 such that the
Im�R

σ (p, ε) < 0 ∀ε, as required by causality.
As we will see below, the fermionic self-energy Im�σ

scales asymptotically as ε−1/2 for large frequencies. This tail
is important in the Kramers-Kronig transformation in order
to accurately obtain the real part Re�σ near the Fermi sur-
face, which determines the shift of the spectral lines. We
include the asymptotic tail beyond the maximum grid fre-
quency analytically in the Kramers-Kronig transformation. In
the convolution integral, instead, the high-frequency parts are
suppressed by the Fermi and Bose distributions and give only
a small contribution.

Analogously, the bosonic self-energy is computed explic-
itly as

Im�R
p (q, ω) = − π

∫ ∞

−∞
dε[1 − 2 f (ε)]

× 1

4π2q

∫ ∞

0
d p p A↑(p, ω − ε)

×
∫ p+q

|p−q|
d p′ p′A↓(p′, ε). (26)

The set of self-consistent integral equations can be solved
by iteration. As initial condition we choose bare fermions
with �(0)

σ (p, ε) ≡ −i0 (in practice we use −10−8iT ). Each
iteration consists of two steps.

Step 1. Compute the new pair self-energy from Eq. (26)
and numerical Kramers-Kronig transformation (14) for the
real part. The convolution integral �p is evaluated using the
fermionic self-energies �↑,↓ of the i-th iteration

�(i+1)
p = �p[�(i)

↑ , �
(i)
↓ ]. (27)

In the first iteration for �(1)
p we use the analytical formula (19)

for accuracy.
Step 2. Compute the new fermion self-energy from

Eqs. (25) and (14),

�(i+1)
σ = α�σ

[
�(i+1)

p , �
(i)
σ̄

] + (1 − α)�(i)
σ . (28)

A convergence enhancement factor 0 < α � 1 can accelerate
convergence, and the converged result for α < 1 is the same
self-consistent solution as for α = 1.

Convergence is typically reached after a dozen steps
(a bit slower near Tc); we denote the converged self-consistent
solution by �(∞) and G(∞). In practice, convergence is fastest
if one uses the fully converged solution for a given parameter
value μ as the initial condition for a new calculation at a
neighboring parameter value μ + δμ.

IV. LUTTINGER-WARD SPECTRA

The procedure in Sec. III produces self-consistent solutions
for single-particle and pair Green’s functions GR

σ and GR
p

in real frequency. A crucial feature of this Luttinger-Ward
approach is that the results are thermodynamically consis-
tent [19,23]: The density, for instance, is obtained identically
either from the grand potential by a thermodynamic deriva-
tive or by loop integration over the single-particle Green’s
function as

nσ =
∫ ∞

−∞
dε f (ε)gσ (ε), gσ (ε) =

∫
d3 p

(2π )3
Aσ (p, ε),

(29)

C = m2
∫ ∞

−∞
dω b(ω)gp(ω), gp(ω) =

∫
d3q

(2π )3
Ap(q, ω),

(30)

where we have defined the single-component fermion den-
sity nσ and density of states gσ (ε). In (30) the local pair
density, or contact C, is defined via an integral over the pair
density of states gp(ω), with an additional mass factor m2

by convention. The thermodynamic results for the fermion
density and the contact (pair) density agree with previous
self-consistent Luttinger-Ward computations in imaginary fre-
quency [12]. In order to showcase our method, we choose
applications to two distinct physical regimes of the strongly
correlated Fermi gas: (i) the unitary regime at the scattering
resonance (a−1 = 0) where spectra are dominated by many-
body BCS-type pairing (zp � z2) and (ii) the Bose-Einstein
condensate (BEC) regime [(kF a)−1 � 1] where two-body
binding has a substantial effect on many-body properties
(zp � z2).

A. Particle and pair spectra at unitarity

Figures 2 and 3 show the resulting self-energies and spectra
for both fermions and pairs in the unitary regime (βEb = 0).
First Fig. 2 presents the line spectra for the frequency depen-
dence at vanishing momentum, which already exhibits many
qualitative features of the full spectrum in Fig. 3. For βμ = 1
in the quantum degenerate regime, corresponding to T/TF ≈
0.3, the high-temperature virial expansion (A3) to first order
in fugacity predicts a single narrow peak in the imaginary part
of the self-energy [brown dashed line in Fig. 2(a)]. The first
iteration of the Luttinger-Ward scheme, computed with bare
fermions, includes contributions to arbitrary order in fugacity
and displays already a much broader single peak for this large
value of fugacity, z = e1. The full self-consistent solution in-
stead shows a qualitatively different behavior with a two-peak
structure, which becomes more pronounced as the chemical
potential is increased to βμ = 1.5, 2.0, 2.5, corresponding to
temperatures approaching T/TF � 0.16 just above Tc (blue
curve). Correspondingly, the fermion spectrum in Fig. 2(b)
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FIG. 2. Line spectra of fermions and pairs at unitarity: real frequency dependence at zero momentum. Temperatures are in the normal
state approaching Tc: T/TF = 0.31 (βμ = 1.0, brown), T/TF = 0.24 (βμ = 1.5, red), T/TF = 0.19 (βμ = 2.0, magenta), and T/TF = 0.16
(βμ = 2.5, blue). (a) The fermion self-energy shows a single peak in the virial expansion (dashed line) and a renormalized single peak in the
first LW iteration � (1)

σ (thin line); instead, the fully converged self-energy �(∞)
σ (thick line) develops a two-peak structure which grows more

prominent as the temperature is lowered. (b) The fermion spectrum shows a two-peak structure as a precursor to the Bogoliubov spectrum.
The comparison with spectral data of Ref. [26] (dotted line) shows good agreement. (c) The pair self-energy has a zero crossing at ω = 0 by
causality (dashed line); the spectral weight at negative frequencies is enhanced at lower temperature. The Keldysh component −Im�p(q =
0, ω) coth(ω/2T ) (solid line) remains positive at all frequencies and regular around ω = 0. (d) The pair spectrum has a single asymmetric peak
near threshold that becomes broader and more pronounced at lower temperature.

develops a two-peak structure as a precursor to the Bogoli-
ubov spectrum as the temperature is lowered.

The imaginary part of the pair self-energy in Fig. 2(c)
arises from dissociation of pairs into individual fermions;
it has a square-root branch cut representing the scattering
continuum for large frequencies. As a bosonic function it
must change sign at ω = 0 (dashed curves). When weighted
with the Bose factor, −Im�p(ω) coth(ω/2T ) > 0 is regular at
ω = 0 and positive for all frequencies (solid curves). Note that
the fully converged self-consistent solution (thick lines) con-
tains substantially more spectral weight at smaller frequencies
ω < 0 than the first iteration (thin line), in particular at lower
temperature (blue curves). Finally, the pair spectral function
in Fig. 2(d) weighted with the Bose factor [the Keldysh com-
ponent (10)] is positive and exhibits a single large peak for
the onset of the scattering continuum, which decays for large
frequencies as ω−1/2. This slow decay in turn determines
also the decay of the fermionic self-energy as ε−1/2 for large
frequencies.

The full spectra at T = 0.16TF slightly above Tc are
shown in Fig. 3. The fermion self-energy has a broad upward
branch starting at ε ∼ εp/2, which arises from combin-
ing with another low-momentum fermion into a pair state
(molecule-hole continuum), and a steeper downward branch
ε ∼ −εp, which arises from combining with another fermion
into a low-momentum pair. The imaginary part of the self-
energy determines the decay rate (inverse lifetime) of the
corresponding fermion states, which near Tc is substantial
(comparable to εF ). These spectral features are reflected in
the fermion spectral function Fig. 3(b), which shows a band
splitting around the Fermi level ε = 0 and the appearance of
Bogoliubov shadow bands already above Tc. Note that the
fermionic self-energy and spectral function clearly do not
follow a single-parameter scaling in terms of the spectral
parameter s = ε + μ − εp alone.

The pair self-energy in Fig. 3(c) clearly exhibits the scat-
tering continuum for ω � εq/2 − 2µ. In the self-consistent
solution, where a pair can dissociate into dressed fermion
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(a) (b)

(c) (d)

FIG. 3. Luttinger-Ward self-energies and spectral functions at unitarity 1/a = 0 and temperature T/TF = 0.16 (βμ = 2.5). (a) Fermion
self-energy. (b) The fermion spectral function shows a band splitting around the Fermi level ε = 0 and a slight suppression of spectral weight
also near kF . (c) Pair self-energy. (d) The pair spectral function weighted by the Bose factor (Keldysh component) is positive and strongly
peaked at the threshold of the scattering continuum. Pair functions are given in units of the zero-temperature density of states ρ0 = g(0)

σ =
mkF /2π 2.

states, the substantial broadening of the fermions shifts the
threshold of the scattering continuum to lower frequency
with respect to the non-self-consistent solution. Finally, the
full pair spectrum in Fig. 3(d) shows the clear threshold of
the scattering continuum as well as an additional downward
branch that arises from the dressed fermions.

B. Particle and pair spectra in the BEC regime

In the BEC regime the fermion line spectra in Figs. 4 and
5 show many of the same qualitative features, such as upward
and downward branches, as in the unitary regime; however,
the splitting between the two branches in the fermionic spec-
trum is now much larger, approximately equal to 2|μ| > 0,
and grows with momentum, as in the strong-binding limit of
the BCS dispersion relation [27]. The pair self-energy is dom-
inated by the scattering continuum but has again significant
weight at negative frequency that arises from the downward
branch of the dressed fermions. Finally, the pair spectral func-
tion (Keldysh component) in Figs. 4(d) and 5(d) exhibits a
three-peak structure: The large bound-state peak near ω = 0
becomes broader for lower temperature, the scattering contin-
uum is separated from the bound state by a gap comparable

to the binding energy Eb, and in addition there is a downward
branch at negative frequencies.

The fermion dispersion exhibits qualitative differences be-
tween the unitary regime, where it resembles the BCS-type
dispersion relation with minimum gap at nonzero wave vector
k∗ ≈ kF , and the BEC regime, where the gap is present at all
k and reaches a minimum at k = 0. This qualitative change
between the two regimes is also apparent in the density of
states (DOS). While at unitarity the density of states is only
slightly suppressed near the Fermi level ε = 0 above Tc [cf.
Fig. 3(b)], in the BEC regime the gap is clearly developed
already in the normal state (cf. Fig. 6), but instead it becomes
narrower (in units of εF ) toward lower temperature.

V. DISCUSSION

The real-frequency solver presented in this work circum-
vents the long-standing problem of analytical continuation by
computing a self-consistent solution directly in the Keldysh
spectral representation. This gives access to the dynamical
properties of single particles, which agree with previous re-
sults where available [28]. At strong coupling they show a
substantial renormalization of spectra compared to the virial
expansion, and in particular the self-consistent algorithm
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(a) (b)

(c) (d)

FIG. 4. Line spectra of fermions and pairs in the BEC regime (βEb = 8): real frequency dependence at zero momentum. Temperatures
are in the normal state approaching Tc: T/TF = 0.52 (βμ = −4, red), T/TF = 0.37 (βμ = −3.75, magenta), and T/TF = 0.26 (βμ = −3.5,
blue). (a) The fermion self-energy shows a much more pronounced two-peak structure than at unitarity. (b) The fermion spectrum similarly
shows a two-peak structure as a precursor to the Bogoliubov spectrum. (c) The pair self-energy has a zero crossing at ω = 0 by causality (dashed
line); the spectral weight at negative frequencies is enhanced at lower temperature. The Keldysh component −Im�p(q = 0, ω) coth(ω/2T )
(solid) remains positive at all frequencies and regular around ω = 0. (d) The pair spectrum has a triple-peak structure: a large bound-state peak
near ω = 0, the scattering continuum for positive ω separated by a gap from the bound state, and a small peak at negative frequency.

allows us to access the low-temperature regime βμ > 1.5 at
unitarity, which is unattainable in bare perturbation theory.
The self-consistent solution in the Luttinger-Ward framework
ensures thermodynamic consistency and the exact fulfillment
of Tan relations, as well as scale invariance in the uni-
tary case even for approximate solutions [19]. In particular,
existing thermodynamic results [e.g., μ(n)] obtained in imag-
inary frequency can be used as input for the real-frequency
computation. On the technical level, in the Keldysh for-
mulation the divergence of the bosonic occupation at zero
frequency is compensated by the smallness of the bosonic
spectral function to yield a well-defined frequency integral,
but it can still have sharp peaks from long-lived excitations.
Our algorithm treats these efficiently by interpolation of the
self-energy, which is a slowly varying function between grid
points. The accuracy of the spectra is confirmed by comparing
with results for finer grids (�ε = 0.25T ) and with the spectral
data of Ref. [26]. By construction, the resulting Green’s func-
tions satisfy the requirements of analyticity and causality. The
Luttinger-Ward spectra with their subtle three-peak structure
(Fig. 4) can serve as a benchmark and as a prior for the

numerical reconstruction of imaginary-time quantum Monte
Carlo data.

The real-frequency solver can immediately be applied to
imbalanced (polarized) Fermi gases with μ↑ = μ↓; in fact,
the equations in Sec. II are already written for this general
case. This will allow one to extend self-consistent ground-
state polaron spectra [29] to finite temperature. Furthermore,
the self-consistent thermodynamics in the symmetry-broken
superfluid state has been found in the balanced [12] and im-
balanced Fermi gas [14], and it will be worthwhile to extend
the real-frequency solver to this case in order to obtain the cor-
responding excitation spectra. Another important extension
will be to the two-dimensional Fermi gas [30], which always
admits a pair bound state with Eb > 0 and is therefore covered
by our algorithm for the BEC regime; this will allow for a
self-consistent computation of pairing spectra [27,31] and the
dynamical quantum scale anomaly [32,33].

Another very interesting extension is to compute dy-
namical correlation and response functions, which define,
e.g., transport coefficients such as shear viscosity [34,35],
bulk viscosity [25,36–39], thermal conductivity [40,41],

023325-8



PARTICLE AND PAIR SPECTRA FOR STRONGLY … PHYSICAL REVIEW A 109, 023325 (2024)

(a) (b)

(c) (d)

FIG. 5. Luttinger-Ward self-energies and spectra in the BEC regime 1/kF a = 1 at T/TF = 0.26 (βμ = −3.5) slightly above Tc. (a) The
fermion self-energy �σ (p, ε) shows two branches and fermions scatter most strongly on the lower branch. (b) The fermion spectral function
Aσ (p, ε) shows a clear gap between the two branches around the Fermi level ε = 0 and has most spectral weight concentrated on the
upper branch. (c) The pair self-energy �p(q, ω) shows the two-particle scattering continuum. (d) The weighted pair spectral function
Ap(q, ω) coth(ω/2T ) = iGK

p (the pair Keldysh function) shows a strong bound-state branch separated by the binding energy Eb = 2EF from
the pair continuum, as well as a weak branch bending down.

and spin diffusivity [42,43]. As the frequency-dependent
transport coefficients depend on the slope in frequency
of a bosonic spectral function, the real-frequency solver

D
O
S

FIG. 6. Fermionic density of states gσ (ε) vs frequency ε on the
BEC side βEb = 8 (1/kF a � 1). The DOS is strongly suppressed in
a region of width 2|μ| around the chemical potential. The DOS is
given in units of the ideal Fermi gas DOS at zero temperature, ρ0 =
g(0)

σ = mkF /2π 2.

should yield improved self-consistent predictions at both
zero and finite frequency. Finally, the Keldysh formulation
can describe genuine out-of-equilibrium dynamics where the
fluctuation-dissipation relation (10) is no longer satisfied [20],
and it will be interesting to find self-consistent solutions for
the transient evolution after a quantum quench.

Note added. Recently, two other studies appeared which
compute spectral functions in real frequency using Fourier
transforms [26] and spectral representations [44].
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APPENDIX: LEADING-ORDER SELF-ENERGIES IN THE VIRIAL EXPANSION

Beyond the vacuum limit, the fermionic self-energy arises at O(z). To leading order, one can replace the fermionic occupation
f (x − μ) = ze−βx + O(z2) and neglect the bosonic occupation b(y − 2µ) = O(z2). For the first-order self-energy it is thus
sufficient to use the zeroth-order Green’s functions GR

p0 and Aσ0(p′, ε′) = δ(ε′ + μ − εp′ ) such that Eq. (12) simplifies to

�(1)R
σ (p, ε = εp − μ + s, a−1) = z

∫
p′

e−βεp′ GR
p0(p + p′, ε + εp′ − μ) = z

4π

m

∫
p′

e−βεp′

a−1 −
√

−m
(
s + 1

2εp−p′ + i0
) . (A1)

The fermion spectral parameter s = ε + μ − εp denotes the shift away from the fermion shell, which is located at s = 0.
Analytical expressions for the first-order self-energy �(1)R

σ (p, s, a−1) are available if only one of the three parameters p, s,
and a−1 is nonzero:

�(1)R
σ (p, 0, a−1 → 0) = 2zT√

π

(
− 4a−1

√
2mT

FD(p/
√

2mT )

p/
√

2mT
− i

erf (p/
√

2mT )

p/
√

2mT

)
, (A2)

�(1)R
σ (0, s, 0) = −i

2zT√
π

U ( 1
2 , 0, 2s/T + i0), (A3)

�(1)R
σ (0, 0, a−1) = i

8zT

π2

a−2

2mT
G

(((
1, 3

2 , 2
)
,
( ))

,
((

3
2 , 2

)
,
( ))

, i

√
2mT

2a−1
, 1

2

)
, (A4)

�(1)R
σ (0,−Eb, a−1) = −i

2zT√
π

G
((( )

,
(

3
2

))
,
((

0, 1
)
,
( ))

, 2/a2mT
) + real part. (A5)

Here FD denotes the Dawson, U the hypergeometric, and G the Meijer function. The unitary on-shell self-energy (A2) was given
in [36], and specifically �(1)R

σ (0, 0, 0) = −i4zT/π . Additionally, the bound-state contribution for all argument values is given
analytically to O(z) by

Im�(1)bR
σ (p, s, a−1 > 0) = −2zT �(a)�(−s − Eb)

√
2Eb/T

e−( p̄−p̄′ )2 − e−( p̄+p̄′ )2

4 p̄
, (A6)

with p̄ = p/
√

2mT and p̄′ = √−2(s + Eb)/T , and the last ratio becomes p̄′ exp(−p̄′2) in the limit p̄ → 0. These analytical
forms serve as a benchmark for the accuracy of the numerical solution at small z.
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