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Stages of a Heavy lon Collision
Collision of two Lorentz-contracted nuclei: .o ~

Nuclear collisions and the QGP expansion
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Landau already considered hydrodynamics
for high-energy physics (1953)




Hydrodynamic Stage

|

explains dynamics:
pressure gradients
= expansion

assumes local equilibration
= few variables

amenable to numerics
access to EoS

easy to account for
phase transitions

fluid-like behaviour (one fluid)

in contrast to thermal
equilibrium
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mt spectra

» mr scaling for indepent
particles (thermal source):
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mt spectra

» mr scaling for indepent
particles (thermal source):
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» in AuAu: scaling violated —
collective motion
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Relativistic Hydrodynamics

» energy momentum tensor: T

» energy momentum conservation:
w
9, TH =0



Relativistic Hydrodynamics

» energy momentum tensor: T+

» energy momentum conservation:
w
9, TH =0

» in ideal hydrodynamics only dependent on ¢, P.

» in local restframe:

T =

» in any frame:
T = (e + P)utu” — Pg"”



Analogy to non-relativistic case
8T =8, ((e + P)utu” — Pg"’) =0

» projection parallel to u*:

u,0, T = \Q—/ e+(e+p)ou=0

=UHOy,
» projection perpendicular to u* (A*” = gh¥ — utu”):

A3 TH = (c+p) DU — ¥ p=0
::Aaﬂag

» non-relativistic limit:

D ~ &+V-V+O0(vf)
vl o~ 9+ 0O(V])



|deal Relativistic Hydrodynamics

» No dissipative processes:

st =0

» Additional continuity equations for conserved charges:

8,N* =0

» Equation of State needed, e.g. for ultrarelativistic gas:

€

P=c
3

» Prediction of momentum anisotropy from initial spatial
anisotropy
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Flow - Introduction

» azimuthal anisotropy of non-central events
» sensitive to early stages (high pressure gradients)
» reaction and participant plane
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Flow - Introduction

» azimuthal anisotropy of non-central events
» sensitive to early stages (high pressure gradients)
» reaction and participant plane

» in momentum space:

EN_ 1N
d3p 27 prdprdy

radial flow
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Flow - Introduction

» azimuthal anisotropy of non-central events
» sensitive to early stages (high pressure gradients)
» reaction and participant plane

» in momentum space:
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radial flow, directed flow vy, elliptic flow v»



Flow - Introduction

» azimuthal anisotropy of non-central events
» sensitive to early stages (high pressure gradients)
» reaction and participant plane

» in momentum space:

BN 1 2N (

T = 2o dy 14+ 2v,cos(n(¢ — WRP)))

n=1
radial flow, directed flow vy, elliptic flow v»
> Va(pr,n) for given /syy



Flow - Measurement
» Reconstruction from particle trajectories
» event-plane method:

QX—ZW, (n¢;)

reaction-plane:
1 Qn

Vv, = — arctan —~

"= n Qn x

Vo™ = (cos[n(¢; — Vn)])
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Flow - Measurement
» Reconstruction from particle trajectories
» event-plane method:

QX—ZW, (n¢;)

reaction-plane:
1 Qn

Vv, = — arctan —~

"= n Qn x

Vo™ = (cos [n(¢i — Vn)])

» correlation method:

deairs ( 0 5
< (1+) 2V cos(nA¢>)>
dA¢ o

fitted to data
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Mass splitting in v»
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» heavy particles shifted to higher pr

» sensitive to equation of state
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pr- and /syny-dependence of v,

» Change from out-of-plane (squeezing) to in-of-plane
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pr- and /syny-dependence of v,

» Change from out-of-plane (squeezing) to in-of-plane
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» decreasing slope with increasing pr

» hint for viscosity: £ >0
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Relativistic Hydrodynamics - Viscous

0, TH = 8, (T, + ™) =0

idea
De + (e + p) 0, U — v, 0,11 = 0
(e+p) Du* —Vep + AJO,M" = 0

> = a4+ AFT]
- =~
shear bulk

» require: d,s" >0
given for:

T =n VT, M=, Vau®
» in non-relativistic limit — Navier-Stokes equation:
. . . 2 . .
Nk =y <8kv’ + vk — 36k’8,v’> — ¢ %oV
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Acausality problem

» Consider small perturbation in homogeneous system at
rest:

€ = eo + de(t, x) and u* = (1,0) + du”(t, x)
for y-direction leads to:

y _ "0 25y (52
orou 60+,008X(5u O(69)

ansatz: su¥ = e wtkf |

=0 g2
€0 + Po
Oow Mo Kk—o0
VT(k) 6/( 260—|-p0k — o0

» perturbations travel faster than ¢
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Acausality (cont.)
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» higher orders in viscosity
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Higher orders in viscosity
» classification as gradient expansion

» ideal hydro, zeroth order (complete)

™ =0
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Higher orders in viscosity

» classification as gradient expansion
» ideal hydro, zeroth order (complete)
T =0
» Navier-Stokes equation, first order (complete)

71-/“/ = v<,uu1/>
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Higher orders in viscosity

» classification as gradient expansion
» ideal hydro, zeroth order (complete)
T =0
» Navier-Stokes equation, first order (complete)
T = \Va s

» second order:
complete ¥ constructable from symmetry considerations
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Numerical implementation

» calculations on discretized space-time

» ideal hydro: turbulences
discretization of space-time (and derivations) adds
numerical viscosity

» viscous hydrodynamics (in first order) acausal =
numerically problematic

» higher order viscous hydrodynamics well-behaved
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Viscous v»

» Significant reduction of v»
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» Indication for small viscosity close to theoretical boundary

n_ 1
Ofs_47r
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Caveats

» Determination of initial conditions:
Monte-Carlo Glauber calculations

» Freeze-out
at some temperature trying to match 7+

» How to disentangle different stages?
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Conclusions

» Hydrodynamic description of Heavy lon Collisions
promising

» Viscosity seems to be needed:
» How large is ?
» bulk viscosity?

» Constraints from theory (next talks)

» Caveats for quantitative interpretations
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Landau vs. Eckart restframe

» with conserved charges restframe not uniquely defined any
more

» Landau:
Consider energy flos

u, T" = eu”

» Eckart:
Consider conserved charge:

uud* = J°
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T in second order

not to be discussed here:
4
T = pVHUYT — 1, [A@;A;M@Awaﬁ + 37r’“’(Vaua)]

5 | + 2u ROy

A1 <p_v>A A2 <pAr>A A3 <pAr>A
—277]2 AM —27777'(')\“9 —?Q)\MQ

with:
Qv = Vil

by Baier et al., 2007
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