Thermalization

 of the Quark-Gluon PlasmaRETUNE 2012
Heidelberg
June 21, 2012

Jean-Paul Blaizot, IPhT-saclay

Phenomenological perspective

Empirical evidence from RHIC (and LHC):

- Matter produced in heavy ion collisions exhibits fluid behavior from very early time on (elliptic flow, sensitivity to fluctuations in initial conditions, etc)
- The fluid has very special transport properties, in particular a small value of the
 shear viscosity to entropy density ratio

Fluid behavior requires (some degree of) local equilibration. How is this achieved?

Elements of a scenario for thermalization in heavy ion collísions

- initial dynamics involves classical color fields (CGC), with characteristic saturation scale Qs
- instabilities play an important role: isotropization, cascade towards the infrared leading to large occupancy of (very) soft modes [cf. talks by Rebhan and Fukushima]
- because of the large occupation, the system remains strongly coupled in spite of the small coupling constant - a transient Bose condensate may form if particle number conserving processes dominate. This may be accompanied by formation of turbulent cascades [cf. talk by Berges]

[^0]
What is the fluid made of?

What are the important degrees of freedom?
(quasi) particles ? massive quarks and gluons ?
(classical) fields (color field, or AdS)
or both? in a plasma, at weak coupling, separation of hard (particles) and soft (collective) modes, that are coupled together (hard loops)

$$
j_{i n d}^{\mu}(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \nu^{\mu} \delta f(x, p)=\int d y \Pi^{\mu \nu}(x, y) A_{\nu}(y)
$$

Large occupation numbers

$$
\frac{x G\left(x, Q^{2}\right)}{\pi R^{2} Q_{s}^{2}} \sim \frac{1}{\alpha_{s}}
$$

High density partonic systems

saturation fixes the initial scale

$$
\epsilon_{0}=\epsilon\left(\tau=Q_{\mathrm{s}}^{-1}\right) \sim \frac{Q_{\mathrm{s}}^{4}}{\alpha_{\mathrm{s}}} \quad n_{0}=n\left(\tau=Q_{\mathrm{s}}^{-1}\right) \sim \frac{Q_{\mathrm{s}}^{3}}{\alpha_{\mathrm{s}}} \quad \epsilon_{0} / n_{0} \sim Q_{\mathrm{s}}
$$

The over-populated quark-gluon plasma

Thermodynamical considerations

Initial condítions $\left(t_{0} \sim 1 / Q_{s}\right)$

$$
\epsilon_{0}=\epsilon\left(\tau=Q_{\mathrm{s}}^{-1}\right) \sim \frac{Q_{\mathrm{s}}^{4}}{\alpha_{\mathrm{s}}} \quad n_{0}=n\left(\tau=Q_{\mathrm{s}}^{-1}\right) \sim \frac{Q_{\mathrm{s}}^{3}}{\alpha_{\mathrm{s}}}
$$

$$
\epsilon_{0} / n_{0} \sim Q_{\mathrm{s}}
$$

overpopulation parameter

$$
n_{0} \epsilon_{0}^{-3 / 4} \sim 1 / \alpha_{\mathrm{s}}^{1 / 4}
$$

In equilíbrated quark-gluon plasma

$$
\epsilon_{\mathrm{eq}} \sim T^{4} \quad n_{\mathrm{eq}} \sim T^{3} \quad n_{\mathrm{eq}} \epsilon_{\mathrm{eq}}^{-3 / 4} \sim 1
$$

mismatch by a large factor (at weak coupling) $\alpha_{\mathrm{s}}^{-1 / 4}$

Will the system accommodate the particle excess by forming a Bose-Einstein condensate?

Kinetic evolution dominated by elastic collísions

[work in collaboration with Jinfeng Liao and Larry McLerran]

Boltzmann equation with $2->2$ scattering

Gluon distribution function

$$
f(\boldsymbol{x}, \boldsymbol{p})=\frac{(2 \pi)^{3}}{2\left(N_{c}^{2}-1\right)} \frac{d N}{d^{3} \boldsymbol{x} \boldsymbol{x}^{3} \boldsymbol{p}}
$$

Boltzmann equation

$$
\begin{aligned}
\mathcal{D}_{t} f_{1} & =\frac{1}{2} \int \frac{d^{3} p_{2}}{(2 \pi)^{3} 2 E_{2}} \frac{d^{3} p_{3}}{(2 \pi)^{3} 2 E_{3}} \frac{d^{3} p_{4}}{(2 \pi)^{3} 2 E_{4}} \frac{1}{2 E_{1}}\left|M_{12 \rightarrow 34}\right|^{2} \\
& \times(2 \pi)^{4} \delta\left(p_{1}+p_{2}-p_{3}-p_{4}\right)\left\{f_{3} f_{4}\left(1+f_{1}\right)\left(1+f_{2}\right)-f_{1} f_{2}\left(1+f_{3}\right)\left(1+f_{4}\right)\right\} \\
\mathcal{D}_{t} & \equiv \partial_{t}+\vec{v}_{1} \cdot \vec{\nabla} \\
|M|^{2} & =576 g^{4} E_{1}^{2} E_{2}^{2}\left|\frac{1-x^{2}}{\boldsymbol{q}_{0}^{2}-\boldsymbol{q}^{2}-\Pi_{L}}-\frac{\left(1-x^{2}\right) \cos \phi_{2}}{q_{0}^{2}-\boldsymbol{q}^{2}-\Pi_{T}}\right|^{2}
\end{aligned}
$$

small angle approximation

$$
\mathcal{D}_{t} f=C(f)
$$

$$
C(f)=-\boldsymbol{\nabla} \cdot \boldsymbol{S}=-\frac{\partial S_{i}}{\partial p_{i}}
$$

simplified kinetic equation

$$
\begin{gathered}
\mathcal{D}_{\tau} f(\boldsymbol{p})=\boldsymbol{\nabla} \cdot\left[I_{a} \boldsymbol{\nabla} f(\boldsymbol{p})+\frac{\boldsymbol{p}}{p} I_{b} f(\boldsymbol{p})[1+f(\boldsymbol{p})]\right] \\
I_{a}=\int \frac{d^{3} p}{(2 \pi)^{3}} f(\boldsymbol{p})(1+f(\boldsymbol{p})) \\
I_{b}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{2 f(\boldsymbol{p})}{p} \\
\boldsymbol{\tau}=36 \pi \alpha^{2} \mathcal{L} t \quad \mathcal{L}=\int \frac{d q}{q}
\end{gathered}
$$

some results

solve

$$
\mathcal{D}_{\tau} f(p)=I_{a} \frac{\partial^{2} f}{\partial p^{2}}+I_{b}(1+2 f) \frac{\partial f}{\partial p}+\frac{2}{p}\left[I_{a} \frac{\partial f}{\partial p}+I_{b} f(1+f)\right]
$$

with initial condition

$$
f(p)=f_{0} \theta\left(Q_{s}-p\right) \quad \epsilon_{0}=f_{0} \frac{Q_{s}^{4}}{8 \pi^{2}} \quad n_{0}=f_{0} \frac{Q_{s}^{3}}{6 \pi^{2}}
$$

Onset of BEC

$$
\begin{gathered}
n_{0} \epsilon_{0}^{-3 / 4}=f_{0}^{1 / 4} \frac{2^{5 / 4}}{3 \pi^{1 / 2}},\left.\quad n \epsilon^{-3 / 4}\right|_{S B}=\frac{30^{3 / 4} \zeta(3)}{\pi^{7 / 2}} \approx 0.28 \\
f_{0}^{c} \approx 0.154
\end{gathered}
$$

small momentum behavior

At small momentum $\quad(f \gg 1)$

$$
\mathcal{D}_{\tau} f(p)=I_{a} \frac{\partial^{2} f}{\partial p^{2}}+\frac{2 I_{b}}{p} f^{2}+\left[\frac{2 I_{a}}{p}+2 I_{b} f\right] \frac{\partial f}{\partial p}
$$

'instantaneous' equilibrium distribution function

$$
\begin{gathered}
f=\frac{T^{*}}{p-\mu^{*}} \quad\left(\mu^{*}<0\right) \\
\mathcal{D}_{\tau} f \approx \frac{2 T^{*}}{\left(p-\mu^{*}\right)^{3}}\left(I_{a}-T^{*} I_{b}\right)-\frac{2 T^{*}}{p\left(p-\mu^{*}\right)^{2}}\left(I_{a}-T^{*} I_{b}\right) \\
I_{a}=\int \frac{d^{3} p}{(2 \pi)^{3}} f(p)(1+f(p)) \quad I_{b}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{2 f(p)}{p}
\end{gathered}
$$

'overpopulated' case - onset of BEC $\left(f_{0}=1\right)$

Flux in momentum space

Gaussian initial condition

same qualítative features

summary and outlook

- initial wave functions of colliding heavy nuclei at high energy are characterized by 'overpopulated' gluonic states
- the (dynamical) growth of (very) soft modes seems to a be
a robust feature.
- because of the large occupation, the system remains strongly coupled in spite of the small coupling constant
- a (transient) Bose condensate may form if particle number conserving processes dominate. Does the phenomenon survives inelastic collisions, longitudinal expansion? What is the nature of this condensate?

[^0]: More in the report from the EMMI Rapid Reaction Task Force on 'Thermalization in Non-abelian Plasmas', arXiv: 1203.2042[hep-ph]

