Search for $\mu \rightarrow$ eee at the High Intensity and Technology Frontier: The Mu3e Experiment

Johns-Hopkins Workshop Heidelberg, July 21-23, 2014

André Schöning

Physikalisches Institut, Universität Heidelberg

History of LFV Decay experiments

Andre Schöning, Heidelberg (PI)

Discovery of Neutrino Oscillations

(c) Kamioke Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo

History of LFV Decay experiments

Andre Schöning, Heidelberg (PI)

FCNC + Fermion Mass Pattern

$$\frac{\mu^{\nu_{\mu}}}{W^{e}} \frac{\psi^{e}}{e} e$$

FCNC in SM quark sector ~ 10⁻¹⁰
FCNC in SM lepton sector < 10⁻⁴⁰

$$BR(l_{j} \rightarrow l_{k} \gamma) \propto \left| \sum_{i} V_{ij} V_{jk}^{*} \frac{m_{\nu_{i}}^{2}}{M_{W}^{2}} \right|^{2}$$
$$\sim \left| \frac{\Delta m_{\nu_{jk}}^{2}}{M_{W}^{2}} \right|^{2}$$

→ Charged LFV is THE signature of new physics!

History of LFV Decay experiments

Andre Schöning, Heidelberg (PI)

LFV Muon Decays: Experimental Situation

LFV Muon Decays in the SM

Andre Schöning, Heidelberg (PI)

LFV Muon Decays from SUSY Loops

Andre Schöning, Heidelberg (PI)

LFV Muon Decays from SUSY Loops

Most BSM models (e.g. SUSY) induce naturally LFV

LFV Tree Diagrams

Lepton Flavor Violating Decay: $\mu^+ \rightarrow e^+e^+e^-$

loop diagrams

e Exotic Physics e Z' μ e

tree diagram

- Supersymmetry
- Little Higgs Models
- Seesaw Models
- GUT models (Leptoquarks)
- many other models

- Higgs Triplet Model
- New Heavy Vector bosons (Z')
- Extra Dimensions (KK towers)

Example I: Higgs Triplet Models

M.Kakizaki et al., Phys.Lett. **B566** 210, 2003

Motivated by Left-Right Symmetric Models

Example I: Higgs Triplet Models (cont'd)

M.Kakizaki et al., Phys.Lett. **B566** 210, 2003

Motivated by Left-Right Symmetric Models

A= trilinear coupling (25 eV)

Example II: LFV Higgs Couplings

LFV decays of SM Higgs:

$$BR(h \to \ell^{\alpha} \ell^{\beta}) = \frac{\Gamma(h \to \ell^{\alpha} \ell^{\beta})}{\Gamma(h \to \ell^{\alpha} \ell^{\beta}) + \Gamma_{SM}}$$

LFV muon decay:

 $\sim \sqrt{|Y_{\mu e}|^2 + |Y_{e \mu}|^2}$

LHC and muon decay searches are largely complementary!

R. Harnik, J. Kopp J, Zupan [arXiv:1206.6497]

Andre Schöning, Heidelberg (PI)

Example III: Low Scale Seesaw Model

"Inverted Seesaw Model"

$\mu^+ \rightarrow e^+e^+e^-$ Penguin Loop and Box Diagrams

Andre Schöning, Heidelberg (PI)

Model Independent Comparison

Model Independent Comparison

Mu3e Experiment

new collaborators KIT (Karlsruhe) + Uni Mainz

Search for $\mu^+ \rightarrow e^+e^+e^-$ at PSI

project approved in Jan 2013

 $\begin{array}{l} \underline{\text{Aiming for a sensitivity of}}\\ BR(\mu \rightarrow e\,e\,e\,) < 10^{\text{-15}} \quad (\text{phase I})\\ BR(\mu \rightarrow e\,e\,e\,) < 10^{\text{-16}} \quad (\text{phase II}) \end{array}$

before end of this decade

Andre Schöning, Heidelberg (PI)

PSI Facility for Mu3e

Phase I (2015+): ~10⁸ muons/s

Andre Schöning, Heidelberg (PI)

πe5 Beamline (Phase I)

MEG and Mu3e could co-exist if MEG is to be upgraded

• muon rates of 1.4 • 10⁸/s achieved in past

• rate of 10⁸/s muons needed to reach B($\mu^+ \rightarrow e^+e^+e^-$) ~ 2 · 10 ⁻¹⁵ (90%CL)

PSI Facility for Mu3e

Phase I (2015+): ~10⁸ muons/s

Andre Schöning, Heidelberg (PI)

High Intensitiy Muon Beamline (Phase II)

- Muon rates in excess of 10⁹ per second in beam phase acceptance possible
- 2 · 10⁹ muons/s needed to reach ultimate goal of B(μ⁺ →e⁺e⁺e⁻) < 10⁻¹⁶
- Not before 2019

Backgrounds

Irreducible BG: radiative decay with internal conversion

$$\mathsf{B}(\mu^+ \rightarrow e^+ e^+ e^- vv) = 3.4 \cdot 10^{-5}$$

$$\sum_{i} E_{i} = m_{\mu}$$
$$\sum_{i} \vec{p}_{i} = 0$$

Backgrounds

Irreducible BG: radiative decay with internal conversion

Andre Schöning, Heidelberg (PI)

Accidental Backgrounds

- Overlays of two ordinary µ⁺ decays with a (fake) electron (e⁻)
- Electrons from: Bhabha scattering, photon conversion, mis-reconstruction

Kinematic Resolution + Multiple Scattering

<u>Muon decay:</u>

- → electrons in low momentum range p < 53 MeV/c</p>
- Multiple scattering is dominant!

 Need thin, fast and high resolution tracking detectors operated at high rate of ~ 10⁹ particles/s

$$\Theta_{MS} \sim \frac{1}{P} \sqrt{X/X_0}$$

Silicon Pixel Detector

Technology Choice

High Voltage Monolithic Active Pixel Sensors (HV-MAPS)

- high precision \rightarrow pixels 80 x 80 μ m²
- can be "thinned" down to \sim **35 µm** (\sim 0.0005 X₀)
- Iow production costs (standard HV-CMOS process, 60-80 V)
- active sensors \rightarrow hit finding + digitisation + readout
- triggerless and fast readout (LVDS link integrated)
- Iow power: ~150 mW/cm²

Mechanical Prototypes for Pixel Tracker

<u>Ultra-thin detector mock-up:</u>

- sandwich of 25 µm Kapton[®]
- 50/100 µm glass (instead of Si)

50 mu silicon wafer

• Kapton Frame •

$X \le 0.1\% X_0$ per layer possible

Johns Hopkins Workshop, July 21, 2014

Test Beam Results for HV-MAPS

sensor efficiency > 99.5%

Mu3e Experimental Proposal

Momentum Resolution in MS Regime

Standard spectrometer:

$$\frac{\sigma_p}{P} \sim \frac{\Theta_{MS}}{\Omega}$$

(linearised)

precision requires large lever arm large bending angle Ω

Momentum Resolution in MS Regime

• "Half turn" spectrometer:

$$\frac{\sigma_p}{P} \sim O(\Theta_{MS}^2)$$

- best precision for half turn tracks
- have to measure recurlers

Pileup

Pixel Detector: Readout Frames @ 20 MHz

100 muon decays @ rate 2 · 10⁹ muon stops/s

50 ns snapshot

Pixel: Readout Frames 50 ns

100 muon decays @ rate 2 · 10⁹ muon stops/s

Additional Time of Flight (ToF) detectors required < 1ns

Mu3e Time of Flight System

not to scale

Andre Schöning, Heidelberg (PI)

Scintillating Fiber Tracker

- 2-3 layers of scintillating fibers $\emptyset = 250 \ \mu m$
- read-out by silicon photomultiplies (SiPMs) and custom ASICs
- time resolution <1 ns</p>

Invariant Mass Resolution of Signal

Sensitivity Study

Sensitivity Projection

Andre Schöning, Heidelberg (PI)

Conclusions

- Charged LFV well motivated and "almost unavoidable" in BSM models
- New era of high rate muon decay experiments searching for charged LFV
- Several projects including Mu3e aiming for sensitivities of 10⁻¹⁶ or even beyond!
- New technologies (HV-MAPS, Si-Photomultiplier) are crucial for high rate precision experiments
- Mu3e Experiment eventually aiming for $B(\mu^+ \rightarrow e^+e^+e^-) < 10^{-16}$ expected to deliver first results in a few years time