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Interplay of spin waves and vortices in the two-dimensional XY model at small vortex-core energy
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The Berezinskii-Kosterlitz-Thouless (BKT) mechanism describes universal vortex unbinding in many two-
dimensional systems, including the paradigmatic XY model. However, most of these systems present a complex
interplay between excitations at different length scales that complicates theoretical calculations of nonuniversal
thermodynamic quantities. These difficulties may be overcome by suitably modifying the initial conditions of
the BKT flow equations to account for noncritical fluctuations at small length scales. In this work, we perform a
systematic study of the validity and limits of this two-step approach by constructing optimised initial conditions
for the BKT flow. We find that the two-step approach can accurately reproduce the results of Monte Carlo
simulations of the traditional XY model. To systematically study the interplay between vortices and spin-wave
excitations, we introduce a modified XY model with increased vortex fugacity. We present large-scale Monte
Carlo simulations of the spin stiffness and vortex density for this modified XY model and show that even at
large vortex fugacity, vortex unbinding is accurately described by the nonperturbative functional renormalization
group.
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I. INTRODUCTION

More than 40 years after its observation in thin 4He
films [1], the Berezinskii-Kosterlitz-Thouless (BKT) transi-
tion [2–5] has registered in recent years an increasing in-
terest in the field of low-dimensional strongly correlated
electron systems. In the last decade, the class of systems in
which the BKT transition has been detected has become re-
markably wider, including new low-dimensional experimental
systems such as quasi-2D layered superconductors [6–10],
exciton-polariton systems [11], cold atoms in 2D harmonic
traps [12,13], and 2D electron gases [14–16] at the inter-
face between insulating oxides in artificial heterostructures.
At the same time, interesting new issues appeared also in
conventional superconducting (SC) films. For instance, the
spatial inhomogeneity of the superconducting order parameter
has been observed to become more pronounced near the
superconducting-insulator transition (SIT) [17,18], raising the
question of its effect on the BKT phase transition [19–21].

Theoretically, the BKT scaling is the key to understand
the universal features of a wide range of natural phenomena
ranging from DNA tangling in biology to pattern formation
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in complex systems [22–24]. The hallmark of such a scaling
is the expected discontinuous jump of the phase stiffness Js

from a finite value Js(TBKT) at the BKT temperature TBKT to
zero right above it. According to the famous Nelson relation
[25], the value Js(TBKT) is a universal function of the critical
temperature itself, i.e.,

Js(TBKT) = 2TBKT

π
. (1)

Despite the apparent simplicity of this relation, the predictive
power of Eq. (1) to infer the temperature dependence of the
phase stiffness and to establish the critical temperature in
real microscopic systems is far from obvious. Indeed, in the
original derivation based on the celebrated renormalization
group (RG) BKT equations [4,25], Eq. (1) only accounts
for the role of vortexlike excitations to drive the transition,
including the possible renormalization effects due to bound
vortex-antivortex pairs which proliferate already below TBKT.
First, to quantify this effect one needs a precise knowledge of
the vortex-core energy μv , which controls the vortex fugacity
g = exp(−μv/kBT ). Indeed, for larger vortex fugacity it is
easier to generate vortex pairs at short length scales; these
suppress the phase rigidity without destroying it globally and
reduce TBKT. A second issue in real systems is the presence of
additional nontopological phase excitations that also deplete
the phase rigidity. How these additional excitations contribute,
cooperate or interfere with vortexlike excitations to determine
the global TBKT is far from understood.

The paradigmatic example for the difficulty to estimate
TBKT from Eq. (1) is provided by the XY model itself, where
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the BKT transition was initially discussed [2–4]. The XY
model also admits longitudinal phase fluctuations (or spin
waves in the spin language), which are effective at low
temperature to deplete the stiffness linearly in temperature
even while vortexlike fluctuations are thermally suppressed.
To deal quantitatively with this effect the approach pursued
so far in the literature relied in a two-step procedure: first one
derives effective low-energy couplings for the stiffness and
fugacity, which then serve as renormalized initial conditions
for the BKT flow equations. Since the work of J. Villain within
the context of 2D classical planar magnets [26], several efforts
have been undertaken to derive the universal BKT scaling
directly from the microscopic variables of each model, but
no consistent picture has emerged despite the existence of
solvable models that display BKT scaling [27]. To account
for the nontopological phase modes of the system, in addition
to the RG approach, different theoretical techniques have been
proposed, such as the self-consistent harmonic approximation
[26,28], classical Monte Carlo simulations [29], Gaussian
fluctuations [30,31], and the functional renormalization group
[32,33].

A second example of the relevance of nonuniversal effects
is the application to thin films of superconductors. In this case,
it has been suggested [34–38] that the two-step procedure
should include the effect of quasiparticle excitations across
the superconducting gap on the stiffness, which represent the
most relevant source of depletion of the superfluid density
in a superconductor. However, even including this effect the
comparison with experiments has shown that the vortex-core
energy μv is significantly smaller than expected within the
XY model. Indeed, within a microscopic BCS picture for su-
perconductors μv is expected not to scale with the superfluid
stiffness, but rather with the Cooper-pair condensation energy
Ec. However, within the XY model, the ratio μv/Js has been
estimated [3] long ago to be a constant μv/Js = π2/2 that
depends only on the lattice structure, as expected for a model
with a single coupling constant. Once more, a quantitative
check of the accuracy of such an estimate for the XY model is
still lacking. More broadly, the case of superconducting films
calls for a deeper understanding of the two-step RG approach
for larger values of the vortex fugacity. In particular, the inter-
play between transverse and longitudinal phase fluctuations
is expected to become more relevant as the lowering of μv

favours thermal vortexlike excitations at short length scales.
What emerges clearly from these examples is that despite

the universality of the Nelson criterion Eq. (1), the critical
temperature TBKT itself is not universal, and it depends on mi-
croscopic details which must be properly included in the RG
flow to correctly reproduce the temperature dependence of the
phase stiffness. In this paper, we will systematically address
this issue within the paradigm of a generalized 2D XY model
with tuneable vortex-core energy. Our aim is to accurately test
the two-step procedure by comparing the numerical results
from Monte Carlo (MC) simulations with the RG two-step
procedure for increasing values of the vortex fugacity. To
this end, we first extract the stiffness and vortex-core energy
from low-temperature MC data and then use them as initial
conditions for the subsequent RG flow. This procedure turns
out to be rather successful for the standard XY model, with
an excellent estimate of TBKT, despite some small discrepancy

in the temperature evolution of the superfluid stiffness near
the transition. For increasing vortex fugacity the accuracy
of the original RG equations decreases, but a good estimate
of TBKT can still be obtained by considering either higher-
order terms in the vortex fugacity [39], via the self-consistent
approach suggested by Timm [40] or via the nonperturbative
functional renormalization group (FRG). We find that FRG
provides an excellent estimate of TBKT, even though it cannot
fully capture the temperature dependence of Js(T ) obtained
from Monte Carlo simulations. This discrepancy can be an
indication of the interplay between longitudinal and transverse
phase fluctuations, which cannot be captured by the two-step
RG approach.

The paper is organized as follows. In Sec. II we introduce
the two-step procedure for the classical XY model, providing
a new estimate of the vortex-core energy μv based on Monte
Carlo numerical results. In Sec. III we introduce the modified
2D XY model studied in this work and we present the MC
results. In Sec. IV we study the modified XY model via a two-
step procedure, where an effective value for both the vortex-
core energy μeff

v and the superfluid stiffness Jeff are inserted
into the BKT flow equations. Finally, we conclude in Sec. V.

II. THE VORTEX-CORE ENERGY OF THE XY MODEL

Ever since the seminal papers by Berezinskii, Kosterlitz,
and Thouless [2–4], the classical 2D XY model has been the
reference model for the study of the BKT phase transition.
The model describes the ferromagnetic nearest-neighbor in-
teraction between planar spins with fixed modulus (| �Si| = 1),
interacting via a ferromagnetic spin-spin coupling constant
J > 0:

HXY = −J
∑

i,ν=x̂,ŷ

�Si · �Si+ν

= −J
∑

i,ν=x̂,ŷ

cos(θi − θi+ν ), (2)

where θi is the angle the ith spin forms with a given direction.
Within the context of SC films, one can map �Si → |�|eiθi so
that Eq. (2) describes only phase fluctuations. By retaining
leading terms in the phase gradient one can also identify J
with the phase stiffness of the SC.

The standard way to treat the XY model analytically, see
Ref. [5] for a review, can be sketched in two main steps:

(1) The mapping to the Villain model [26], and
(2) The study of the BKT renormalization group equa-

tions.
The first step consists essentially in writing Eq. (2) as

the sum of two decoupled contributions: an effective har-
monic Hamiltonian HSW, which accounts for the longi-
tudinal spin-waves excitations, and a vortex Hamiltonian
HV , which accounts for the transverse (topological) spin
excitations.

The spin-wave fluctuations are responsible for the lack
of long-range order at any finite temperature [41]. Their
anharmonicity reduces the value of the superfluid stiffness
Js(T ), which is equal to the bare coupling J at T = 0,
continuously in temperature without inducing yet any phase
transition.
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The topological vortex excitations, however, drive the BKT
phase transition, whose hallmark is the universal jump of the
superfluid stiffness [25]. At the critical point (T = TBKT), the
proliferation of free vortices transforms the system from a
quasi-ordered phase with zero magnetization and finite phase
rigidity (Js �= 0) into a disordered phase in which the system
is no longer rigid (Js = 0).

As widely discussed in the literature, the Villain model
HV is equivalent to the Hamiltonian of a 2D Coulomb gas,
where positive and negative charges (qi = ±1) play the role
of vortices and anti-vortices, respectively. Once restricted to
the case

∑
i qi = 0, it reads

HV = −πJ
∑
i �= j

ln

( | �ri j |
a

)
qiq j + 2μv

∑
i

νv (ri ), (3)

where νv is the vortex-pairs density and a the lattice spacing
of the discrete model. The first term in Eq. (3) describes the
interaction between two charges at distance |�ri j | � a from
each other, while the second term corresponds to the energetic
cost of nucleating vortices at the shortest length scale with
vortex-core energy μv .

The effect of the transverse phase fluctuation is well cap-
tured by the BKT renormalization-group equations [2–4],
rigorously derived for the Coulomb gas model Eq. (3) at
leading order in the vortex fugacity g → 0 [39,42–44]. The
relevant variables are the dimensionless couplings

K (0) = πJ

T
, (4)

g(0) = 2πe−βμv , (5)

expressed in terms of the spin stiffness J and the vortex
fugacity g.

At long distances, the values of the two couplings K and
g are obtained from the numerical solution of the celebrated
BKT flow equations [3,4]:

dK

dl
= −K2g2, (6)

dg

dl
= (2 − K )g, (7)

where l = ln(r/a) is the rescaled length scale. The long-
distance (thermodynamic) value of the superfluid stiffness Js

is thus determined by Js ≡ T K (l → ∞)/π . The above equa-
tions identify two main regimes: a low-temperature regime
K > 2, where the vortex fugacity flows to zero g → 0 while
the superfluid stiffness flows to a constant value K → K∗, and
a high-temperature regime K < 2, where the vortex fugacity
grows g → ∞ and the superfluid stiffness vanishes K → 0.
The BKT critical temperature TBKT is defined as the temper-
ature at which the flow reaches the fixed point K = 2, g = 0,

K (l → ∞, TBKT) = 2 ⇒ πJs(TBKT)

TBKT
= 2, (8)

and is equivalent to the Nelson criterion [25]. The renormal-
ization of the stiffness from the initial value to a smaller
Js = T K∗/π at T < TBKT depends quantitatively on the value
of the vortex-core energy μv: the larger the initial value of the
vortex fugacity g in Eqs. (6) and (7), the stronger the relative

suppression of the stiffness due to bound vortex-antivortex
pairs which nucleate at small length scales.

The flow Eqs. (6) and (7) account only for the effect of
vortex excitations, so that any other excitation that contributes
to renormalize the superfluid stiffness or the vortex-core
energy in temperature must be introduced by hand. This is
the key idea behind the two-step approach, which consists
in incorporating the effect of noncritical fluctuations into the
effective couplings Jeff and μeff

v , which are then used in place
of the bare values J and μv as initial conditions for the BKT
flow [5,32,37,38]. While for the case of 2D superconducting
films the depletion of the superfluid stiffness is mainly due
to quasiparticle excitations, well accounted for by the BCS
expression Jeff = JBCS

s (T ) [37,38], within the XY model the
effective superfluid stiffness Jeff (T ) is reduced with respect to
J by longitudinal (spin-wave like) fluctuations already at one
loop order. However, since the XY model has only a single
energy scale J , it is natural to assume that also μv scales with
Jeff (T ). A natural ansatz for the initial values of the couplings
is then

Jeff (T ) = J − T
4 , (9)

μeff
v (T ) = γ Jeff (T ). (10)

The estimate in Eq. (9) has been obtained by including the
(∇θ )4 contribution in the low energy spin-wave expansion of
the XY Hamiltonian (2), computed with perturbation theory
around its quadratic Gaussian form [45], see Ref. [5] for
a recent review. For the vortex-core energy, Kosterlitz and
Thouless [3] derived an estimate of γ for a square lattice
geometry,

γ KT = π2

2
. (11)

This estimate, however, was obtained within the 2D Coulomb
gas model Eq. (3), and it has not yet been verified to what ex-
tent it corresponds to the actual value of the vortex-nucleation
energy in the full XY model Eq. (2).

Monte Carlo simulations offer an opportunity for this
verification: the superfluid stiffness Js obtained numerically
from the cosine model Eq. (2) can indeed be compared with
the RG estimate implemented via the two-step procedure.
Besides, from the numerical calculation of the vortex-pair
density one can determine the vortex-core energy of the model
and compare it with the Eq. (11).

The superfluid stiffness Js is defined as the second deriva-
tive of the free energy with respect to a phase twist �x in a
given direction,

Jx
s ≡ −∂2F (�x )

∂�2
x

∣∣∣
�x=0

, (12)

and it measures the response of the SC film to a transverse
gauge field A. A constant field A in a given direction, say
A = Ax, is indeed equivalent to applying a total phase twist
�x = AxL across the sample of length L. The superfluid
stiffness

Jx
s = Jx

d − Jx
p (13)
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can be expressed in terms of the diamagnetic (Jd ) and the
paramagnetic (Jp) response functions

Jx
d = 1

L2

[〈
∂2H

∂A2
x

∣∣∣∣
0

〉]
, (14)

Jx
p = β

L2

[〈(
∂H

∂Ax

∣∣∣∣
0

)2
〉

−
〈
∂H

∂Ax

∣∣∣∣
0

〉2
]
, (15)

where 〈. . . 〉 stands for the thermal average. The explicit ex-
pressions of Jd and Jp are reported in Appendix A. Apart from
the superfluid stiffness, we have also measured the vortex-pair
density of the system,

νv = 1

2
ρv = 1

2

〈
1

L2

N∑
i

|v(Pi )|
〉
, (16)

where ρv is the vortex density and v(Pi ) = +1(−1) if the
plaquette Pi is occupied by a (anti-)vortex and 0 otherwise.

Once νv (T ) and Js(T ) are determined from Monte Carlo
simulations, one can extrapolate an effective vortex-core en-
ergy μMC

v (T ) = γ MCJs(T ) and compare it with Eq. (11).
Indeed, assuming that the system at low T is formed by
noninteracting vortex pairs, one can introduce the following
BKT ansatz for the low-temperature pair density

νv (T ) = Ae−2βμeff
v (T ), (17)

where μeff
v (T ) is the temperature dependent vortex-core en-

ergy in Eq. (10), while A is a geometrical factor [40]. We fit
the MC numerical results for νv to the form Eq. (17), see inset
of Fig. 1, and find the parameters

γ MC = 3.56 ± 0.01, (18)

AMC = 1.87 ± 0.06. (19)

The numerical value of γ displayed in Eq. (18) is signifi-
cantly smaller than the long-standing KT estimate Eq. (11).
Apparently, the effect of the spin-wave excitations and their
relation to the presence of vortex pairs, which is not properly
accounted for in the original derivation, is to lower the ener-
getic cost to nucleate a vortex pair.

Then, we compare the superfluid stiffness JMC
s (T ), ob-

tained by Monte Carlo simulations of the full XY model, with
the one obtained by solving the flow Eqs. (6) and (7) with
the initial condition Jeff (T ) and μXY

v (T ) given by Eqs. (9),
(10), (11) and Eqs. (9), (10), (18). The results are reported in
Fig. 1: with the KT ansatz for γ (dashed red line in Fig. 1) the
renormalized JRG

s is larger than JMC
s at higher temperatures

and leads to a larger value of the critical temperature TBKT =
πJs(TBKT)/2. However, the renormalized JRG

s obtained using
the vortex-core energy Eq. (18) (blue line in Fig. 1) gives a
very good agreement both with the MC critical temperature
and with the whole temperature dependence of the superfluid
stiffness. The discrepancy between the two at high tempera-
ture T > TBKT can be easily explained in terms of finite-size
effects in the MC numerical results. However, the deviation
observed at low temperatures (T < TBKT) could be given
to the approximation which truncates high order spin-wave
contributions to the depletion of the superfluid stiffness Eq. (9)
and neglects the interplay between longitudinal and transverse
excitations.

FIG. 1. Superfluid stiffness Js vs temperature T : Monte Carlo
simulations for a system of linear size L = 256 (black circles); KT
estimate Eq. (11) for μv as initial condition for BKT RG equations
(dashed red line); MC estimate Eq. (18) for μv as initial condition for
BKT RG equations (solid blue line). The gray diagonal is the critical
line where the BKT transition is expected to occur. In the inset, the
MC numerical result for the vortex-pair density plotted as − log(νv )
(blue points) and the resulting low-temperature fit Eq. (17) (dashed
gray line).

III. THE MODIFIED XY MODEL

So far, we have reviewed the standard analytical treatment
of the XY model, solving the BKT renormalization-group
equations via a two-step procedure that we have improved
with a new estimate for μeff

v . As already stressed, however,
within the classical XY model there is no way of tuning the
value of μv independently from the coupling J , as one would
need when studying real systems. In particular, the study of
thin SC films [37] has revealed a much smaller value of
the vortex-core energy than expected from the XY model, a
challenge for the study of the BKT transition in the limit of
high vortex fugacity.

For this purpose, we introduce a modified version of the
original XY model in which μv can be tuned independently
from the spin stiffness J . The bare vortex-core energy in
Eq. (10) can be modified by adding an extra potential term
to the Hamiltonian in Eq. (2),

Hμ
XY = −J

∑
i,ν=x̂,ŷ

cos(θi − θi+ν ) − μ
∑

i

(IPi )
2. (20)

Here, IPi corresponds to the spin current circulating around a
single plaquette Pi of area a2,

IPi = sin(θi − θi+x̂ ) + sin(θi+x̂ − θi+x̂+ŷ)

+ sin(θi+x̂+ŷ − θi+ŷ) + sin(θi+ŷ − θi ). (21)

The advantage of choosing an additional potential term of
the form in Eqs. (20), (21) is that it is a local term, it is
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derivable with respect to the phase difference, and it has a
direct physical interpretation in terms of currents.

For μ = 0 one recovers the classical XY Hamiltonian (2)
while for μ > 0 the additional potential term favours the
presence of spin currents in the system. This enhances the
nucleation of vortices and reduces the resulting vortex-core
energy μv . In the following, we will first discuss the Monte
Carlo numerical study of the modified XY model. Then, we
will analyze it theoretically using the RG equations for the
BKT transition, implemented via the two-steps procedure.

IV. MONTE CARLO SIMULATIONS

In Fig. 2, the MC numerical results for the temperature
dependence of Jd , Jp and Js are reported for different values
of μ. For larger values of μ (smaller μv) the BKT critical
temperature decreases, since at lower values of the vortex-core
energy the entropic term in the free energy of a single vortex
Fv = Ev − T Sv dominates already for lower temperature and
brings forward the vortex-antivortex unbinding.

As argued above, the decoupling between transverse and
longitudinal phase fluctuations cannot be rigorously applied to
the XY model as it only holds for its quadratic approximation,
the Villain model [26]. At low temperatures the curves for
the diamagnetic response function Jd collapse onto each other
and thus demonstrate the decoupling between spin-wave and
vortex excitations in the T → 0 limit. At higher temperatures
the curves separate, and for larger μ there is a stronger
depletion of the diamagnetic currents due to the interplay
between spin-wave excitations and vortices, caused by the
anharmonic terms in the XY coupling, see Fig. 2(a). The para-
magnetic response functions in Fig. 2(b) display a very slow
increase in the low-temperature regime as they only receive
contributions from high-order powers in the phase gradient
[45].

The temperature dependence of the superfluid stiffness in
Fig. 2(c) reveals another interesting feature for increasing
values of μ. Indeed, for smaller values of the vortex-core
energy μv it becomes more and more difficult to distinguish
between the BKT universal jump of Js at T = T +

BKT and its
rapid downturn, which starts already at a lower temperature.
The 2T/π critical line for μ = 0.125 appears, in fact, to
be halfway through the jump, rather than at its onset. This
aspect can be very important for a correct interpretation of
experimental data, as the observation of a BKT critical line
halfway across the jump can be considered an indication for a
low vortex-core energy within the system.

At small vortex-core energies, the energy-entropy balance
suggests the presence of a critical value μ = μc, above which
unbound free vortices are energetically favoured even at zero
temperature. As a consequence, for μ > μc the ground state
of the system will change from the vortex-vacuum state with
ρv (T → 0) = 0 to a vortex-antivortex square-lattice crystal
with ρv (T → 0) = 1. A similar effect has been discussed for
the 2D Coulomb gas in Refs. [46–48]. For the model (20)
we find the critical value μc  0.15 and focus henceforth on
the regime μ < μc. A preliminary study of the vortex crystal
phase μ > μc is presented in Appendix B, while a more
complete analysis is deferred to future investigations.

FIG. 2. MC analysis of the modified XY model (20). Panel
(a) reports the diamagnetic current Jd vs temperature T . Panel
(b) shows the paramagnetic currents Jp produced by the topological
excitations. Panel (c) displays the superfluid stiffness Js = Jd − Jp,
and the dashed critical line 2T/π indicates the point where the
universal jump is expected to occur. Finally, panel (d) shows the
vortex density ρv as a function of the temperature. The solid lines
are guides to the eye and terminate at the BKT transition point. All
data are for linear system size L = 256 and in units of J .
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FIG. 3. Monte Carlo numerical results for the vortex-pair density
plotted as − log(νv ) for all the values of μ considered. The resulting
low-temperature fits are shown as dashed gray lines. The best fitting
parameters found are b1 = 6.9, while b2(μ) is shown in the inset.

V. RG STUDY OF THE MODIFIED XY MODEL

Let us proceed with the study of the generalized XY model
Eq. (20) by means of the two-step RG approach. As in Sec. II,
one can treat the modified XY Hamiltonian Eq. (20) in the
spirit of the Villain approximation by separating the spin-wave
from the topological excitations. It is easy to verify that HSW

remains unchanged, while Hv acquires a new term propor-
tional to μ. As a consequence, while the low-temperature
estimate for the superfluid stiffness Jeff Eq. (9) remains valid
for μ �= 0, one needs to identify a new renormalized value for
μeff

v .
We will proceed following the same route as before, i.e.,

by fitting the vortex-pair density νv from MC numerical
simulations of the modified XY model with Eq. (17). In this
case, however, the vortex-core energy will depend on both J
and μ. Moreover, as for the superfluid stiffness Jeff

s Eq. (9)
the presence of low-temperature spin-wave fluctuations will
modify the effective value of μ as well, whose temperature
dependence can be considered in first approximation to be
simply linear. In light of these considerations, we have used
the following ansatz for the vortex-core energy at finite μ:

μeff
v (T, μ) = γ MCJeff (T ) − b1μ + b2(μ)T . (22)

For the numerical fits of νv (T ), we have fixed the values of A
and γ MC in Eqs. (18) and (19) and determined the best fits b1

and b2(μ). As shown in Fig. 3, they yield very good agreement
with the Monte Carlo data for all values of μ.

To assess the validity of the two-step technique for the
generalized XY Hamiltonian Eq. (20), one must carefully
consider the two underlying approximations:

(i) the assumption of decoupling between topological con-
figurations and noncritical excitations;

(ii) the BKT flow equation that is perturbative in the vortex
fugacity.

The hypothesis (i) implies that critical and noncritical
fluctuations occur on well-separated scales, the firsts occur-

FIG. 4. Critical temperature for the BKT transition in the modi-
fied XY model as a function of the additional chemical potential μ.
The MC results with finite-size scaling are reported as black points
with uncertainties, while circles, diamonds and squares represent
different RG schemes described in the text.

ring only on short distances. The noncritical fluctuations are
indeed present at all length scales and they contribute to
renormalize the couplings in play even at long distances.
However, to properly include these contributions, they should
be inserted within the RG flow equations themselves. Some-
thing that, as we discussed, is not feasible so far. However, the
limitation to small vortex fugacity can be easily circumvented
by including additional terms in the perturbative expansion or
by employing a self-consistent RG scheme [43].

A. The critical temperature

Both assumptions (i) and (ii) are satisfied for the Villain
model, and the computation of the critical temperature from
the BKT flow equations with Jeff = J and μeff

v = μv = Jπ2/2
perfectly reproduces high-precision MC results [49]. In the
XY model case with μ = 0 one can efficiently compute the
renormalization of the effective superfluid stiffness due to
spin waves via functional RG, mean-field or low-temperature
expansion, yielding estimates for the BKT critical temperature
[32,50,51] within 5% of the numerically exact MC value
[52–54]. Finally, the computation of the effective superfluid
stiffness for 2D Fermi gases via Landau’s quasiparticle-
excitation formula produces a consistent picture for the depen-
dence of the BKT temperature on the scattering length [30].

This continues to work in the modified XY model Eq. (20):
as the chemical potential μ grows, topological fluctuations
at increasingly smaller scales enhance the interplay between
longitudinal and transverse excitations and seem to undermine
the validity of both assumptions (i) and (ii). Yet, the results
obtained for the BKT temperature as a function of μ are in
fairly good agreement with the MC results; see Fig. 4.

Applying the finite-size scaling procedure described in
Refs. [55,56] to our MC data, we obtain a reliable estimate for
the critical temperature TBKT (black points in Fig. 4), which
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TABLE I. Numerical coefficients for the effective vortex core
energy using Eq. (22), based on the analysis of the MC data described
in Fig. 3.

μ γ MC b1 b2

0.000 3.56(1) — —
0.025 3.56(1) 6.9 0.005(6)
0.050 3.56(1) 6.9 0.036(11)
0.075 3.56(1) 6.9 0.094(15)
0.100 3.56(1) 6.9 0.21(2)
0.125 3.56(1) 6.9 0.45(2)

nicely reproduces the high-precision results [54,56] at μ = 0
(black star). The theoretical estimates for TBKT obtained by
inserting the effective couplings

Jeff (T ) = J − T

4
, (23)

μeff
v (T ) = γ MCJeff (T ) − b1μ + b2(μ)T , (24)

into the initial conditions for the BKT flow Eqs. (6) and (7),
produce a consistent picture for TBKT up to μ  0.15, where
the nature of the ground state changes and vortex fluctuations
become relevant at T = 0. The results from the two-step
approach with the traditional RG equations are shown as red
circles in Fig. 4.

It is worth noting that the RG analysis performed using
the effective couplings Eqs. (23) and (24) estimated using
the coefficients in Table I greatly improves the accuracy of
the two-step approach in the μ = 0 case, with respect to the
traditional KT initial condition μv = π2

2 Jeff . As the coupling
μ increases, the RG results increasingly deviate from the MC
estimates, in agreement with the expectations of larger correc-
tions to the Coulomb gas approximation. At this stage, it is not
clear whether these larger deviations are due to an increase
in the interplay between longitudinal and transverse phase
fluctuations or to higher-order vortex fugacity corrections to
the traditional BKT flow equations.

Higher-order terms in the vortex fugacity can be introduced
into the BKT flow equations using different approaches. As
a first trial, we employed the modified RG equations de-
scribed in Ref. [40] using the effective couplings discussed
in Eqs. (23) and (24). This analysis slightly improves the
accuracy of the predicted critical temperatures especially at
high μ values, as shown with the blue diamonds in Fig. 4. To
further address the issue of higher-order fugacity corrections
to the BKT flow in Eqs. (6) and (7) in the next section
we perform the two-step approach treating the Coulomb gas
problem via the functional RG approach.

B. Functional renormalization-group flow for vortex unbinding

The functional RG approach (FRG) is based on the possi-
bility to write an exact RG equation for the effective action
[57–60], which may then be solved by projecting it onto
a restricted theory (coupling) space with a chosen ansatz
[61–63]. The main difference between the FRG scheme and
the traditional approach by Wilson lies in the introduction of
a momentum-dependent infrared regulator Rk (p) to remove

the divergence of the propagator close to the critical point and
to allow for the derivation of nonperturbative flow equations
as the cutoff scale k is lowered.

In principle, the use of a nonperturbative framework should
allow one to study the RG flow for the XY model beyond the
quadratic (Villain) limit without the need for the two-step ap-
proach described earlier in this section. Nevertheless, efforts
to construct an RG flow capable of describing the emergence
of topological excitations from microscopic physics were
hindered by the difficulty to reproduce the line of fixed points
characteristic of the BKT transition [42,64,65] without the use
of ad-hoc techniques [66,67].

Therefore, we will perform the FRG study of the unbinding
transition within the low-energy sine-Gordon model [68,69].
The flow equations for the vortex fugacity and the stiffness
can be conveniently rewritten as

∂kuk = 1

2π

∫
p

∂kRk

uk

⎛
⎝ Pk√

P2
k − u2

k

− 1

⎞
⎠, (25)

∂kwk = 1

2π

∫
p
∂kRk

(
u2

k p2(∂p2 Pk )2
(
4P2

k + u2
k

)
4
(
P2

k − u2
k

)7/2

−
u2

kPk (∂p2 Pk + p2∂2
p2 Pk )

2
(
P2

k − u2
k

)5/2

)
, (26)

with cutoff k = 1/r = exp(−
)/a, inverse mass wk =
1/(2Kk ), fugacity uk = gk/π , and the inverse propagator
Pk = wk p2 + Rk . The flow Eqs. (25) and (26) have been
derived within the derivative expansion approximation, and
their nonperturbative character is apparent from the presence
of arbitrary powers of the coupling uk . The flow Eqs. (25)
and (26) have been shown to reproduce the salient features
of the BKT transition irrespectively of the choice of the
regulator function [68,69], and to consistently reproduce the
results of Zamolodchikov’s c-theorem [70] in the sine-Gordon
model and its generalizations [71,72]. Moreover, when more
advanced functional truncations are considered, the FRG ap-
proach yields accurate predictions for the excitation spectrum
of the sine-Gordon model [73].

For explicit computations it is necessary to specify the
form of the regulator function. One straightforward choice is
the power-law regulator

Rk (p)/p2 = a

(
k2

p2

)b

, (27)

where a and b are two free parameters, which are chosen
based on an optimisation criterion. However, the common
criteria to optimize the regulator function within the FRG
approach do not apply to the computation of nonuniversal
quantities [74,75]. Furthermore, the universal features of the
BKT transition, such as the jump of the superfluid stiffness,
are reproduced by the flow Eqs. (25) and (26) independently
from the regulator function Rk [68] and they cannot be used
as a criterion for the choice of the regulator.

Therefore, we are going to use a different criterion for the
choice of the optimal values of the parameters a and b. To
obtain the perturbative BKT flow in Eqs. (6) and (7), one has
to assume a short-distance regularization, which traditionally
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FIG. 5. MC results for the superfluid stiffness Js (circles with error bars) are compared with the predictions from the two-step approach
based on the traditional BKT flow Eqs. (6) and (7) (dash-dotted) and the FRG flow Eqs. (28) and (29) (dashed), both with the initial couplings
given in Eq. (23) and (24). From top left to bottom right we show the results for μ = 0, 0.025, 0.05, 0.075, 0.1, 0.125.

relies on considering the Coulomb gas charges as hard disks
of finite radius [3]. As discussed above, the RG flow produced
by such phenomenological regularization has been shown to
produce also quantitatively reliable result for small vortex
fugacities; see Fig. (4). Then, we choose the parameters a and
b in the regulator function Eq. (27) in such a way that the flow
Eqs. (25) and (26) reproduce Eqs. (6) and (7) at leading order
in the vortex fugacity uk .

Such optimisation procedure yields the optimal parameter
b = 1, which leads to the analytical flow equations

(2 + k∂k )ũk = a

2πzkũk

[
a −

√
a2 − ũ2

k

]
, (28)

k∂kzk = − a

24π

ũ2
k[

a2 − ũ2
k

] 3
2

, (29)

where ũk = uk/k2 and a = 1/
√

6π2 to reproduce the BKT
flow at leading order. The estimate of the critical temperatures
obtained by the nonperturbative flow Eqs. (28) and (29) with
initial conditions Eq. (23) and (24) are shown as green squares
in Fig. 4. We find that the FRG approach produces better
results than the traditional BKT flow or the one presented in
Ref. [40] and always agrees with MC within uncertainties,
apart from μ = 0.125 very close to the vortex lattice transi-
tion.

C. The superfluid stiffness

Apart from the prediction for the critical temperature
TBKT, it is interesting to verify the reliability of the two-step
approach in modeling different thermodynamic quantities.
The most relevant quantity for our analysis is the superfluid
stiffness Js(T ), which is obtained in our model by renormal-

izing the low-temperature effective stiffness Jeff in Eq. (9).
The results for the superfluid stiffness obtained both by the
traditional RG flow and the FRG generalizations are shown
in Fig. 5. As expected from our optimisation procedure the
results of the RG flow Eqs. (6) and (7) are very close to the
FRG ones for small vortex fugacities μ = 0, 0.025, 0.05, see
first three panels in Fig. 5. As μ grows, the FRG results for the
superfluid show a much better agreement with the MC data
than the perturbative RG.

One crucial feature which emerges from the comparison
between the FRG and the RG estimates for the superfluid
stiffness with respect to the numerical data is that the func-
tional shape of the MC Js(T ) below TBKT could not be
correctly reproduced by any of these approaches. Although
the FRG results show the correct unbinding point, they still
slightly overestimate the value of Js below TBKT. The stronger
depletion of the MC Js(T ) approaching TBKT from below
appears to persist in the thermodynamic limit, while above the
critical temperature the MC Js(T ) are reduced to reproduce
the discontinuous jump in the thermodynamic limit. In con-
clusion, the pre-critical descent seems to be a direct indication
of the enhanced interplay between spin-wave fluctuations and
vortices at high vortex fugacities.

VI. CONCLUSIONS

The main goal of the paper is to prove the possibility
to extract accurate nonuniversal quantities [Js(T ), TBKT] for
superfluid systems close to the vortex unbinding transition
using the RG description for the Coulomb gas. The procedure
to connect the low-energy Coulomb gas description with
the microscopic model by effective bare initial conditions in
the BKT flow has been widely tested on the square-lattice
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XY model [26,30,32,37,42,49,51], but its accuracy for large
vortex fugacities had still to be investigated. To prove the
feasibility of such a two-step procedure we employed MC
simulations to study a modified version of the XY model,
where the vortex-core energy can be tuned by a parameter
μ in the Hamiltonian Eq. (20). The values of the superfluid
stiffness (Js), the diamagnetic (Jd ) and paramagntic (Jp) cur-
rents, see Fig. 2, and the unbinding temperature TBKT have
been numerically derived and compared with the theoretical
predictions obtained by inserting the initial conditions given
by Eqs. (4) and (5) with the effective couplings in Eqs. (23)
and (24) into the BKT and FRG flows.

A summary of our analysis can be found in Fig. 4, where
the MC value of TBKT is compared with the one obtained by
the two-step procedure using different RG approaches. As
expected, the reliability of the RG flow in Eqs. (6) and (7)
decreases for lower vortex core energies μv . This discrep-
ancy in the prediction from the two-step approach may be
partially repaired by the introduction of the nonperturbative
flow Eqs. (28) and (29), which yield accurate estimates for
TBKT in the whole μ range.

Conversely, the study of the superfluid stiffness reported in
Fig. 5 shows that even the FRG result cannot capture the pro-
nounced depletion in the superfluid stiffness occurring below
TBKT, which is most probably the result of the large interplay
between transverse and longitudinal fluctuations occurring at
large μ. This interplay cannot be captured by the two-step
approach, and hence this feature remains unmatched in the RG
analysis. Surprisingly, these missing features do not preclude
accurate estimates of the critical temperatures via the FRG
approach.

In conclusion, our analysis proves that the BKT flow equa-
tions Eqs. (6) and (7) represent more than just a low-energy
description of the universal behavior of 2D superfluid systems
and may more generally be used to construct a quantitative
theory for the unbinding transition once a suitable value for
the bare superfluid stiffness Jeff has been identified. For this
purpose, we employed the numerical simulations for the vor-

tex density in the system to determine the effective vortex core
energy via the low-temperature ansatz in Eq. (17), which, once
inserted into the RG flow equations, provides a consistent
picture for vortex unbinding.
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APPENDIX A: NUMERICAL ANALYSIS

We have performed MC simulations of the Hamiltonian
in Eq. (20). The linear system sizes considered are L =
8, 16, 32, 64, 128, 256 with periodic boundary conditions. For
each value of μ ∈ {0, 0.025, 0.05, 0.075, 0.1, 0.125} and size,
we have run 104 MC steps and discarded the transient regime
occurring in the first 2 × 103 steps. Each MC step consists
of five canonical Metropolis spin flips of the whole lattice,
followed by ten microcanonical overrelaxation sweeps of all
spins. The thermalization at low temperatures has been sped
up by a temperature annealing procedure. Finally, the observ-
ables measured have been averaged both over the canonical
ensemble (thermal average) and over five independent sam-
ples.

The explicit expressions for the diamagnetic (Jd ) and the
paramagnetic (Jp) current (along x̂) for the model Eq. (20)
studied are

Jx
d = 1

N

〈
J

∑
i

cos(θi − θi+x ) − 2μ
∑

i

[cos(θi − θi+x ) − cos(θi+x+y − θi+y)]2

+2μ
∑

i

IPi [sin(θi − θi+x ) + sin(θi+x+y − θi+y)]

〉
, (A1)

Jx
p = 1

NT

⎛
⎝

〈{
J

∑
i

sin(θi − θi+x ) − 2μ
∑

i

IPi [cos(θi − θi+x ) − cos(θi+x+y − θi+y)]

}2〉

−
〈

J
∑

i

sin(θi − θi+x ) − 2μ
∑

i

IPi [cos(θi − θi+x ) − cos(θi+x+y − θi+y)]

〉2
⎞
⎠, (A2)

with Jx
s = Jx

d − Jx
p .

For each size L of the system the Nelson criterion [25]
Js/TBKT = 2

π
has been applied to calculate the finite-size

unbinding transition temperature TBKT(L). Then, for each

value of μ, the thermodynamic critical temperature TBKT(∞)
is extrapolated by means of the finite-size scaling analysis
based on the behavior of the BKT correlation function close to
criticality: ξ  A exp(c/

√
t ), with t the reduced temperature
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FIG. 6. Plot of βBKT for L = 8, 16, 32, 64, 128, 256 and μ =
0, 0.025, 0.05, 0.075, 0.1, 0.125 from bottom to top. The dashed
line is the best fit Eq. (A3) used to find TBKT(∞). The error bars
of each βBKT(L, μ) have been computed by both considering the
finite spacing dividing the discrete values of the temperatures and
by properly propogating the statistical error of Js.

t = (T − TBKT)/TBKT. The relation used to fit our data and
extrapolate TBKT is [56]

βBKT(L) = βBKT(∞)

(
1 − c2

ln(bL)2

)
, (A3)

with b and c fitting paramenters. The trend of βBKT(L) as a
function of (ln(bL))−2 is shown for each μ and for the best
fitted parameters in Fig. 6.

APPENDIX B: VORTEX LATTICE

In Sec. IV of the main text, it has already been explained
that we expect a transition at μ ≈ 0.15 between two differ-

ent zero-temperature ground states: the vortex vacuum with
ρv (T = 0) = 0 for μ < μc, and a vortex crystal with ρv (T =
0) = 1 for μ > μc. Even if the study of the vortex crystal
phase was not the main scope of the present paper, we would
like to present here some results at μ = 0.15, 0.2, which have
been excluded from the analysis in the main text as they
belong to a different critical scenario.

The numerical analysis of the melting transition at
μ � 0.15 is reported on Fig. 7. The superfluid stiffness
in Fig. 7(a) displays qualitatively the same behavior as
in the vortex-unbinding regime. The presence of a differ-
ent ground state is reflected in the zero-temperature value
of the superfluid stiffness which increases with μ, as ex-
pected since vortex fluctuation are in this case relevant
also at low temperatures. However, the superfluid stiffness
still presents a sharp jump at the melting point of the 2D
crystal. Even if the melting transition in temperature is ex-
pected in two dimensions to belong to the BKT universal-
ity class, the present data do not have enough precision
to investigate whether this jump is consistent with a BKT
transition or rather has the characteristic of a continuous
transition.

Nonetheless, more insight can be gained by inspecting the
behavior of the vortex density for the two cases μ = 0.15, 0.2
shown in Fig. 7(b). The two curves display a rather different
behavior: in the μ = 0.15 case one has ρv = 1 at T  0,
indicating the crystal phase; as T increases the vortex density
drops (almost) discontinuously to ρv < 0.5 and, then, slowly
increases toward a high-temperature value in agreement with
the one observed for the disordered phase at μ = 0.125.
Conversely, the vortex density at μ = 0.2 decreases mono-
tonically (and more smoothly) as a function of the temper-
ature. Partial justification for this behavior can be found by
comparing this behavior with the one of the lattice Coulomb
gas studied in Ref. [47]. There, the vortex crystal at low
temperatures appears for fugacities g � 0.4 and melts either
with a first order transitions for g ≈ 0.4 or with a second order
phase transition. Our results suggest that the case μ = 0.15
belongs to the first scenario, while μ = 0.2 to the second one.

FIG. 7. MC analysis of the modified XY model in the stability region of the vortex crystal. Panel (a) reports the superfluid stiffness for
μ = 0.15, 0.2 (from bottom to top). Panel (b) reports the vortex density for the same values of μ, with larger μ resulting in larger ρv . Panel
(c) shows the critical temperature of the system both for the vortex unbinding transition (red crosses, data from Fig. 4) and for the crystal
melting transition (blue circles).
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The validity of the Coulomb gas description for this model
even in the crystal phase is supported by the behavior of the
critical temperature as a function of μ. In the superfluid region
TBKT decreases with increasing μ until one encounters the crit-
ical threshold μc ≈ 0.15, above which the critical temperature
of the system starts increasing with μ. The resulting curve
is nonmonotonic but perfectly continuous, as in the neutral

Coulomb gas case. This behavior is confirmed by Fig. 7(c),
where the critical temperatures for the superfluid and the crys-
tal melting transition are reported versus μ. Further numerical
analysis would be necessary to clarify possible differences
arising in the modified XY model, due to the coupling of
vortices and spin waves, with respect to the Coulomb gas case
[47].

[1] D. J. Bishop and J. D. Reppy, Phys. Rev. Lett. 40, 1727 (1978).
[2] V. L. Berezinsky, Sov. Phys. JETP 34, 610 (1972).
[3] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
[4] J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).
[5] J. V. José (Ed.), 40 Years of Berezinskii-Kosterlitz-Thouless

Theory (World Scientific, Singapore, 2013).
[6] J. Corson, R. Mallozzi, J. Orenstein, J. N. Eckstein, and I.

Bozovic, Nature (London) 398, 221 (1999).
[7] I. Hetel, T. R. Lemberger, and M. Randeria, Nat. Phys. 3, 700

(2007).
[8] L. S. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Božovic,

and N. P. Armitage, Nat. Phys. 7, 298 (2011).
[9] J. Yong, M. J. Hinton, A. McCray, M. Randeria, M. Naamneh,

A. Kanigel, and T. R. Lemberger, Phys. Rev. B 85, 180507(R)
(2012).

[10] P. G. Baity, X. Shi, Z. Shi, L. Benfatto, and D. Popović, Phys.
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