Turbulence and Bose Condensation: From the Early Universe to Cold Atoms

WMAP Science Team

J. Berges

ALICE/CERN

Universität Heidelberg

JILA/NIST

RETUNE 2012, Heidelberg

Content

- I. Nonthermal fixed points
- II. Turbulence, Bose condensation
- III. From early universe reheating to ultracold atoms

Nonequilibrium initial value problems

Thermalization process in quantum many-body systems?

Schematically:

Characteristic nonequilibrium time scales? Relaxation? Instabilities?

• Diverging time scales far from equilibrium? Nonthermal fixed points?

Universality far from equilibrium

Very different microscopic dynamics can lead to same *macroscopic scaling phenomena*

Digression: weak wave turbulence

Boltzmann equation for *relativistic* $2\leftrightarrow 2$ scattering, $n_1 \equiv n(t,p_1)$:

$$\frac{\mathrm{d}n_1}{\mathrm{d}t} = \int \frac{\mathrm{d}^3 p_2}{(2\pi)^3 2E_2} \int \frac{\mathrm{d}^3 p_3}{(2\pi)^3 2E_3} \int \frac{\mathrm{d}^3 p_4}{(2\pi)^3 2E_4}$$

×
$$\delta^{3}(p_{1} + p_{2} - p_{3} - p_{4})\delta(E_{1} + E_{2} - E_{3} - E_{4})(2\pi)^{4}|M|^{2}$$

momentum conservation energy conservation scattering
× $(n_{3}n_{4}(1 + n_{1})(1 + n_{2}) - n_{1}n_{2}(1 + n_{3})(1 + n_{4}))$
"gain" term "loss" term

Different stationary solutions, $dn_1/dt=0$, in the (classical) regime $n(p) \gg 1$:

- 1. $n(p) = 1/(e^{\beta \omega(p)} 1)$ thermal equilibrium
- 2. $n(p) \sim 1/p^{4/3}$ turbulent particle cascadeKolmogorov3. $n(p) \sim 1/p^{5/3}$ energy cascadespectrum

...associated to stationary transport of conserved quantities

Range of validity of Kolmogorov-Zakharov

E.g. self-interacting scalars with quartic coupling: $|M|^2 \sim \lambda^2 \ll 1$

http://upload.wikimedia.org/wikipedia/commons/4/41/Molecular-collisions.jpg

Weak wave turbulence solutions are limited to the "window"

 $1 \ll n(p) \ll 1/\lambda$, since for

 $n(p) \sim 1/\lambda$ the n \leftrightarrow m scatterings for n,m=1,..., ∞ are as important as 2 \leftrightarrow 2!

Beyond weak wave turbulence: here relativistic, d=3

Bose-Einstein condensation from inverse particle cascade:

 $\sim (2\pi)^d \delta^{(d)}(\vec{p}) \phi_0^2(t)$

Berges, Sexty, PRL 108 (2012) 161601

Berges, Hoffmeister NPB813 (2009) 383; Nowak et al. PRA85 (2012) 043627; Nowak, Gasenzer arXiv:1206.3181

Heating the Universe after inflation: a quantum example

Schematic evolution:

- Energy density of matter ($\sim a^{-3}$) and radiation ($\sim a^{-4}$) decreases
- Enormous heating after inflation to get 'hot-big-bang' cosmology!

Preheating by parametric resonance

Chaotic inflation

Kofman, Linde, Starobinsky, PRL 73 (1994) 3195

$$\begin{split} V(\phi,\chi) &= \frac{1}{2}m^2\phi^2 + \frac{1}{2}\mu^2\chi^2 + \frac{\lambda}{4}\phi^4 + \frac{g}{2}\phi^2\chi^2 \\ \phi \gg m/\sqrt{\lambda} \quad , \quad \phi_0 \sim M_{\rm P} \quad , \quad \lambda \gtrsim 10^{-12} \quad , \quad g^2 \lesssim \lambda \end{split}$$

massless preheating: $m = \mu = 0$, conformally equiv. to Minkowski space

$$\frac{d^2\chi_k}{dt^2} + (k^2 + g\phi^2(t))\chi_k = 0$$

Classical oscillator analogue:

Direct energy cascade: Micha, Tkachev, PRL 90 (2003) 121301 → Talk by I. Tkachev!

Bose condensation from infrared particle cascade

$$F(t,t';\vec{x}-\vec{y}) = \left\langle \left\{ \hat{\phi}(t,\vec{x}), \hat{\phi}(t',\vec{y}) \right\} \right\rangle \qquad \text{time-det}$$

$$F(t,t;p) = \frac{1}{\omega_p(t)} \left(n_p(t) + \frac{1}{2} \right) + (2\pi)^d \delta^{(d)}(\vec{p}) \phi_0^2(t)$$

time-dependent condensate

Berges, Sexty, PRL 108 (2012) 161601

Overpopulation as a quantum amplifier

strongly enhanced fermion production rate (NLO): ~ (g²/ λ) ϕ_0

From complexity to simplicity

Complexity: many-body $n \leftrightarrow m$ processes for $n, m = 1, ..., \infty$ as important as $2 \leftrightarrow 2$ scattering (`overpopulation')!

Simplicity: Resummation of the infinitely many processes leads to *effective kinetic theory* (2PI 1/*N* to NLO) dominated in the IR by

describing $2 \leftrightarrow 2$ scattering with an *effective coupling*:

Methods

Berges, NPA 699 (2002) 847; Aarts, Ahrensmeier, Baier, Berges, Serreau PRD 66 (2002) 045008

Comparison to cold Bose gas (Gross-Pitaevskii)

Quantum turbulence in a cold Bose gas

Occupation number n(k)

Radial momentum k/\sqrt{J}

• Preheating dynamics after chaotic inflation

Turbulence/Bose condensation for gluons?

Field strength tensor, here for SU(2):

 $F^a_{\mu\nu}[A] = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g \epsilon^{abc} A^b_\mu A^c_\nu$

Equation of motion:

$$\left(D_{\mu}[A]F^{\mu\nu}[A]\right)^{a} = 0$$

 $D^{ab}_{\mu}[A] = \partial_{\mu}\delta^{ab} + g\epsilon^{acb}A^{c}_{\mu}$

Classical-statistical simulations accurate for sufficiently large fields/high gluon occupation numbers:

anti-commutators $\langle \{A, A\} \rangle \gg \langle [A, A] \rangle$ commutators i.e. "n(p)" $\gg 1$

See also talk by K. Fukushima!

Classical-statistical lattice gauge theory

Scaling analysis

Leading (2PI) resummed perturbative contribution ($O(g^2)$):

Figure 4: Gluon part of the one-loop contribution to the self-energy with (2PI) resummed propagator lines. The crossed circles indicate an effective three-vertex in the presence of a background gauge field potential.

Standard scaling analysis gives for slowly varying background field:

$$n(p) \sim 1/p^{\kappa}$$
 $\kappa = \frac{3}{2}$, or $\kappa = 1$ particle cascade

Berges, Schlichting, Sexty, arXiv:1203.4646, Berges, Scheffler, Sexty, PLB 681 (2009) 362

Nonthermal fixed points:

- crucial for thermalization process from instabilities/overpopulation!
- strongly nonlinear regime of stationary transport (*dual* cascade)!
- Bose condensation for scalars from inverse particle cascade!
- large amplification of quantum corrections for fermions!
- gauge theory results indicate the same weak wave turbulence exponents as for scalars!

Comparing classical to quantum

Practically no bosonic quantum corrections at the end of preheating

Accurate nonperturbative description by quantum (2PI) 1/N to NLO

Dependence on spatial dimension d

р

Real-time dynamical fermions in 3+1 dimensions!

• Wilson fermions on a 64³ lattice Berges, Gelfand, Pruschke, PRL 107 (2011) 061301

- Very good agreement with NLO quantum result (2PI) for $\xi \ll 1$ (differences at larger *p* depend on Wilson term \rightarrow larger lattices)
- Lattice simulation can be applied to $\xi \sim 1$ relevant for QCD

Nonequilibrium fermion spectral function

 $\rho_V^{\mu} = \frac{1}{4} \operatorname{tr} \left(\gamma^{\mu} \rho \right) \quad \text{vector components}$

 $\rho_S = \frac{1}{4} \operatorname{tr}(\rho)$ scalar component

quantum field anti-commutation relation: $-i\rho_V^0(t, t; \mathbf{p}) = 1$

 $\rho(x,y) = i \left\langle \{\psi(x), \bar{\psi}(y)\} \right\rangle$

