

Off-shell dynamical approach for relativistic heavy-ion collisions

Elena Bratkovskaya

Institut für Theoretische Physik & FIAS, Uni. Frankfurt

Relaxation, Turbulence, and Non-Equilibrium Dynamics of Matter Fields
• RETUNE 2012

Heidelberg \cdot Germany \cdot 21 – 24 June 2012

The 2nd International Symposium on Non-equilibrium Dynamics (NeD-2012) and the 3d Network I3-HP3 Workshop on Theory of Ultra-Relativistic heavy-lon Collisions (TURIC-2012) will be held together from June 25 to 30, 2012, in Hersonissos, Crete, Greece

NeD topics:

- dynamical description of strongly interacting systems
- Kadanoff-Baym equations and solutions
- transport models for strongly interacting systems
- description of phase transitions
- viscous hydrodynamics

TURIC topics:

- properties of the quark-gluon plasma before hadronization and the phase transition towards the hadronic world
- transport properties of hard probes in the quark gluon plasma and their traces in final hadronic spectra
- microscopic study of initial thermalization

Home-page: http://fias.uni-frankfurt.de/crete2012/

The venue and accommodation of participants will be at the 'Creta Maris Beach Resort' in Hersonissos, Crete

Organizers:

Elena Bratkovskaya (ITP & FIAS, Frankfurt U.) Joerg Aichelin (SUBATECH, Nantes) Marcus Bleicher (ITP & FIAS, Frankfurt U.)

HIC for FAIR Helmholtz International Center

Contact: crete2012@fias.uni-frankfurt.de

From Big Bang to Formation of the Universe

... back in time

,Re-create' the Big Bang conditions: matter at high temperature and pressure such that nucleons/mesons decouple to quarks and gluons --Quark-Gluon-Plasma

,Little Bangs' in the Laboratory : Heavy-ion collisions at ultrarelativistic energies

Super-Proton-Synchrotron – SPS - (CERN): Pb+Pb at 160 A GeV

STAR detector at RHIC

 Large Hadron Collider – LHC -(CERN): Pb+Pb at 574 A TeV
 Future facilities: FAIR (GSI), NICA (Dubna)

The QGP in Lattice QCD

Quantum Chromo Dynamics :

predicts strong increase of the energy density ε at critical temperature T_C ~170 MeV

⇒ Possible phase transition from hadronic to partonic matter (quarks, gluons) at critical energy density $\epsilon_{\rm C}$ ~0.5 GeV/fm³

Lattice QCD:

energy density versus temperature

Critical conditions - $\varepsilon_c \sim 0.5 \text{ GeV/fm}^3$, T_C ~170 MeV - can be reached in heavy-ion experiments at bombarding energies > 5 GeV/A

The holy grail:

Study of the in-medium properties of hadrons at high baryon density and temperature

Study of the partonic medium beyond the phase boundary

,Little Bangs' in the Laboratory

How can we proove that an equilibrium QGP has been created in central heavy-ion collisions ?!

Signals of the phase transition:

- Multi-strange particle enhancement in A+A
- Charm suppression
- Collective flow (v₁, v₂)
- Thermal dileptons
- Jet quenching and angular correlations
- High p_T suppression of hadrons
- Nonstatistical event by event fluctuations and correlations

Experiment: measures final hadrons and leptons

How to learn about physics from data?

Compare with theory!

Basic models for heavy-ion collisions

Statistical models:

basic assumption: system is described by a (grand) canonical ensemble of non-interacting fermions and bosons in thermal and chemical equilibrium

[-: no dynamics]

Ideal hydrodynamical models:

<u>basic assumption</u>: conservation laws + equation of state; assumption of local thermal and chemical equilibrium

[-: - simplified dynamics]

Transport models:

<u>based on transport theory of relativistic quantum many-body systems</u> off-shell Kadanoff-Baym equations for the Green-functions $S_h^{<}(x,p)$ in phase-space representation. Actual solutions: Monte Carlo simulations with a large number of test-particles

[+: full dynamics | -: very complicated]

→ Microscopic transport models provide a unique dynamical description of nonequilibrium effects in heavy-ion collisions

Dynamics of heavy-ion collisions -> complicated many-body problem!

Appropriate way to solve the many-body problem including all quantum mechanical features \rightarrow

Kadanoff-Baym equations for Green functions S[<] (from 1962)

 $\hat{S}_{0x}^{-1} \; S_{xy}^{<} \;\; = \;\; \Sigma_{xz}^{ret} \; \odot \; S_{zy}^{<} \;\; + \;\; \Sigma_{xz}^{<} \; \odot \;\; S_{zy}^{adv}$

 \hat{S}_{0x}^{-1} denotes the (negative) Klein-Gordon differential operator e.g. for bosons $\hat{S}_{0x}^{-1} = -(\partial_x^{\mu}\partial_{\mu}^x + M_0^2)$ " \odot " implies an integration over the intermediate spacetime coordinates from $-\infty$ to ∞ .

> do Wigner transformation
$$F_{XP} = \int d^4(x-y) e^{iP_{\mu}(x^{\mu}-y^{\mu})} F_{xy}$$

consider only contribution up to first order in the gradients
 = a standard approximation of kinetic theory which is justified if the gradients in the mean spacial coordinate X are small

Basic concept of the ,on-shell' transport models (VUU, BUU, QMD etc.):

1) Transport equations = first order gradient expansion of the Wigner transformed Kadanoff-Baym equations 2) quasiparticle approximation: $A(x,p) = 2 \pi \delta(p^2-M^2)$

• for each particle species *i* (*i* = *N*, *R*, *Y*, π , ρ , K, ...) the phase-space density f_i follows the transport equations

$$\left(\frac{\partial}{\partial t} + \left(\nabla_{\vec{p}}U\right)\nabla_{\vec{r}} - \left(\nabla_{\vec{r}}U\right)\nabla_{\vec{p}}\right)f_i(\vec{r},\vec{p},t) = I_{coll}(f_1,f_2,...,f_M)$$

with collision terms I_{coll} describing elastic and inelastic hadronic reactions:
 baryon-baryon, meson-baryon, meson-meson, formation and decay of baryonic and mesonic resonances, string formation and decay (for inclusive particle production:
 BB -> X, mB ->X, X = many particles)

with propagation of particles in self-generated mean-field potential U(p,ρ)~Re(Σ^{ret})/2p₀

Numerical realization – solution of classical equations of motion + Monte-Carlo simulations for test-particle interactions

Study of in-medium effects within transport approaches

• Semi-classical on-shell transport models work very well in describing interactions of point-like particles and narrow resonances !

• In-medium models - chiral perturbation theory, chiral SU(3) model, coupled-channel G-matrix approach, chiral coupled-channel effective field theory etc. predict changes of the particle properties in the hot and dense medium, e.g. strong broadening of the spectral functions

Problem : How to treat short-lived (broad) resonances in semi-classical transport models?

Semi-classical approaches: on-shell transport models based on quasi-particle approximation $A(X,P) = 2 \pi \delta(P^2-M^2)$

Accounting for in-medium effects with medium-dependent spectral functions requires off-shell transport models bejong quasi-particle approximation !
 back to Kadanoff-Baym equations

R. Rapp: ρ meson spectral function

-Im $D_{\rho}(M,q,\rho_B,T) (GeV^2)$

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym equations and separation into the real and imaginary parts one gets:

Generalized transport equations:

drift termVlasov termbackflow termcollision term = ,loss' term - ,gain' term $\diamond \{ P^2 - M_0^2 - Re\Sigma_{XP}^{ret} \} \{ S_{XP}^{<} \} - \diamond \{ \Sigma_{XP}^{<} \} \{ ReS_{XP}^{ret} \} = \frac{i}{2} [\Sigma_{XP}^{>} S_{XP}^{<} - \Sigma_{XP}^{<} S_{XP}^{>}]$ Backflow term incorporates the off-shell behavior in the particle propagation

vanishes in the quasiparticle limit $A_{XP} = 2 \pi \delta(p^2 - M^2)$

>,on-shell' transport models (VUU, BUU, QMD, IQMD, UrQMD etc.)

Greens function S[<] characterizes the number of particles (N) and their properties (A – spectral function): $iS^{<}_{XP}=A_{XP}N_{XP}$

The imaginary part of the retarded propagator is given by normalized spectral function:

$$A_{XP} = i \left[S_{XP}^{ret} - S_{XP}^{adv} \right] = -2 Im S_{XP}^{ret}, \qquad \int \frac{dP_0^2}{4\pi} A_{XP} = 1$$

For bosons in first order in gradient expansion:

$$A_{XP} = rac{\Gamma_{XP}}{(P^2 - M_0^2 - Re\Sigma_{XP}^{ret})^2 + \Gamma_{XP}^2/4}$$

 Γ_{XP} – width of spectral function = reaction rate of particle (at phase-space position XP)

4-dimentional generalizaton of the Poisson-bracket:

$$\diamond \{ F_1 \} \{ F_2 \} := \frac{1}{2} \left(\frac{\partial F_1}{\partial X_{\mu}} \frac{\partial F_2}{\partial P^{\mu}} - \frac{\partial F_1}{\partial P_{\mu}} \frac{\partial F_2}{\partial X^{\mu}} \right)$$

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

Employ testparticle Ansatz for the real valued quantity $i S_{XP}^{<}$ -

$$F_{XP} = A_{XP}N_{XP} = i S_{XP}^{<} \sim \sum_{i=1}^{N} \delta^{(3)}(\vec{X} - \vec{X}_{i}(t)) \ \delta^{(3)}(\vec{P} - \vec{P}_{i}(t)) \ \delta(P_{0} - \epsilon_{i}(t))$$

insert in generalized transport equations and determine equations of motion !

General testparticle off-shell equations of motion:

$$\begin{split} \frac{d\vec{X}_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[2\vec{P}_{i} + \vec{\nabla}_{P_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{P_{i}} \Gamma_{(i)} \right], \\ \frac{d\vec{P}_{i}}{dt} &= -\frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\vec{\nabla}_{X_{i}} Re\Sigma_{i}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{X_{i}} \Gamma_{(i)} \right], \\ \frac{d\epsilon_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\frac{\partial Re\Sigma_{(i)}^{ret}}{\partial t} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial t} \right], \\ \\ \text{with} \quad F_{(i)} &\equiv F(t, \vec{X}_{i}(t), \vec{P}_{i}(t), \epsilon_{i}(t)) \\ C_{(i)} &= \frac{1}{2\epsilon_{i}} \left[\frac{\partial}{\partial\epsilon_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial t} \right], \end{split}$$

HSD – Hadron-String-Dynamics transport approach:

	with collision terms I _{coll} describing:			
	elastic and inelastic hadronic reactions:			
	baryon-baryon, meson-baryon, meson-meson	BB <→ B'B',	BB <-> B'B', BB <-> B'B'm	
	formation and decay of mB <-> m'B',		mB <-> B'	
	baryonic and mesonic resonances		Baryons:	
	and strings - excited color singlet states (qq - q) or (q - qbar) -		B=(p, n, ∆(1232),	
	(for inclusive particle production: BB -> X , mB ->X, X =many particles)		N(1440), N(1535),)	
			Mesons:	
•	implementation of detailed balance on the level of 1	m=(π, η, ρ, ω, φ,)		
	and 2 reactions (+ 2 multi-narticle reactions	ions in HSD 1)		

• off-shell dynamics for short-lived states

HSD is an open code: http://www.th.physik.uni-frankfurt.de/~brat/hsd.html

 very good description of particle production in pp, pA, AA reactions
 unique description of nuclear dynamics from low (~100 MeV) to ultrarelativistic (>20 TeV) energies

HSD – a microscopic model for heavy-ion reactions

HSD predictions from 1999; data from the new millenium

Hadron-string transport models (HSD, UrQMD) versus observables

Strangeness signals of QGP <**K**⁺>/<π⁺> 0.25 ,horn' 0.35 $Au+Au / Pb+Pb \rightarrow K^{+}+X$ in K⁺/ π ⁺ 0.20 0.30 0.15 8 HSD with Cronin eff. $- \Delta -$ UrOMD 0.10 T [GeV] 0.25 E866 0.05 HSD NA49 0.20 **IrOMD** BRAHMS, 5% 0.00 10^{0} 10^{2} 10^{3} 10^{4} **10¹** 0.15 E_{lab}/A [GeV] NA49 E866 ,step[•] NA44 STAR Ø \cap BRAHMS PHENIX in slope T 0.10 100 10 s^{1/2} [GeV]

Exp. data are not reproduced in terms of the hadron-string picture => evidence for nonhadronic degrees of freedom

Goal: microscopic transport description of the partonic and hadronic phase

□ How to model a QGP phase in line with IQCD data?

□ How to solve the hadronization problem?

<u>Ways to go:</u>

pQCD based models:

Problems:

• QGP phase: pQCD cascade

hadronization: quark coalescence

→ AMPT, HIJING, BAMPS

,Hybrid' models:

QGP phase: hydro with QGP EoS

- hadronic freeze-out: after burner
- hadron-string transport model

→ Hybrid-UrQMD

 microscopic transport description of the partonic and hadronic phase in terms of strongly interacting dynamical quasi-particles and off-shell hadrons

From hadrons to partons

In order to study the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma – we need a consistent non-equilibrium (transport) model with > explicit parton-parton interactions (i.e. between quarks and gluons) beyond strings!

explicit phase transition from hadronic to partonic degrees of freedom
 IQCD EoS for partonic phase

Transport theory: off-shell Kadanoff-Baym equations for the Green-functions $S_h^{<}(x,p)$ in phase-space representation for the partonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

Dynamical QuasiParticle Model (DQPM)

QGP phase described by

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

The Dynamical QuasiParticle Model (DQPM)

Basic idea: Interacting quasiparticles

- massive quarks and gluons (g, q, q_{bar}) with spectral functions :

$$\rho(\omega) = \frac{\gamma}{\mathbf{E}} \left(\frac{1}{(\omega - \mathbf{E})^2 + \gamma^2} - \frac{1}{(\omega + \mathbf{E})^2 + \gamma^2} \right) \qquad \mathbf{E}^2 = \mathbf{p}^2 + \mathbf{M}^2 - \gamma^2$$

DQPM thermodynamics (N_f=3) and IQCD

entropy
$$\mathbf{s} = \frac{\partial \mathbf{P}}{\mathbf{dT}} \rightarrow \mathbf{pressure} \ \mathbf{P}$$

energy density: $\epsilon = \mathbf{Ts} - \mathbf{P}$

IQCD: Wuppertal-Budapest group Y. Aoki et al., JHEP 0906 (2009) 088.

$$\mathbf{W}(\mathbf{T}) := \epsilon(\mathbf{T}) - \mathbf{3P}(\mathbf{T}) = \mathbf{Ts} - \mathbf{4P}$$

DQPM gives a good description of IQCD results !

The Dynamical QuasiParticle Model (DQPM)

➔ Quasiparticle properties:

large width and mass for gluons and quarks

→ Broad spectral function :

DQPM matches well lattice QCD
 DQPM provides mean-fields (1PI) for gluons and quarks as well as effective 2-body interactions (2PI)
 DQPM gives transition rates for the formation of hadrons → PHSD

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

PHSD - basic concept

Initial A+A collisions – HSD: string formation and decay to pre-hadrons

Fragmentation of pre-hadrons into quarks: using the quark spectral functions from the Dynamical QuasiParticle Model (DQPM) - approximation to QCD

Partonic phase: quarks and gluons (= ,dynamical quasiparticles') with offshell spectral functions (width, mass) defined by the DQPM

□ elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM

✓ q + qbar (flavor neutral) <=> gluon (colored)

- ✓ gluon + gluon <=> gluon (possible due to large spectral width)
- ✓ q + qbar (color neutral) <=> hadron resonances

u self-generated mean-field potential for quarks and gluons

Hadronization: based on DQPM - massive, off-shell quarks and gluons with broad spectral functions hadronize to off-shell mesons and baryons: gluons \rightarrow q + qbar; q + qbar \rightarrow meson (or string); q + q + q \rightarrow baryon (or string) (strings act as ,doorway states' for hadrons)

Hadronic phase: hadron-string interactions – off-shell HSD

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; EPJ ST 168 (2009) 3; NPA856 (2011) 162.

PHSD: hadronization of a partonic fireball

► Hadronization: q+q_{bar} or 3q or 3q_{bar} fuse to

color neutral hadrons (or strings) which subsequently decay into hadrons in a microcanonical fashion, i.e. **obeying all conservation laws (i.e. 4-momentum conservation, flavor current conservation) in each event!**

➤ Hadronization yields an increase in total entropy S (i.e. more hadrons in the final state than initial partons) and not a decrease as in the simple recombination models!

>Off-shell parton transport roughly leads a hydrodynamic evolution of the partonic system

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

PHSD: Expanding fireball

Time-evolution of hadron density

PHSD: spacial phase ,co-existence' of partons and hadrons, but NO interactions between hadrons and partons (since it is a cross-over)

Bulk properties: rapidity, m_T-distributions, multi-strange particle enhancement in Au+Au

partonic energy fraction vs energy

energy balance

Dramatic decrease of partonic phase with decreasing energy

□ Pb+Pb, 160 A GeV: only about 40% of the converted energy goes to partons; the rest is contained in the large hadronic corona and leading partons!

Central Pb + Pb at SPS energies

Central Au+Au at RHIC

PHSD gives harder m_T spectra and works better than HSD at high energies
 – RHIC, SPS (and top FAIR, NICA)

□ however, at low SPS (and low FAIR, NICA) energies the effect of the partonic phase decreases due to the decrease of the partonic fraction

W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215 E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, NPA856 (2011) 162

Collective flow: anisotropy coefficients (v₁, v₂, v₃, v₄) in A+A

Final angular distributions of hadrons

10k Au+Au collision events at b = 8 fm at 21 TeV rotated to different event planes:

The mass splitting at low p_T is approximately reproduced as well as the meson-baryon splitting for $p_T > 2$ GeV/c !

The scaling of v_2 with the number of constituent quarks n_q is roughly in line with the data .

E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, NPA856 (2011) 162

Elliptic flow v₂ vs. collision energy for Au+Au

• v_2 in PHSD is larger than in HSD due to the repulsive scalar mean-field potential $U_s(\rho)$ for partons

v₂ grows with bombarding energy due to the increase of the parton fraction

v_2/ϵ vs. centrality at different collision energies

PHSD: v_2/ε vs. centrality follows an approximate scaling with energy in line with experimental data

Ratio $v_4/(v_2)^2$ vs. p_T

The ratio $v_4/(v_2)^2$ from PHSD grows at low p_T - in line with exp. data

v₁ vs. pseudo-rapidity at different collision energies

PHS

PHSD: v_1 vs. pseudo-rapidity follows an approximate scaling for high invariant energies $s^{1/2}=39$, 62, 200 GeV - in line with experimental data – whereas at low energies the scaling is violated!

,Turbulence' in heavy-ion collisions

• Au+Au @ s^{1/2}=200 GeV : rotating charge density

37

•PHSD provides a consistent description of off-shell parton dynamics in line with the lattice QCD equation of state (from the BMW collaboration)

• **PHSD versus experimental observables:**

enhancement of meson m_T slopes (at top SPS and RHIC) strange antibaryon enhancement (at SPS) partonic emission of high mass dileptons at SPS and RHIC enhancement of collective flow v_2 with increasing energy quark number scaling of v_2 (at RHIC) jet suppression

•••

⇒ evidence for strong nonhadronic interactions in the early phase of relativistic heavy-ion reactions
⇒ formation of the sQGP established!

Wolfgang Cassing (Giessen Univ.) Volodya Konchakovski (Giessen Univ.) Olena Linnyk (Giessen Univ.) Elena Bratkovskaya (FIAS & ITP Frankfurt Univ.) Vitalii Ozvenchuk (HGS-HIRe, FIAS & ITP Frankfurt Univ.) + Rudy Marty (SUBATECH→FIAS, Frankfurt Univ.)

FRANKFURT AM MAIN

JUSTUS-LIEBIG-

UNIVERSITAT

External Collaborations:

SUBATECH, Nantes Univ. : Jörg Aichelin Christoph Hartnack Pol-Bernard Gossiaux Texas A&M Univ.: Che-Ming Ko JINR, Dubna: Vadim Voronyuk Viatcheslav Toneev Kiev Univ.: Mark Gorenstein Barcelona Univ. Laura Tolos, Angel Ramos

