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Complex networks with tuneable spectral dimension as a universality playground
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Universality is one of the key concepts in understanding critical phenomena. However, for interacting
inhomogeneous systems described by complex networks, a clear understanding of the relevant parameters for
universality is still missing. Here we discuss the role of a fundamental network parameter for universality, the
spectral dimension. For this purpose, we construct a complex network model where the probability of a bond
between two nodes is proportional to a power law of the nodes’ distances. By explicit computation we prove
that the spectral dimension for this model can be tuned continuously from 1 to infinity, and we discuss related
network connectivity measures. We propose our model as a tool to probe universal behavior on inhomogeneous
structures and comment on the possibility that the universal behavior of correlated models on such networks
mimics the one of continuous field theories in fractional Euclidean dimensions.
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I. INTRODUCTION

Scale invariance is a key property of critical systems and
leads to the appearance of power-law scaling in several macro-
scopic physical quantities close to the transition point. These
power laws are universal as they appear in a large variety of
microscopically different systems [1], which only share the
presence of a symmetry-breaking transition and the specific
symmetry of the order parameter. The existence of univer-
sality within the theory of critical phenomena was clarified
several decades ago, thanks to the analogy between the ther-
modynamic limit of many-body systems and the long-time
behavior of dynamical systems that was established by the
renormalization group (RG) approach. This success is ex-
emplified by the study of phase transitions and spontaneous
symmetry breaking in the paradigmatic O(n)-symmetric vec-
tor model [2]. The universal critical properties and scaling
exponents depend only on the symmetry index n and on the
Euclidean spatial dimension d , which control the phase space
for critical fluctuations. With recent extensions to fractional
d, n ∈ R, this model describes universal critical phenomena
in a wide range of physical systems [3–5]. Going beyond
the traditional case of thermal and quantum phase transitions
[6,7], applications of universality include cell membranes
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[8], turbulence [9], fracture and plasticity [10,11], and
epidemics [12].

Over the years, growing efforts have been devoted to
mapping interacting systems and their complex patterns of
connections into complex networks formed by a set of nodes
and links describing their pairwise couplings [13]. Indeed,
networks are able to provide a useful abstraction to charac-
terize the architecture of many real systems, on top of which
collective behavior and criticality can emerge [14]. Compre-
hensive information on the structure of a network is provided
by its spectrum [15], in particular the one of the associated
Laplacian [16] for which many properties are known [17].
The graph Laplacian is known to be an important tool also
to understand dynamics on networks, as it characterizes the
return properties of the random walk [18] and the stability of
the synchronized state of a system of oscillators [13,19].

A quantity of particular interest is the spectral dimen-
sion ds, which characterizes the scaling of the eigenvalues
of such Laplacian matrix [20,21]. In fact, the traditional RG
description of critical phenomena, where scaling behavior is
influenced by diverging critical fluctuations, implicitly sug-
gests the spectral dimension as the relevant control parameter
for universal behavior on inhomogeneous structures. Long
forgotten, this fundamental quantity has recently generated
a new wave of interest [22–24] to characterize the structure
of more complicated systems such as simplicial complexes,
where couplings among constituents are not limited to pair-
wise interactions [25]. For many complex networks, the
Fiedler (second smallest) eigenvalue remains finite in the ther-
modynamic limit, in which case the network is said to display
a spectral gap. By contrast, if the spectral gap closes as the
system size grows, the network is said to have a finite spectral
dimension [21].
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The role of the spectral dimension as a control parameter
for universal behavior in critical phenomena can be proven
in quadratic models, such as the spherical model [26] and
Dyson’s hierarchical model [27,28] in the mean-field regime.
Its validity for correlated critical models has proven much
harder to verify, despite several investigations on classical
long-range systems [29–32], diluted models [33–35], spin
glasses [36,37], and quantum systems [31]. Several of these
investigations rely on a conjectured relation between the uni-
versality of long-range interacting systems and that of local
models with d ∈ R. Such a relation could not be verified
either by functional RG or by conformal bootstrap inves-
tigations, which instead confirmed its approximate nature
[30,38,39].

In parallel, geometrical investigations of network struc-
tures have also considered the fractal dimension d f , which
characterizes the scaling of the number of neighbors of a node
Nn as a function of distance [40,41]. Based on such a definition
the fractal dimension depends on the metric employed, for
instance, considering the network distance ρ the fractal di-
mension d f is defined according to the relation Nn(ρ) ∼ ρd f .
In the following we always imply such a definition, unless
explicitly stated that we refer to the definition based on Eu-
clidean distance. Traditional investigations of Ising models
on fractals found a nontrivial dependence of the scaling ex-
ponents on the (Euclidean) fractal dimension d f when 1 <

d f < 2 [42–44]. Subsequently, it was shown that the universal
scaling on fractals was not uniquely determined by the fractal
dimension, leading to claims of a universality breakdown for
d f < 2 [42]. This claim, however, is misleading since there is
the possibility that true universality is found as a function of
the spectral instead of the fractal dimension even for d f < 2,
at least on a restricted class of graphs.

The intention of this work is to provide a suitable tool
for future numerical investigations of the dependence of the
universal properties on the spectral dimension. Therefore, we
propose a nonweighted graph, whose nodes are arranged in
such a way that the spectral dimension is finite and can be
continuously tuned. The model is constructed in Sec. II from
a one-dimensional nearest-neighbor chain, where additional
long-distance bonds are inserted randomly with a probability
that decays as a power law of the bond length. The spectral
dimension of the model is explicitly computed as a func-
tion of the power-law decay exponent σ . Besides, in order
to prove the numerical stability of the model, it has been
numerically verified that it controls both the scaling of the
spectrum (Sec. III) and the return times of random walkers
(RWs) in Sec. IV as predicted in Ref. [21].

In Sec. V, we present our model as a platform to study
universality and critical phenomena on complex networks. We
characterise the return rate of random walks on this network
by computing the anomalous dimension of the model, defined
in analogy to previous studies of critical phenomena with
long-range interactions [32,45,46]. Interestingly, a striking
resemblance between this anomalous dimension and the one
of the scalar ϕ4 theory at noninteger values of the spectral
dimension is found. Finally, in Sec. VI we conclude with a
discussion of the future perspectives of our findings.

II. MODEL

We consider a network of N nodes placed regularly on
a circumference of radius 1, at locations θi = 2π i/N , i =
1, . . . , N . The network is characterized by its adjacency ma-
trix A = {ai j}, where ai j ∈ {0, 1} indicates, respectively, the
absence or presence of a link between nodes i and j. The
coupling probability between any pair of nodes is given by

pi j = 1

r1+σ
i j

, (1)

where ri j �= 0 is the distance between nodes i and j and σ

is the model parameter characterizing the scaling of the cou-
pling probability with the (geometric) distance. Note that our
network does not contain self-loops, hence we only consider
links with i �= j. Consequently, the model generates networks
with tightly connected local neighborhoods and increasingly
rare long-range connections. As a robustness check for our
results, we will consider two versions of the aforementioned
model, based on different definitions of the distance

r (L)
i j = min(|i − j|, N − |i − j|), (2)

r (C)
i j = sin

(π

N
|i − j|

)/
sin

(π

N

)
, (3)

for the linear (L) and circular (C) models.
Long-range power-law decaying interactions have a long

history in the study of critical phenomena and are known to
influence the critical scaling behavior close to a second-order
phase transition both at [27,47–51] and out of equilibrium
[52]. More closely related to the present studies, extended
couplings with power-law decaying probabilities played a
crucial role in the investigations of epidemic processes,
where they alter the scaling of observables [45,53–55]. Along
these lines, the network model proposed above can be re-
garded as the giant cluster of a long-range percolation model
well inside the percolating regime [32,45,46], such that this
cluster always contains a nearest-neighbor connected ring
backbone pi,i+1 = 1 ∀ i. More recently, the two-dimensional
lattice version of this model has been employed to inves-
tigate critical dynamics in the XY model [56,57] as well
as epidemics spreading in d = 1 and 2 [45,46]. Within the
network theory context, the present model can be regarded
as a one-dimensional instance of the Kleinberg model [58],
introduced to investigate the emergence of the small-world
phenomenon beyond the paradigm of Watts and Strogatz [59]
and conventionally employed in the study of optimal transport
problems [60–62].

As mentioned above, the specific one-dimensional model
under study, which we refer to as long-range random ring
(LRRR), was already employed to study the critical properties
of long-range epidemics [45] and percolation [32]. In the
following, we are going to show that its spectral properties
are highly nontrivial and realize the whole range of spec-
tral dimensions ds ∈ [1,∞). In particular, and in contrast to
the two-dimensional version analyzed in Ref. [34], our one-
dimensional model allows to realize low spectral dimensions
ds < 2, which are expected to be very relevant in the study
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FIG. 1. Examples of the network layout for N = 20, σ = 2
3 , 3

2
(left) and (right), respectively. The adjacency matrices are shown in
the bottom row, indicating existing edges (white squares).

of universal behavior for critical models with noncontinuous
symmetries, such as the Ising model and percolation [42,43].
An example of our network layout and adjacency matrices for
two values of σ is shown in Fig. 1. For simplicity, we will here
consider undirected symmetric networks with ai j = a ji.

The degree of each node measures its number of neighbors
ki = ∑N

j=1 ai j . In the infinite-size limit N → ∞, the degree
distribution of the model is well approximated by a normal
distribution as sketched in Fig. 2(a) (see Appendix C for more
details). The mean of the distribution is κ = 2ζ (σ + 1) and
its standard deviation is σκ = {2[ζ (σ + 1) − ζ (2σ + 2)]}1/2,
where ζ (s) is the Riemann zeta function. Notice that in the
σ → 0 limit both κ and σκ diverge, as lims→1 ζ (s) = +∞. In

the opposite limit σ → ∞, the network converges to a ring
chain with κ = 2 and σk = 0.

Many real-world networks are characterized by the pres-
ence of efficient pathways of communication. They can be
quantified by the average path length 	, which measures the
mean topological distance between every pair of nodes over
the network shortest paths:

	 = 1

N (N − 1)

N∑
i=1

∑
j �=i

ρi j, (4)

where ρi j is the minimum number of links connecting nodes
i and j, i.e., the graph distance, which we also refer to as
chemical distance. The cumulative distribution of ρi j , P(ρ),
indicates the average fraction of nodes that are within a radius
ρ of any given node. This is shown in Fig. 2(b) for different
values of σ ; it indicates how for small σ the fraction of neigh-
bors grows quickly with the distance ρ, whereas for σ � 1 the
nodes’ neighborhoods scale as a power law of the distance, the
exponent of which gives the fractal dimension.

In general, low values of 	 relative to the network size
indicate the emergence of the small-world phenomenon [59],
associated with an efficient behavior of a communication
network [63]. More formally, a network is said to display
such a property if 	 grows proportionally to the logarithm
of its size [64], a feature of multiple graph models including
Erdős-Rényi networks [65].

An empirical property of many real-world networks is the
presence of dense local structures, which can be for instance
quantified by means of the network transitivity T , defined as

T = number of closed triangles

number of open triads
. (5)

This feature is absent in Erdős-Rényi and similar random
graph models, but present in the LRRR model.

Similarly to the original Watts-Strogatz model [59], the
LRRR model is characterized by a regime of intermediate
values of σ which maximizes transitivity whereas display-
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FIG. 2. Network statistics as function of σ for N = 216 for the symmetric model with linear distance definition LRRR(L). (a) Degree
distribution p(k, σ ) for five representative values of σ = {0.1, 0.5, 1.0, 1.5, 2.0} from bottom to top (see legend). (b) Average fraction of nodes
at a given topological distance ρ, P(ρ ), same σ values (from top to bottom). (c) Mean minimum path 	(σ ) (green circles, left y axis) and
transitivity C(σ ) (blue squares, right y axis).
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FIG. 3. Spectra (averaged over different realizations) for (a) σ = 0, (b) σ = 0.5, and (c) σ = 1.5 for increasing system size (N =
64, 256, 1024, 4096 as, respectively, triangles, diamonds, squares, and circles). All three spectra refer to the linear model. In the intermediate
decay range σ > 1 flat regions appear in the energy spectrum, as can be seen in (c). These flat regions are caused by the appearance of localized
eigenstates due to the presence of disorder. Since such localized states appear at high energy they do not influence low-energy properties such
as the spectral dimension.

ing efficient communication structure, as shown in Fig. 2(c).
The analysis pursued in Ref. [66] already showed that the
connectivity properties of this kind of models change their
nature as a function of σ . The σ > 1 case shall not pos-
sess small-world properties, while displaying high clustering
features. When the probability of long-distance connections
grows for σ < 1, the topology of the network changes and the
topological distance seems to display sub-power-law scaling
still maintaining finite clustering. The sub-power-law scaling
of the topological distance in the thermodynamic limit can be
proven exactly (see Ref. [66]). Finally, for σ < 0 the network
actually becomes small world and the clustering vanishes in
the thermodynamic limit. The transitions between these dif-
ferent topological regimes appear to be continuous similarly
to conventional second-order phase transitions.

In the following we are going to show how these “contin-
uous transitions” also influence the spectral properties of the
network, even if the evolution of the spectrum appears to be
far more involved than the one of the topological properties.

III. SPECTRAL PROPERTIES

In order to evaluate the spectral dimension ds of the LRRR
model, we consider the graph Laplacian L [67],

Li j =

⎧⎪⎨
⎪⎩

1 when i = j,

−
√

1
kik j

if ai j = 1,

0 otherwise

(6)

and numerically evaluate its spectrum as a function of σ for
several realizations of the LRRR model. The convergence
properties of the spectrum have been studied by calculating
it for increasing network sizes up to N = 212. The numerical
estimates for the spectrum upon increasing the number of
network realizations or the network size have been shown to
converge to the same function, indicating self-averaging prop-
erties and yielding a unique definition of spectral dimension
ds in the thermodynamic limit. The numerical spectra of the
LRRR model with linear distance definition (LRRR(L)) have

been compared with the ones obtained with the circular dis-
tance definition (LRRR(C)), proving the isospectral property
of the two models in the thermodynamic limit N → ∞.

The eigenvalues of the normalized Laplacian have been
ordered based on their magnitude and are denoted by ωi, with
ω1 = 0 being the eigenvalue of the steady-state eigenvector.
The ordered spectra are shown in Fig. 3 for σ = 0.0, 0.5, 1.5
for various network sizes N . In all cases, the spectra converge
to a well-defined functional form at large N , but finite-size
corrections are more relevant for smaller σ . As expected, both
the σ > 0 cases present a continuous power-law behavior at
ωi 	 0, indicating a low-energy density of states (DOS) for
vibrational modes of the form

D(ω) ∝ ωds−1 (7)

with a finite value of the spectral dimension ds. For σ = 0
the spectrum appears to develop a finite gap ω2 − ω1 �= 0
indicating that ds = ∞. According to this analysis the point
σ = 0 does not only delimit the topological transition from
a non-small-world network σ > 0 to a small-world one at
σ < 0, but also the appearance of a spectral gap in the model,
which persists for all σ < 0.

In order to justify these observations on theoretical grounds
one may construct the following analytically solvable model,
which shares several features with the LRRR. We consider the
average over all possible realizations of the adjacency matrix
of our model āi j = pi j = 1/r1+σ

i j , which describes a fully con-
nected weighted graph. The lack of translational invariance in
the LRRR model is removed by the averaging procedure and
the spectral dimension of the resulting graph is analytically
known as

ds =
{

2/σ if 0 < σ < 2,

1 if σ � 2 (8)

(see Ref. [68]). In principle, we do not expect the estimate
in Eq. (8) to exactly reproduce the spectral dimension of
the LRRR model since taking the average directly on the
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FIG. 4. The spectral dimension ds of the network model defined
by Eq. (6) as obtained by the finite-size scaling of the Laplacian
spectrum (LS, orange circles), by the power-law return probability
of the random walk (Fit, blue diamonds), and by the collapse of
the return probability (PC, green squares). The dashed gray line
represents the analytical expectation obtained by an approximate
annealed model [see Eq. (8) and the discussion above]. Based on
the discussion of Sec. II these results correspond to the spectral
dimension of a percolation cluster well in the supercritical regime.

adjacency matrix is not the same as taking it on the spectrum1.
However, based on the analogy with the problem of critical
long-range percolation, one may expect this result to be accu-
rate both at σ > 2, where the effect of long-range connectivity
becomes irrelevant to the universal behavior, and at σ < 1

3 ,
where the universal behavior of the critical percolation model
lies in the mean-field regime [32,45,46].

A direct fit to the low-energy tails of the spectra in Fig. 3
does not yield reliable estimates for the spectral dimension
values. Then, we shall rely on finite-size scaling properties.
Indeed, in order for the spectrum to display the expected
power-law behavior in the thermodynamic limit, each finite-
size eigenvalue should exhibit the leading-order scaling

ω
(N )
i ∝ N−2/ds . (9)

Using Eq. (9) we can extract the spectral dimension from
the finite-size scaling of the low-lying eigenvalues (see
Appendix A). The resulting values for the spectral dimension
as a function of σ are reported as orange circles in Fig. 4.

IV. RANDOM WALK

A. Return probability

The spectral dimension controls both the scaling of the
spectrum and the RW return probabilities, as mathematically
argued in Ref. [21]. Then, if a particle is initially at the origin
at time t = 0, the probability of finding it there at time t is
given by return probability P0(t ) [20,21,69,70]:

P0(t ) ∼ t−ds/2, t � 1. (10)

1Note that this procedure would correspond to take the annealed
version of the model in the language of disordered systems. Our
study rather will be devoted to the quenched case.

In order to prove that such a universal relation is obeyed in our
model, we numerically computed the return probability P0(t )
on different realizations of our network. Initially, the walker is
placed on a random node i, and at each time step it jumps with
uniform probability 1/ki to a neighboring node. The walker is
left to diffuse for a number of steps τ large enough to explore
a macroscopic portion of the network. The results for the
return probability shown in the paper have been obtained by
averaging over NR = 105 random walk’s trajectories on each
network realization with τ = 105, 106.

The value of ds as a function of σ has been estimated using
a maximum likelihood algorithm [71,72]. For each value of
the network size N and of the decay exponent σ this technique
requires the identification of an initial time tmin and a final
time tmax, between which one has to pursue the power-law fit.
Indeed, the scaling behavior cannot appear at small times, as
the return probability in this limit is highly influenced by the
local structure of the LRRR model and by the absence of self-
links, such that P0(2t − 1) < P0(2t ) and then Eq. (10) shall
not be obeyed at small t . On the other end, finite-size effects
still appear at very large times, particularly for small σ as, due
to the high connectivity, the random walkers can loop over the
network faster in this case. The observation of more prominent
finite-size effects at small σ is consistent with the behavior
observed in Fig. 3 for the Laplacian spectrum.

Therefore, the scaling behavior of Eq. (10) can only be ob-
served for intermediate values of times and very large network
sizes, leading to the necessity of identifying a proper time
window to estimate the power-law decay exponent. In order
to proceed with the ds estimations in this case, we select an
initial sensible value of tmax for each N and σ pair and then
optimize both the time boundaries tmin and tmax making use of
a maximum likelihood algorithm adapted from Ref. [73] (see
Appendix B). Note that for small σ (σ < 0.5) the finite-size
effects can appear before tmin, leading to the underestimation
of ds. Consequently, very large systems are necessary to esti-
mate ds in this case (blue diamonds in Fig. 4).

B. Finite-size effects on ds

Given the picture above, it is evident that finite-size correc-
tions are expected to hinder the accuracy of the ds estimations
from the random walk return probabilities, especially in the
σ → 0 limit where such corrections appear already at short
times even for large sizes. In order to overcome these difficul-
ties, we exploited the universal nature of the return probability
and introduced the finite-size scaling of P0(t ) as

PN
0 (t ) = 1

N
f
(
Nt−ds/2

)
, (11)

with f (x) such that f (x) ∝ x for x � 1 and f (x) ∝ O(1) for
x � 1. The latter finite-size scaling ansatz can be used to scale
the return probabilities curves of different network sizes PN

0 (t )
on each other, thus yielding an estimate of ds by the opti-
mal value for the collapse. This procedure is exemplified in
Fig. 5 for σ = 0.5; the optimal value for ds found in this case
is ds 	 3.91.

The spectral dimension results from the probability col-
lapse (PC) are shown as green squares in Fig. 4. Finite-size
effects also affect the collapse results for the spectral
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FIG. 5. Collapse of P0(t ) for σ = 0.5 and N = 2i, i =
12, 13, . . . , 20 using the scaling function in Eq. (11) (starting point
from left to right). Both axes are in logarithmic scale.

dimension ds at σ � 0.5, but the error bar estimates are more
reliable with this method, when compared to the simple large
time fit. In general, the comparison between random walk
estimates, both by power-law fits (Fit) and by the return
probability collapse (PC), yield consistent estimates in the
whole σ range and almost perfectly reproduce the Laplacian
spectrum (LS) results for σ � 1

2 corresponding to ds � 4.
The agreement between the different approaches furnishes a
precise estimate of the spectral dimension in the most relevant
regimes for critical O(n) models, which exhibit non-mean-
field universal behavior for d ≡ ds < 4.

Moreover, this agreement is found also for different bound-
ary conditions (see Appendix A): this proves the universality
of the random walk scaling dynamics on this network model
and provides a first hint of the universal role of the spec-
tral dimension in this class of networks [21,74]. From the
perspective of critical phenomena the LRRR network model
described in Sec. II corresponds to a long-range percolation
cluster in the supercritical regime and, in principle, univer-
sality should not be expected [32,45,46]. Nevertheless, based
on our numerical observations, the spectral dimension in this
supercritical percolation cluster displays all the features of a
universal quantity and also features a finite correction caused
by disorder, which cannot be captured by the annealed model
[see Eq. (8) and the discussion above].

It is worth restating that the present model does not have
any conventional critical point, but the spectral dimension
results in Fig. 4 are universal in the sense that they are not al-
tered by microscopic modifications of the model under study,
such as the ones described in Appendix C, i.e., a change in
the definitions of the distance or the introduction of additional
short-range bonds (see Fig. 8).

V. A UNIVERSALITY PLAYGROUND

A. Previous results

The current understanding of critical phenomena is rooted
in the study of prototypical models, which, in spite of their
simplicity, can produce accurate predictions for real physical
systems thanks to the universality phenomenon. Following
this path, for most of the experimentally observed critical

behavior it has been possible to construct a continuous field-
theory model, which reproduces the appropriate universal
quantities without any information about the discrete na-
ture of the microscopic variables and the lattice structure. A
paradigmatic example of this procedure can be found in the
characterization of the universality of spontaneous symme-
try breaking via the homogeneous O(n)-symmetric models.
These models describe a vector order parameter ϕ with n
components, whose ground-state value may be either O(n)
symmetric |ϕ0| = 0 or spontaneously broken |ϕ0| �= 0.

The early picture for the universal behavior of O(n) mod-
els was first obtained by perturbative RG [75–78] and has
since then been complemented with several real-space and
variational results [79–81]. More recently, functional RG ap-
proaches [82–84] have been able to reproduce and extend
previous findings, yielding the full universal landscape for
O(n) field theories [4,5,85–89]. With these extensive inves-
tigations, O(n) models have become the general tool for the
understanding of universal behavior in critical phenomena.

In these systems the only relevant parameters regulating
universal behavior are the symmetry index n and the Eu-
clidean spatial dimension d: they control the phase space for
critical fluctuations by altering, respectively, the number of
fluctuating modes and the low-energy tails of the density of
states (DOS). Interestingly, the universal properties can be
analytically continued to the two-dimensional plane (d, n) ∈
R2, leading to a complex phase diagram which has been a
fundamental ingredient in the understanding of universality
[90–95].

The intricacies regarding the proper definition of dimen-
sion on graphs have, up to now, hindered the validation
of the existing theoretical results for universal behavior in
fractional dimension on discrete inhomogeneous structures.
Yet, theoretical investigations alone have reached a fair de-
gree of consistency and unity among each other, yielding a
comprehensive picture of the critical exponents of O(n) mod-
els in the continuum with Euclidean dimension 2 � d � 4
[2,4,5,80,81]. For integer Euclidean dimensions d ∈ N, this
picture can be verified by numerically exact results obtained
by Monte Carlo (MC) simulations [2], and, at least for the
Ising model (n = 1), conformal bootstrap results, which are
believed to be exact and also extend to d ∈ R [96] (see Fig. 6).

The results depicted in Fig. 6 prove the capability of cur-
rent theoretical approaches to provide reliable estimates of
universal quantities in O(n) field theories. Yet, no numeri-
cal confirmation or exact proof of the applicability of these
results to microscopic discrete models exists. As anticipated
above, the natural candidate for the dimension, as a relevant
parameter for universality, on graphs and complex networks
is the spectral dimension [21,99,100]. Indeed, the existence
of the critical point for O(n)-symmetric models on complex
networks is solely determined by the value of the spectral
dimension, at least as long as ds > 2 [100–103]. Finally,
the universal properties of most exactly solvable models, in-
cluding the O(n) models in the n → ∞ limit, only depend
on ds [104–107].

The numerical confirmation of the above picture in cor-
related critical models is lacking, even in the simpler case
of continuous symmetry n � 2 where no universal behavior
is found at ds � 2. This is mostly due to the difficulty of
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FIG. 6. Critical exponents η and ν (inset) of the Ising model as
a function of d ∈ [2, 4] from dimensional regularization (DR, blue
squares) [97], conformal bootstrap (CB, red diamonds) [3,96,98],
and functional renormalization group (FRG, green circles) [4,5].

identifying proper graph models that present both a tuneable
spectral dimension and a stable numerical behavior in the limit
of large size. Indeed, mathematically exact derivations of the
spectral dimensions of fractals are known only in few cases,
usually with ds < 2 [108–110], while numerical simulations
need large sample sizes and long computation times [111].

In this work, we have shown that the long-time scaling
of random walk dynamics on the LRRR network is solely
determined by the spectral dimension and, therefore, may
be regarded as universal. Based on the results of Ref. [21],
this scaling corresponds to that of a Gaussian field theory
at the critical point and constitutes a first confirmation of
the role of the spectral dimension as a control parameter for
universal behavior. Moreover, based on the investigations of
Refs. [32,45,46], it is straightforward to infer that prototypical
models such as percolation will display a nontrivial critical
point when placed on the LRRR graph. These two statements
make the LRRR network model unique between the few al-
ready existing candidates of graphs with tuneable ds, which
are typically pathological, since they do not exhibit nontrivial
random walk scaling [112] nor correlated critical points [74].

B. Universality of the spectral properties

In order to relate our studies to the aforementioned picture
of universality, it is useful to consider our findings in the per-
spective of the long-range percolation problem discussed in
Refs. [32,45,46]. In this problem each possible link of a one-
dimensional chain is present with probability pi j = p r−(d+σ )

i j .
This leads to the existence of a percolation threshold pc at
which critical scaling appears. Then, the complex network
model introduced in Sec. II can be regarded as the giant
cluster of the long-range percolation problem well inside the
percolating regime with p = 1 � pc ∀ σ .

From this point of view, the problem of long-range perco-
lation on a one-dimensional ring is equivalent to the one of
nearest-neighbor percolation on the complex graph analyzed
in this paper. In Ref. [32] the critical properties of the long-
range problem have been related to those of nearest-neighbor
percolation in an effective fractional dimension deff = 2−ηsr

σ
d ,

FIG. 7. The anomalous dimension η generated by long-range
disorder, as defined by Eq. (12), is compared to the FRG estimates
of the anomalous dimension of the Ising model as a function of
the Euclidean dimension d . The data are shown as large (blue) and
small (green) circles, while the dashed curve represents a numerical
extrapolation of the FRG data.

where ηsr is the anomalous dimension of the nearest-neighbor
problem in dimension deff , as usual in the long-range literature
[29–32]. The contribution of the anomalous dimension to
the effective dimension is necessary to take into account the
renormalization of the field scaling dimension as compared to
the case of quadratic models.

Therefore, in analogy with the case of long-range critical
phenomena, one may interpret the deviation between the spec-
tral dimension of the LRRR model and the annealed estimate
(8) as an anomalous dimension η due long-range disorder
according to the formula

ds = 2 − η

σ
. (12)

In Fig. 7, the values of η obtained via Eq. (12) are reported
and compared with those of the Ising model obtained by FRG,
which also yields nonvanishing results for d < 2, specifically
down to d ≈ 1.76. The similarity between the two curves is
not surprising as the anomalous dimensions of several corre-
lated models have similar trends [4,5].

The comparison between the anomalous dimension curves
in Fig. 7 has to be considered with a grain of salt. Indeed, the
anomalous dimension defined by Eq. (12) does not represent
a “canonical” critical exponent, since it is not even defined at
a critical point. It rather represents an anomalous contribution
to the spectral dimension of the LRRR network coming from
disorder, as it quantifies the discrepancy from the annealed
(nondisordered) model. This quantity is universal in the sense
that it is stable across different realizations of the network and
it does not depend on the particular choice of distance and
boundary conditions. Moreover, the quantity η in Eq. (12) dis-
plays all the qualitative features of the anomalous dimension
of a ϕ4 theory, as proven by the comparison in Fig. 7. The
unexpected quantitative agreement between the quantity η and
the anomalous dimension of continuous scalar ϕ4 theories
furnishes further evidence of the intriguing scenario opened
by the scaling properties of complex network structures with

023015-7



ANA P. MILLÁN et al. PHYSICAL REVIEW RESEARCH 3, 023015 (2021)

FIG. 8. Finite-size scaling of the third highest eigenvalue (ω3) of the Laplacian spectrum for the various definitions of the present network
model: the linear (L) and circular (C) models, where the two distance definitions in Eqs. (2) and (3) have been employed (blue triangles
and orange diamonds), the model with a thick backbone, i.e., both nearest-, next-nearest-, and third-nearest-neighbors bonds active with unit
probability (F model, green squares) and the D model, where the activation probability in Eq. (1) is doubled (red pentagons). The three panels
refer to the decay parameters (a) σ = 0.5, (b) σ = 0.9, and (c) σ = 1.5. All models display the theoretical finite-size scaling predicted by
the spectral dimension reported in Fig. 4 (purple solid line in all subplots). The same scaling has been verified also for other higher-energy
eigenvalues.

finite spectral dimension and of its connection with traditional
studies in critical phenomena.

VI. CONCLUSIONS

From the human brain [113] to particles and grains [114],
networks are the natural tool for a formal description of sys-
tems made up of many interacting agents. Over the years, a
wide variety of dynamical processes have been studied on
networks, from epidemic spreading [115] and diffusion [18]
to synchronization [19]. While it is well known that the exact
form of interactions can affect the emergent dynamics [13],
the link between network structure and critical behavior [14]
is still far from understood.

Going beyond the individual assessment of specific net-
work features, including average path length, clustering
coefficient [59] or the heterogeneity of the degree distribu-
tion [116], in this paper we turned our attention to a more
fundamental definition of network dimension, i.e., the spec-
tral dimension, which may govern universality in interacting
systems. To this end, we have introduced a complex network
model based on the one-dimensional percolation problem
studied in Refs. [32,45,46]. This model, which we name
LRRR, coincides with a one-dimensional generalization of the
Kleinberg model [58].

Using extensive numerical simulation, we have character-
ized the spectral dimension ds, which appears both in the
scaling of the Laplacian spectrum and in the random walk
return rates, and proved that it can be continuously tuned in
the interval ds ∈ [1,∞). Taken together, our model offers a
valuable tool to study dynamical phenomena in presence of
a complex, but now well characterized, spectral landscape,
offering insights into fundamental aspects of universal and
critical behavior arising from network dynamics.

Meanwhile, the network community has recently seen a
surge of interest in the spectral dimension to connect the

topological and geometrical properties of a network [117,118]
with its dynamics. So far, these explorations have mostly
focused on systems interacting beyond traditional pairwise
mechanisms [25]. In particular, the study of the spectral
dimension of certain simplicial complexes [119,120] via a
renormalization group approach has yielded accurate rela-
tions between ds and the topological dimension of the model
[22]. Moreover, the spectral dimension was shown to be
crucial to determine the synchronization properties of the
simplicial implementation of the Kuramoto model recently
suggested in [121], and to affect diffusion properties at long
timescales [23,122]. These works could only consider a finite
number of ds values very close to the topological dimension
of the building blocks of their network and they do not offer
any realization of tuneable ds > 2 values. We are convinced
that the introduction of a model with continuously tuneable
spectral dimension such as the LRRR model will pave the way
to further investigations of the role of topology in network
dynamics.
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FIG. 9. First 10 nonzero eigenvalues ωi with i = 2, 3, . . . , 11
from bottom to top for (a) σ = 0.5 and (b) σ = 1.3 as a function
of the system size N in the circular model.

APPENDIX A: LOW-LYING SPECTRUM

We detail here the structure of the low-lying spectrum as
obtained by exact diagonalization of the graph Laplacian (6).
In Fig. 9 the first 10 nonzero eigenvalues are depicted as a
function of the system size (averaged over 128 realizations)
for sizes up to N = 213 for two different values of σ . As
one can notice the power-law decay is clearly attained for
larger systems for all the depicted eigenvalues but the first
eigenvalues display some oscillations that become smaller for
the higher eigenvalues. Moreover, especially for small σ the
eigenvalues tend to organize into doublets, thus estimation of
ds from a single eigenvalue could be affected by overshoot
or undershoot. In order to minimize the above effects, we
obtained our best estimates from the average of ω10 and ω11

fitted with a power law ∝N−2/ds , for sufficiently big sizes
N � 210. The resulting estimations for the linear and circular
models were mutually compatible, supporting our estimation.
Numerical work was not restricted to linear and circular mod-
els, but we also considered graphs with a thicker backbone
(with next-to-nearest and next-to-next-to-nearest neighbors
always turned on), which we refer as model F, models with
nonbackbone probabilities halved (not shown) (pi j → pi j/2)

FIG. 10. Example of dS fit. P0(t ) is fitted in the region between
the dashed lines. In (a), σ = 1, and finite-size effects are not strong
in this range of t . Estimated value: dS = 1.569 ± 0.004. In (b), on the
contrary, σ = 0.5 and finite-size effects appear early on. Estimated
dS = 3.79 ± 0.03.

and doubled (pi j → 2pi j), which we refer as model D. All of
these models, albeit possessing a different spectrum reflect-
ing the different nonuniversal (high-energy) features, share
the same low-lying spectrum behavior lending support to the
universality of ds for models with the same decay exponent
σ . In order to substantiate the present claim, we show the
finite-size scaling for the third lowest eigenvalue for all the
aforementioned models in Fig. 8, the same result has been also
verified for other higher eigenvalues.

APPENDIX B: COMPUTATIONAL METHOD TO
ESTIMATE dS FROM P0(t )

An illustration of the method used to measure dS , as indi-
cated in the main text, is shown for two different values of σ

in Fig. 10. First, P0(t ) is represented in a log-log scale, and
a power-law function via a maximum likelihood algorithm
[73] that finds optimal values of tmin and tmax. In case of a
pronounced finite-size effect, as in Fig. 10(b), an initial tmax is
consider to avoid fitting of the flat part of P0(t ).
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(a)

(b)

FIG. 11. (a) Dependence of the mean degree κ (left y axis) and
its standard deviation σκ (right y axis) on σ , both for the directed and
undirected cases. (b) Number of triangles in LRRR as a function of
σ , both for the directed and undirected cases.

APPENDIX C: CHARACTERIZATION OF LRRR
NETWORKS

In the infinite-size limit (N → ∞), the mean degree of the
directed LRRR networks, without imposing network symme-
try, is given by

κT
D = 2ζ (σ + 1), (C1)

whereas the standard deviation of the degrees is

σ T
D = {2[ζ (σ + 1) − ζ (2σ + 2)]}1/2. (C2)

In our random walkers analysis, the networks are made sym-
metric by defining aS

i j = max(ai j, a ji ), that is, an undirected
link is placed between nodes i and j when at least one directed
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FIG. 12. Normalized mean path length 	(σ )/	0(σ ) (bottom line,
in blue) and clustering coefficient C(σ )/C0(σ ) (top line, in red) of
the model. Null model: theoretical expectation for ER network with
equal N and NE as the corresponding LRRR network.

edge is present. In this condition the mean degree and its
standard deviation are given by

κT
U = 2ζ (σ + 1) − ζ (2σ + 2), (C3)

σ T
U = {2[2ζ (σ + 1) − 5ζ (2σ + 2)

+ 4ζ (3σ + 3) − ζ (4σ + 4)]}1/2. (C4)

The theoretical curves are shown in of Fig. 11(a) together
with the respective numerical estimates. These differences
between the topological properties of the undirected and
symmetrized directed LRRR networks do not influence the
low-energy spectrum and, thus, do not alter the spectral di-
mension results.

In Fig. 11(b) we show the number of triangles present in
the network (NT ) as a function of σ , from which the clustering
coefficient is calculated [59,64]. As it can be seen, the num-
ber of triangles diverges as σ → 0 and vanishes as σ → ∞,
where the network becomes a 1D circular chain. Moreover, in
the σ → 0 limit, the total number of possible triangles (given
by κ), diverges faster than NT , and therefore the clustering
remains small, as shown in the main text. In Fig. 12 we
show the clustering coefficient and mean path length of LRRR
networks normalized over the corresponding values of the null
model given by random Erdős-Rényi (ER) networks with the
same size (N) and number of edges (NE = Nκ). As can be
seen, LRRR networks always have higher clustering and aver-
age distance than equivalent ER networks. As σ → 0, LRRR
become increasingly random and the difference decreases.
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