The Higgs and Naturalness: Where do we stand after the LHC Run I?

Tony Gherghetta University of Minnesota

Johns Hopkins Workshop, Heidelberg, Germany, July 22, 2014

Based on recent work with James Barnard, Ben von Harling, Anibal Medina, Tirtha Sankar Ray, Michael Schmidt

Higgs discovery - Runl

Higgs Bosons — H^0 and H^{\pm} PDG 2013 H^0 Mass $m = 125.9 \pm 0.4$ GeV H^0 signal strengths in different channels [n]Combined Final States = 1.07 ± 0.26 (S = 1.4) WW^* Final State = 0.88 ± 0.33 (S = 1.1) ZZ^* Final State = $0.89 \substack{+0.30 \\ -0.25}$ $\gamma\gamma$ Final State = 1.65 ± 0.33 $b\overline{b}$ Final State = $0.5 \substack{+0.8 \\ -0.7}$ $\tau^+ \tau^-$ Final State = 0.1 ± 0.7

Higgs potential: $V(h) = -\mu_h^2 |H|^2 + \lambda_h |H|^4 \qquad \langle H \rangle = \frac{1}{\sqrt{2}} (v+h)$

$$v^2 = \frac{\mu_h^2}{\lambda_h} \simeq (246 \text{ GeV})^2$$
 $m_h^2 = 2\lambda_h v^2 \simeq (126 \text{ GeV})^2$
 $\mu_h^2 \simeq (89 \text{ GeV})^2$ $\lambda_h \simeq 0.13$

Standard Model and nothing else ...?

"In this field, almost everything is already discovered, and all that remains is to fill a few unimportant holes."

[Max Planck's PhD adviser, Philipp von Jolly, 1878]

A few "holes" in the Standard Model

- Planck/weak scale hierarchy? $(\mu_h \ll M_P)$
- Fermion mass hierarchy? Neutrino masses?
- Dark matter?
- Baryon asymmetry?
- Strong CP problem?
- GUTS? Inflation?
- UV completion of gravity?
- Cosmological constant?

NATURAL explanations of ~126 GeV Higgs

How "natural" are these two possibilities after Run 1?

1. Composite Higgs

• Higgs is pseudo Nambu-Goldstone boson [Georgi, Kaplan `84]

 $G \to H \quad \text{ at scale } \quad f \quad \text{ where } \quad H \supset SO(4) \sim SU(2)_L \times SU(2)_R$

• Partially composite top $\mathcal{L} = \lambda_L t_L \mathcal{O}_R + \lambda_R t_R \mathcal{O}_L$

[Kaplan `91; Agashe, Contino, Pomarol '04]

 $m_t \sim \lambda_L \lambda_R v$ where $\lambda_{L,R} \sim \left(\frac{\Lambda}{\Lambda_{UV}}\right)^{\dim \mathcal{O}_{L,R} - \frac{5}{2}}$ dim $\mathcal{O}_{L,R} \sim \frac{5}{2}$

Higgs potential

[See also Panico, Redi, Tesi, Wulzer 1210.7114]

But, there are also gluon partners

where
$$\alpha_G \simeq \frac{g_3^2}{4\pi} \ln\left(\frac{\Lambda_{UV}}{\Lambda_{IR}}\right) \approx 3$$

Contribution to Higgs mass:

$$m_h^2 \approx \frac{8N_c v^2}{f^4} \int \frac{\mathrm{d}^4 p_E}{(2\pi)^4} \left[\frac{1}{p_E^2} \left| M(p_E^2) \right|^2 + \frac{1}{4} \Pi_L^h(p_E^2)^2 + \Pi_R^h(p_E^2)^2 \right] \qquad M, \Pi_{L,R}^h = \text{2-point functions}$$

Gluon partner correction to Higgs mass is negative

UV description of Composite Higgs models

I. Where does global symmetry and spontaneous breaking come from?

2. How do you get a partially composite top?

Possible approach

- AdS/CFT -- D-brane engineering
- Supersymmetric (e.g. Seiberg duality)

[Caracciolo, Parolini, Serone 1211.7290]

Look for description without elementary scalars...

UV description of SO(6)/SO(5) model [Barnard, TG, Sankar Ray 1311.6562] $SO(6)/SO(5) \sim SU(4)/Sp(4) = 2$ of $SU(2)_L + 1$ singlet Higgs doublet [See also Ferretti, Karateev 1312.5330] [Ferretti 1404.7137] Introduce new strong gauge group $Sp(2N_c)$ with 4 Weyl fermion flavors ψ^a $(a = 1, ..., 4) \implies SU(4)$ global symmetry SU(4) gauged NJL model $\mathcal{L}_{int} = \frac{\kappa_A}{2N_a} (\psi^a \psi^b) (\bar{\psi}_a \bar{\psi}_b) + \frac{\kappa_B}{8N_a} \left[\epsilon_{abcd} (\psi^a \psi^b) (\psi^c \psi^d) + h.c. \right]$ For $\xi = \frac{1}{4\pi^2} (\kappa_A + \kappa_B) \Lambda^2 > 1$ $SU(4) \to Sp(4)$ with dim $\psi \psi \gtrsim 1$ Large anomalous dimension dimension **Top partners** $(\psi^a \chi \psi^b)$ or $(\psi^a \tilde{\chi} \psi^b)$ $\operatorname{Sp}(2N_c)$ SU(4) $SU(3)_c \times U(1)$ ψ 4 $\mathbf{1}_0$ $\mathcal{L} = \lambda_L t_L \mathcal{O}_R + \lambda_R t_R \mathcal{O}_L$ \square 1 χ $3_{+2/3}$ $\dim \mathcal{O}_{L,R} = \dim \psi \chi \psi \approx \dim \psi \psi + \frac{3}{2} \gtrsim \frac{5}{2}$ П $\tilde{\chi}$ $\bar{3}_{-2/3}$ 1 Allows for order-one top Yukawa coupling Top partners are naturally lighter than uncolored partners! $\xi \gg \sqrt{\alpha} \quad \Longrightarrow$

Sp(2Nc) gauge coupling

[Kats, Meade, Reece, Shih `11; Brust, Katz, Lawrence, Sundrum `11; Essig, Izaguirre, Kaplan, Wacker `11; Papucci, Ruderman, Weiler `11]

Natural SUSY LHC limits:

Direct stop production

A consistent *natural* SUSY scenario based on Run1:

(i) weakly-coupled Higgs (~126 GeV)

(ii) $m(\tilde{q}_{1,2}) \gg m(\tilde{g}), m(\tilde{q}_3)$ SUSY breaking is flavour dependent!

However, *natural* SUSY requires a *new* contribution to Higgs quartic coupling:

$$\lambda_h \to \lambda_h^{(min)} + \delta \lambda_h$$

difficult to naturally accommodate $m_h \sim 126 \,\mathrm{GeV}$

Possibilities:

 $\Rightarrow \quad \delta\lambda_h \simeq \frac{4\lambda^2}{\tan^2\beta}$ (i) NMSSM $W = \lambda S H_u H_d$

(ii) DMSSM

Extra gauge group

 $\delta\lambda_h \simeq g^2 (1 + \Delta)$ $\Delta \sim \mathcal{O}(1)$

(iii) Strong dynamics $\Delta \mathcal{L} = \xi H \mathcal{O}$ [TG, Pomarol 1107.4697]

How natural is "natural SUSY"?

To minimize tuning:

(i) Low messenger scale $\Lambda_{mess} = 20 \text{ TeV}$ $\log \frac{\Lambda_{mess}}{m_{\tilde{t}}} \sim 3$

(ii) Add new contribution to Higgs quartic coupling

No need for heavy stop, A-term

(scale-invariant) NMSSM

$$W_{\text{NMSSM}} = \lambda SH_u H_d + \frac{\kappa}{3}S^3 \qquad S = \text{ singlet}$$

$$V = (m_{H_d}^2 + \lambda^2 S^2)|H_d|^2 + (m_{H_u}^2 + \lambda^2 S^2)|H_u|^2 + \lambda^2|H_d H_u|^2 + m_S^2|S|^2 + \kappa^2|S|^4 + [(a_\lambda S + \lambda\kappa S^2)H_u H_d + \frac{a_\kappa}{3}S^3 + h.c.] + V_D$$

Higgs mass: $m_h^2 = m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta$

Naturalness constraints

[Agashe, Cui, Franceschini 1209.2115] [TG, von Harling, Medina, Schmidt 1212.5243]

(i) Electroweak VEV tuning

$$\lambda^2 v^2 = 2 \frac{(a_\lambda v_S + \lambda \kappa v_S^2)}{\sin 2\beta} - \widehat{m}_{H_u}^2 - \widehat{m}_{H_d}^2 - 2\lambda^2 v_S^2$$

where $\widehat{m}_{H_{u,d}}^2 \equiv m_{H_{u,d}}^2 + \frac{d}{dv_{u,d}^2} V_1$
Large λ helps

(ii) Higgs mass tuning $m_h^2 = m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \delta m_{h,mix}^2$

$$\delta m_{h,\text{mix}}^2 \simeq -\lambda^2 v^2 \, \frac{\left(\frac{\lambda}{\kappa} - \sin 2\beta \left[1 + \frac{a_\lambda}{2\lambda\kappa v_S}\right]\right)^2}{1 + \frac{a_\kappa}{4\kappa^2 v_S} + \frac{a_\lambda \sin 2\beta v^2}{8\kappa^2 v_S^3}}$$

$$\Box$$
 Large λ hurts

Result: Optimal value $\lambda \sim 1$

 \Rightarrow natural SUSY (~ 20%) has become < 10% tuning

Caveat: Bottom-up approach is naive sampling of parameter space

Tuning is probably worse!

Important question:

What about explicit supersymmetry breaking models?

- Low messenger scale
- Split family spectrum
- Dark matter
- Gauge coupling unification

A 5D model: "Accidental SUSY"

SUSY broken at UV scale!

[TG, Pomarol `03; Sundrum `09] [TG, von Harling, Setzer arXiv:1104.3171]

Fermion mass spectrum determines sfermion spectrum!

Particle spectrum:

Other possibilities: Dirac gauginos, RPV, Susy Twin Higgs,....

Natural SUSY model building worth exploring!

What about Higgs couplings?

[TG, von Harling, Medina, Schmidt 1401.8291]

[see also Farina, Perelstein, Shakya 1310.0459]

Define

 $r_u \equiv \frac{\text{Higgs coupling to up-type fermions}}{\text{SM Higgs coupling to up-type fermions}}$ similarly r_d, r_V

where for NMSSM

$$\begin{split} r_u &\simeq 1 - \frac{m_{hH}^4}{2m_H^4} - \frac{m_{hs}^4}{2m_s^4} + \cot\beta \left(\frac{m_{hH}^2}{m_H^2} - \frac{m_{hs}^2 m_{Hs}^2}{m_H^2 m_s^2} + \frac{m_h^2 m_{hH}^2}{m_H^4}\right) \\ r_d &\simeq 1 - \frac{m_{hH}^4}{2m_H^4} - \frac{m_{hs}^4}{2m_s^4} - \tan\beta \left(\frac{m_{hH}^2}{m_H^2} - \frac{m_{hs}^2 m_{Hs}^2}{m_H^2 m_s^2} + \frac{m_h^2 m_{hH}^2}{m_H^4}\right) \\ r_V &\simeq 1 - \frac{m_{hH}^4}{2m_H^4} - \frac{m_{hs}^4}{2m_s^4} \,. \end{split}$$

with CP even mass-squared matrix

SM-like couplings

 $m_{hs}, m_{hH} \ll m_h \ll m_H, m_s$

new source of tuning

$\mathsf{NMSSM} \quad W \supset \lambda SH_u H_d + \kappa S^3$ $V = (m_{H_u}^2 + \lambda^2 |S|^2) |H_u^0|^2 + (m_{H_d}^2 + \lambda^2 |S|^2) |H_d^0|^2 + \lambda^2 |H_u^0 H_d^0|^2 + m_S^2 |S|^2 + \kappa^2 |S|^4$ + $\left[\frac{a_{\kappa}}{2}S^3 - (a_{\lambda}S + \lambda\kappa S^2)H_u^0H_d^0 + \text{h.c.}\right] + \tilde{g}^2(|H_u^0|^2 - |H_d^0|^2)^2$ with $m_h^2 = 2 \, \tilde{g}^2 v^2 \cos^2 2\beta + \frac{1}{2} \lambda^2 v^2 \sin^2 2\beta$ $m_H^2 = \csc 2\beta \left(\sqrt{2}v_s a_\lambda + \kappa \lambda v_s^2 - \frac{v^2}{2} \sin^3 2\beta \left(\lambda^2 - 4\tilde{g}^2\right)\right)$ $m_s^2 = \frac{a_\kappa v_s}{\sqrt{2}} + 2\kappa^2 v_s^2 + \frac{a_\lambda v^2 \sin 2\beta}{\sqrt{8} v}$ $m_{hs}^2 = v \left(\lambda^2 v_s - \sin\beta \cos\beta (\sqrt{2}a_\lambda + 2\kappa\lambda v_s) \right)$ $m_{hH}^2 = \frac{v^2}{4} \sin 4\beta \left(4\tilde{g}^2 - \lambda^2\right)$ $m_{Hs}^2 = \frac{v}{2} \cos 2\beta \left(\sqrt{2}a_\lambda + 2\kappa\lambda v_s\right).$ Tuning: $\Sigma \gtrsim \frac{1}{4} (4\tilde{g}^2 - \lambda^2) f(\lambda, \kappa, \tan\beta, \tilde{g}) \cdot \begin{cases} \frac{\cos\beta \sin 4\beta}{|r_u - 1|} \\ \frac{\tan\beta \sin 4\beta}{|\sin\beta|} \end{cases}$ **Fine-tuning** grows as $\Sigma \gtrsim \frac{1}{4} (4\tilde{g}^2 - \lambda^2) f(\lambda, \kappa, \tan\beta, \tilde{g}) \frac{\sin 4\beta}{\sqrt{2(1 - r_V)}}$ $r_{u,d,V} \to 1$

Note: EWPT $\implies \tan \beta \lesssim 4$ So tuning cannot be offset with large $\tan \beta$

Conclusion

- Naturalness not yet ruled out
 - --- Composite Higgs: tuning $\lesssim 10\%$

--- Natural SUSY: tuning $~\lesssim 5\%$

- SO(6)/SO(5) composite Higgs model has a simple UV description
- Natural SUSY models require some elaborate structure
- A resonance or superpartner could still show up at Run II! If not, SM-like Higgs couplings will further test naturalness at ILC