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Non-equilibrium with ultra-cold atoms 
 

•  Ultra-cold atoms: 
–  Simple ingredients, but complex phenomena. 
–  “Easy” to manipulate far from equilibrium. 
–  Isolated systems – have to equilibrate “on their own.” 

•  GPE: good for T = 0. 

•  What about T > 0? 
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Motivation 
•  What we want: a practical formalism for non-equilibrium 

dynamics of Bose gases 

•  Desirable features: 
–  More than a few particles 
–  More than one dimension 
–  Can handle finite temperature 
–  Goes beyond mean field theory 
–  Can manage realistic experiment parameters 
–  Computations finish on a reasonable time scale 

•  Answer: c-field methods: variations of GPE. 
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Outline 

•  Formalism: 
–  stochastic projected Gross-Pitaevskii equation (SPGPE) 

•  Equilibrium 
–  Momentum distribution of trapped 1D Bose gas 
–  Anomalous correlations and superfluidity in 2D Bose gas 

•  Non-equilibrium 
–  Condensate formation 
–  Classical and quantum Kibble Zurek mechanism with BEC 
–  Non-equilibrium steady states 
 

•  Conclusions 
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FORMALISM 
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Classical fields 

Q: Why is the Gross-Pitaevskii equation so successful? 
A: The condensate mode is highly occupied, like a laser 

Thus a BEC at T=0 can be approximated as classical field 
 
 

But: also true for many excited modes at finite temperature 
Svistunov, Kagan, Shylapnikov: J. Mosc. Phys. Soc. 1, 373 (1991); JETP 75, 387 (1992); PRL 79, 3331 (1997). 
 

Highly occupied Bose-Einstein       equipartition distribution 
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0] ≈ 0�n̂0� = �â†0â0� � 1

�n̂k� =
1

e(�k−µ)/kBT − 1
≈ 1

1 + (�k − µ)/kBT + . . .− 1
=

kBT

�k − µ

See K. Goral et al. (2001), A. Sinatra et al. (2001), M. J. Davis et al. (2001). !

ψ(x) ≈ �ψ̂(x)�



Applicability 
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87Rb atoms, N = 2 x 106, " = 100 Hz!

P. B. Blakie and M. J. Davis, J. Phys. B, 40, 2043 (2007)!



GPE can describe thermalisation 

•  Start with randomised initial conditions, fixed energy and 
fixed particle number 

•  Evolve with GPE on finite basis 
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Homogeneous gas M. J. Davis et al. PRL 87, 160402 (2001); PRA 66, 053618 (2002).

Plane wave basis, 3D, |k| < 15 × 2π/L.
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Agrees with second order theories of BEC.
Morgan J. Phys. B 33, 3847 (2000), also
Fedichev & Shylapnikov, PRA 58, 3146 (1998); Giorgini, PRA 61, 063615 (2000).

See also eg Gòral et al. PRA 66, 051602 (2002), Sinatra et al. PRL 87, 210404 (2001), Stoof and
Bijlsma, J. Low. Temp. Phys 124, 431 (2001). . – p.19

M. J. Davis et al. PRL 87, 160402 (2001); PRA 66, 053618 (2002). Goral et al. PRA 66, 051602 (2002), 
Sinatra et al. PRL 87, 210404 (2001), Stoof and Bijlsma, J. Low. Temp. Phys 124, 431 (2001). 



Formalism 

Summary: 
BEC + low energy 
excitations are treated as 
a classical field. 
 
High energy atoms treated 
as thermal bath: 
 Chemical potential µ!
Temperature "!
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Split field operator into c-field (high occupation) and incoherent regions 
 
Derive master equation for c-field region density operator 
 
Make “high temperature” approximation:  
 
Derive a Fokker-Planck equation for the Wigner quasi-probability distribution 
 
Neglect third order derivatives: probabilistic interpretation as  stochastic DEs 
 
 
 

kBT/�k � 1

C. W. Gardiner and M. J. Davis, J. Phys. B, 36, 4731 (2003); P. B. Blakie et al., Adv. Phys. 57, 363 (2008).!



Stochastic Projected GPE (SPGPE) 
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LGP = −�2∇2

2m
+ Vtrap(x) + g|ψ(x)|2ψ(x)

dψ(x) = PC

�
− i

�LGPψ(x) dt

+
G(x)

kBT
(µ− LGP)ψ(x) dt+ dWG(x, t)

+
M
kBT

1√
−∇2

Re [ψ∗(x)LGPψ(x)] dt+ iψ(x)dWM

�

�dW ∗
G(x, t)dWG(x

�, t)� = 2G(x)δ(x− x�)dt

�dWM(x�, t)dWM(x, t)� = 2M√
−∇2

δ(x− x�)dt

Interaction between RC and RNC

24

Interaction between RC and RNC

24

GP operator: 

Noise correlations: 

Projector 

C. W. Gardiner and M. J. Davis, J. Phys. B, 36, 4731 (2003); P. B. Blakie et al., Adv. Phys. 57, 363 (2008).!

Collision 
integrals 



Simplifications 

•  Simple growth SPGPE 
–  Drop scattering term (multiplicative noise) 
–  Equilibrium is unchanged : grand canonical. 
 

•  Projected GPE (PGPE) 
–  Keep high occupation condition, but neglect bath coupling. 
–  Microcanonical system 
–  Valid for equilibrium (detailed balance) 

•  Truncated Wigner approximation 
–  Treat entire gas using c-field. 
–  Include initial quantum noise – seeds spontaneous processes. 
–  Valid for high occupations, short times. 

CRICOS Provider No 00025B 



EQUILIBRIUM 
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Thermodynamics 
•  PGPE (SPGPE) samples thermodynamic equilibrium 

through microcanonical (grand canonical) ergodic 
dynamics 

•  Nonperturbative in particle interactions 
•  Independent of computational basis (using projector) 
•  Incoherent region accounted using Hartree-Fock theory 

•  Applications: 
–  Shift in critical temperature 
–  Correlations at finite temperature 
–  Low-dimensional physics 

•  Quasicondensation 
•  Berezinkskii-Kosterlitz-Thouless physics 
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Momentum distribution of 1D Bose gas 

CRICOS Provider No 00025B 

!

!

!

!

! " # $
!

!%#

!%&

!%'

!%(

)*
**+
!,
-

.
/0123

*4*56"#

*

*
7089:;<
==
>?@?.

!

"

#

5
*+"
!&
*;
39
8
A-

"B#! "B'! "'!!
!

"

#

$

.
/0
12
3*4

*5
6"

#

*C*D *+/EF-

G<;AA0H;<

$

•  Measurements by Van Amerongen et al., PRL 100, 090402 (2008).  
•  Exact Yang-Yang solutions give density – but no momentum distributions 
•  We perform trapped SPGPE calculations – fit temperature to data 
•  Agrees well with Yang-Yang thermometry based on kinetic energy measure 

M. J. Davis et al., PRA (2012) 



Superfluidity in 2D Bose gases 
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Apply PGPE to finite size 2D homogeneous gas 

Anomalous density 

Superfluid density 

 
 
 
Condensate 

Superfluid density from 
momentum correlations 
 
Anomalous density drops 
to zero at same point as 
superfluid density 
 
Condensate fraction still 
non-zero at Tc 
 

Also: superfluid density in 
ring trap from mass current  
 
 

See C. J. Foster et al., Phys. Rev. A 81, 023623 (2010). 



NON-EQUILIBRIUM 
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Simulating non-equilibrium 

•  C-field dynamics eventually comes to equilibrium with 
thermal reservoir 

•  Thus: manipulate reservoir parameters to e.g. simulate 
evaporative cooling and condensate formation. 
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Procedure for BEC formation: 
•  Begin above BEC critical point: 

T > Tc, µ < 0 
•  Ramp thermodynamic 

parameters in time 
•  Watch the condensate 

rethermalise to new equilibrium 
 

MOVIE 



Condensate formation movie 
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Condensate formation at Arizona 
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C. N. Weiler et al., Nature 455, 948 (2008). 



Results 
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Atom numbers, 
temperatures, taken from 
experiment 
 
Collision rate chosen to 
match condensate growth 
curve 
 
Simulated vortex 
probability from SPGPE 
agrees with observations 
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How do vortices arise? 

•  Kibble (1976): Causally disconnected regions enter 
symmetry broken phase independently.  

•  When these reconnect topological defects can form. 
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Kibble mechanism
Causally disconnected regions enter symmetry broken phase independently.

When these reconnect topological defects can form.

Can this happen in a Bose gas?

. – p.10



Kibble-Zurek mechanism 

•  Real phase transitions occur on a finite time scale.  
•  Kibble-Zurek mechanism is a universal prescription for 

estimating the density of defects after a quench. 
•  Idea: control phase transition: 
•  Equil. correlation length / time diverge at critical point: 

 
•  Speed of transition determines “freeze out” time 

–  Faster transition -> earlier freeze out -> smaller correlation 
volumes -> more defects 

–  Defect density:  

CRICOS Provider No 00025B 

� = (1− T/Tc) = t/τQ

ξ =
ξ0
|�|ν , τ =

τ0
|�|νz

n ∝ 1

ξd0

�
τ0
τQ

�dν/(1+νz)



Kibble-Zurek mechanism with BEC? 

•  Many experiments on KZM in condensed matter 
–  4He, 3He, liquid crystals, superconducting rings. 

•  Lots of simulations show KZ scaling  
–  but no conclusive agreement between theory and 

experiment 
 

•  For BEC: number of vortices expected to scale with 
quench time 

•  Need to control e.g. temperature or chemical potential 
–  Hard in experiment: easier with SPGPE. 
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� = (1− T/Tc) = t/τQ



Oblate BEC formation (Arizona) 

•  Rate of quench ~ rate of 
condensate growth 

•  How to control this?  
–  Compress gas with 2D 

laser sheet 

–  increases collision rate 

•  May be an way to control 
a ramp of effective µ!

•  In expt: see many more 
vortices  
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Experimental results (Arizona) 
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131

Figure 7.11: The decay of vortex observation statistics corresponding to the fastest

formation rate is shown, averaged over several days of data runs. Each point repre-

sents the average of 35 runs of the experiment. Here, t=0 is defined as the start of

the final RF evaporative ramp. An exponential fit to the data gives a time constant

of τ = 2.5(0.5) s.

Figure 7.12: Spontaneous vortex observations as a function of formation time. The

error bars for the average number of vortices are statistical in nature, and data

points represent the average number of vortices seen over a single day of data runs

(with ∼29-100 runs of the experiment for each data point). The error bars for the

formation time were estimated from the plotted formation data. (inset) Example

images in expansion of multiple spontaneously formed vortices for each formation

scheme.



SPGPE simulations 

Vary ramp of chemical 
potential µ!
Quench time:  
Count number of 
vortices 
Parameters match 
Arizona lab 
 
White circles indicate  
 
 
MOVIE 
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(νr, νz) = (7.8, 88) Hz

τQ

g(2)(x, x) = (1.1, 1.3)



Preliminary results 

•  No simple scaling apparent so far 
•  Expected to be universal: A. del Campo et al., New J. Phys. 13, 083022 (2011). 

CRICOS Provider No 00025B 

100 101
0

1

2

3

4

5

6

7

8

9

Time   [Trap periods]

M
ea

n 
nu

m
be

r o
f v

or
tic

es

 

 
Q = 0

Q = 1

Q = 2

Q = 4

Q = 8

Q = 16

Q = 32

100 101 102
10 1

100

101

Quench time   [trap periods]
M

ea
n 

nu
m

be
r o

f v
or

tic
es

 

 

g(2) = 1.10
g(2) = 1.15
g(2) = 1.20
g(2) = 1.25
g(2) = 1.30

Scaling of peak vortex number Vortex number versus time 



Quantum phase transitions 

•  KZ theory can also be applied to quantum phase 
transitions. 

•  Ramp Hamiltonian parameter across a critical point. 
•  Binary BEC: immiscible if                         

•  Can be made miscible by internal 
Josephson coupling above critical 
value       : 
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∆ =
g11g22
g212

< 1

Dynamics of an engineered quantum phase transition in a coupled binary BEC 4

Figure 1. Density of the two components of a binary BEC. (a) Natural ground state of a binary

immiscible system. (b) In the strong coupling regime state (a) becomes miscible. Quantum

noise has been added that results in the formation of domains (see text). (c) Quenching the

coupling Ω(t) to zero brings the system back to its immiscible phase. If the quench is non-

adiabatic a random pattern of domains is created and the system is left in an excited state. We

propose to test the Kibble-Zurek mechanism by counting the number of formed domains in

function of the quench time.

where Ĥ0, ĤI, and ĤC are the single-particle, interaction, and coupling Hamiltonians

respectively, defined as

Ĥ0 =

�
dx

2�

i=1

ψ̂†
i (x)

�
− h̄

2m

∂2

∂x2
+ V (x)

�
ψ̂i(x), (2)

ĤI =

�
dx

�
2�
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�
gii

2
ψ̂†
i (x)ψ̂

†
i (x)ψ̂iψ̂i(x)

�
+ g12ψ̂

†
1(x)ψ̂

†
2(x)ψ̂2ψ̂1(x)

�
,(3)

ĤC =

�
dx

�
h̄δψ̂†

2(x)ψ̂2(x)− h̄Ω(t)[ψ̂†
1(x)ψ̂2(x) + ψ̂†

2(x)ψ̂1(x)]
�
. (4)

The Bose field operator ψ̂i(x) for component i annihilates a particle at position x, and obeys

the commutation relations [ψ̂i(x),ψ
†
j (x

�)] = δ(x − x
�)δij . The transversal dimensions,

assumed to be harmonically trapped with frequency ω⊥, have been integrated out from the

three-dimensional Hamiltonian, yielding the 1D interaction constants gij = 2h̄2
aij/(ma⊥),

where aij is the scattering length and a⊥ =
�

h̄/mω⊥. The coupling Hamiltonian ĤC

depends on the coupling strength Ω(t) and on the detuning δ between the light-field and the

energy difference of the states. Here we assume the coupling is on resonance and set δ = 0
for the remainder of this paper.

The nature of the ground state of a binary system is determined by the balance between

the interaction constants gij [35]. If the intraspecies interactions dominate, gii � g12, the

energy is minimised by lowering the individual densities of both components, which then

occupy all the available volume. In this miscible phase, the two species coexist at every point.

However if the interspecies interaction dominates g12 � gii, the energy of the system is

minimised by phase separation, which minimises the contribution of the g12n1(x)n2(x) term.

We refer to this phase as the immiscible phase. By defining

∆ =
g11g22

g
2
12

, (5)

then we have [35]

∆ > 1 miscible phase,

∆ < 1 immiscible phase.
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Figure 4. Evolution of the density of one component for a trajectory with τQ = 50 ms. The
red dashed line indicates the propagating front of the phase transition predicted by Eq. (17).

reflect the spatial inhomogeneity of the phase transition

�tr(x, t) =
Ωcr(x)− Ω(t)

Ωcr(x)
= 1− 2

ρ(0)

ρ(x)

�
1− t

τQ

�
, (15)

where we have used Ω(t) = max[0, 2Ωcr(0)(1−t/τQ)]. In inhomogeneous phase transitions,
different regions of the system experience different effective quench time as a consequence
of the spatially dependent critical coupling. The effective quench time is again defined as the
change rate of the newly defined control parameter �tr(x, t),

τQ(x) =

����
∂�tr(x, t)

∂t

����
−1

= τQ
µ− V (x) + h̄Ω(0)

2[µ+ h̄Ω(0)]
. (16)

We note that the effective quench time τQ(x) approaches zero for x → RTF. Therefore, outer
regions of the BEC are subject to a smaller correlation length at freezing time, and the average
size of the domains decrease in the proximity of the condensate edges, see Figs. 3(a) and 4.

Solving the equality �tr(xF, tF) = 0 for xF defines the trajectory of the front which in
the case of harmonic potential moves according to

xF(t) =

�
2

mω2
[µ+ h̄Ω(0)]

�
2t

τQ
− 1

�
. (17)

We have verified that Eq. (17) accurately reproduces the trajectory of the front by comparing
it with the simulations, as shown in Fig. 4. The speed of the front during the transition follows
from Eq. (17) as

vF(xF) =

����
dxF

dt

���� =
2[µ+ h̄Ω(0)]

mω2
xτQxF

. (18)

4.2. Kibble-Zurek scaling exponent for the harmonically trapped system

In order for the new phase to transfer information to the old phase, the front speed has to be
smaller than the local speed of sound vs(x) =

�
(g + g12)ρ(x)/(2m) [60, 37]. Solving the

inequality

2[µ+ h̄Ω(0)]

mω2
xτQx

≤
�

(g + g12)ρ(x)

2m
, (19)

for x defines the region X̂ where the formation of defects is suppressed. For the parameters
used in this work Eq. (19) has no solution for τQ < τ crQ ≈ 150 ms. Thus for a large range of
quench times we simulate, the front is always faster than the sound, and the phase transition
is not affected by causality. For τQ > τ crQ on the other hand, the speed of the front equals



Procedure 

•  Load stationary dressed state at 
large coupling. 

•  Control parameter: 
  

•  Use truncated Wigner method 
•  Quantum noise in initial state seeds 

domain formation. 
•  Simulate many trajectories 
•  Count mean number of domains. 
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However, the introduction of the coupling Ω between the states can qualitatively change this

picture. In the strong coupling regime, when Ω is much larger than a threshold value Ωcr, the

ground state of the system approaches the superposition state |ψ� = (|1� + |2�)/
√
2. In this

situation the atoms of a naturally immiscible mixture then spatially coexist as for the miscible

phase. The calculation of the value of the critical coupling Ωcr can be found in Appendix A.

2.2. Kibble-Zurek mechanism

To formulate the KZ mechanism [5, 6] for this system, we define the dimensionless control

parameter

�(t) =
Ωcr − Ω(t)

Ωcr
, (6)

which quantifies the distance of the system from the critical point Ωcr. For a continuous phase

transition in the thermodynamic limit, both the equilibrium correlation length ξ and relaxation

time τ of the system diverge as

ξ(t) =
ξ0

|�(t)|ν , (7)

τ(t) =
τ0

|�(t)|νz . (8)

where ν and z are the critical exponents of the transition and define its universality class. The

constants ξ0 and τ0 depend on the particular characteristics of the system, such as the atomic

species, particle density, trapping frequencies, and so on. The correlation length represents the

average size of the regions where the system has uniform characteristics, while the relaxation

time characterises the time needed by the system to adjust to an external change. For a

system dynamically approaching approaching a critical point, there exists a moment when the

relaxation time is equal to the characteristic time scale on which the environment is changing.

The KZ mechanism predicts that beyond this time the system is not able to follow the quench

and remain in quasi-equilibrium – instead it undergoes impulsive behaviour which freezes the

configuration of defects in space. We consider a quench of the coupling parameter for our

system of the form

Ω(t) = max

�
0, 2Ωcr

�
1− t

τQ

��
, (9)

where τQ is the quench time. The condition

τ [�(t̂)] = �(t̂)/�̇(t̂), (10)

determines the freezing time at t̂ = τ1/(1+νz)
0 τνz/(1+νz)

Q . The correlation length at freezing

time, ξ̂ = ξ0(τQ/τ0)ν/(1+νz)
, fragments the system in a series of regions with uniform

characteristics. Since topological defects can form only on the boundaries between these

regions [49] the number of formed defects is given by

Nd =
L

ξ̂
=

L

ξ0

�
τ0
τQ

� ν
1+νz

. (11)
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Figure 2. Homogeneous phase transition in a ring BEC. (a) Time evolution of one component

showing domain formation for N = 105 and τQ = 47 ms. The dashed (red) line represent the

moment when the quench reaches the critical point Ω(t) = Ωcr. The solid (green) line signal

the end of the quench Ω(t) = 0. (b) Scaling of the mean number of domains Nd in function of

the quench time τQ in log-scale. Filled symbols represent data averaged over an ensemble of

1000 trajectories, the open symbol over 100 trajectories. Error bars derive from the standard

deviation. Fitting over the filled symbols yield a scaling exponent of n = 0.341 ± 0.006
and a factor auni = 8.63 ± 0.03. The fitted exponent n shows good agreement between

the numerical simulations and the theoretical prediction 1/3. (c) Same data in linear scale

showing the exponential scaling. (d) Time evolution of the mean number of domains during

the quench for the points in the dashed box. For fast quenches the number of domains is still

decreasing at the end of our simulation.

and a22 are close to the measured values for
87

Rb, but that a12 is approximately half the

naturally occurring value, making our system strongly immiscible with ∆ = 0.25. We will

discuss this issue further in Sec. 9. Furthermore, we take the total number of atoms to be

N = 5 · 104 and the transverse trapping frequency ω⊥ = 2π · 2 kHz which sets the spin

healing length ξs = h̄/
√
2mρgs to be 1.5 times the transversal size of the system — enough

to freeze the transversal spin degrees of freedom. The spin interaction constant is given by

gs = (g11+g22−2g12)/2. We simulate phase transitions with quench times τQ over two order

of magnitudes, in the range [0.1, 125] ms. The large ratio between the number of particles N
and the number of simulated modes M = 1024 ensures the validity of the truncated Wigner

approximation [51].

The time evolution of the condensate density is shown in Fig. 2(a) where it is possible

to observe an example of the final pattern of domains. The number of domains formed

at the end of the simulation is identified as the number of zero crossings of the function

f(x) = |ψ1(x)|2 − |ψ2(x)|2. This method of domain counting can easily be adopted

experimentally by performing absorption imaging of the two components after Stern-Gerlach

separation [54, 55]. The mean number of formed domains Nd versus the quench time τQ is

plotted in Fig. 2(b). We fit the power law Nd = auni/τnQ to the results of the simulations

with τQ > 2 ms for which we simulated 1000 trajectories to minimise statistical uncertainty.

We find a scaling exponent of n = 0.341 ± 0.006 while auni = 8.63 ± 0.03. The scaling

exponent n is in good agreement with the theoretical prediction of the KZ theory n = 1/3,

obtained from Eq. (11) with the mean-field critical exponents ν = 1/2 and z = 1 as derived

in Appendix A and in Ref. [48].

The simulation data in Fig. 2(b) shows a deviation from the expected scaling behaviour

for fast quench times τQ < 2 ms. As quenches become faster (τQ decreases), the KZ

mechanism predicts a decreasing correlation length at the freezing time, and hence a smaller

J. Sabbatini, W. H. Zurek, M. J. Davis, Phys. Rev. Lett. 107, 230402 (2011). 



Theoretical results 

•  For 1D homogenous gas - scaling law agrees with KZ 
prediction  
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plotted in Fig. 2(b). We fit the power law Nd = auni/τnQ to the results of the simulations

with τQ > 2 ms for which we simulated 1000 trajectories to minimise statistical uncertainty.

We find a scaling exponent of n = 0.341 ± 0.006 while auni = 8.63 ± 0.03. The scaling

exponent n is in good agreement with the theoretical prediction of the KZ theory n = 1/3,

obtained from Eq. (11) with the mean-field critical exponents ν = 1/2 and z = 1 as derived

in Appendix A and in Ref. [48].

The simulation data in Fig. 2(b) shows a deviation from the expected scaling behaviour

for fast quench times τQ < 2 ms. As quenches become faster (τQ decreases), the KZ
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Experimental results (preliminary) 

•  Oberthaler group, Heidelberg. 
•  Tune ! = 0.78 using Feshbach resonance for g12 
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Experimental results (preliminary) 

•  Appear to see a scaling law 
consistent with KZ prediction 

•  Have also investigated time of 
defect seeding 

•  Currently attemping to measure 
critical exponent directly. 

•  But several complications: 
–  Inelastic losses 
–  Harmonically trapped 
–  Long domain formation time – 

growth of most unstable 
Bogoliubov mode. 
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OTHER NON-EQUILIBRIUM 
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Thermo-mechanical effect 

•  Thermo-mechanical effect: 
Karpuik et al., arXiv:1012.2225. 

•  Connect a hot and a cold BEC 
through a narrow channel. 

•  Observe superfluid flow from hot 
to cold. 
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FIG. 2. Sketch of the experimental time-sequence. Solid and
dashed lines correspond to linear time-ramps f(t) and h(t)
respectively.

two separate clouds containing each about 125000 atoms.
In all our simulations, the barrier parameters are fixed
at Vb = 432�osc and wb = 2.529�osc (≈ 10.6µm). The
full width at half-maximum (FWHM) of the barrier is
Wb = 2

√
ln 2wb = 4.21�osc (≈ 17.7µm). The height of

the barrier has been chosen much larger than kBT and
the chemical potential µ so that both thermal and con-
densed atoms cannot flow through the barrier, see Table
I.

As we can create the equilibrium state in a double-well
potential corresponding to different initial temperatures,
we can also easily prepare our system in a state where
temperatures in both wells are different. This can be
done by replacing the zero temperature component in
the right well by a nonzero temperature cloud as shown
in the third row of Fig.3. The numbers of atoms in each
well are approximately equal. We have designed all steps
of the preparation stage of the initial state of two sub-
systems with different temperatures having in mind a
possible and realistic experimental realization. Only the
last step, i.e. replacing the zero temperature component
in one subsystem by a finite temperature state has to
be done differently in the experiment. Heating only one
subsystem localized in a given well could be done by a
temporal modulation of the well, followed by a thermal-
ization.

B. Opening the channel between the two vessels

Having prepared two subsystems at different temper-
atures separated by the potential barrier, we can now
study their dynamics when a thin channel is rapidly
opened between the two wells. This is done by switch-
ing on the channel potential Vc(r, t) = Vc(r)h(t), where
the linear time-ramp h(t) starts after the equilibration of
the two subsystems created by the barrier, i.e. at time
t0 + 2τ , see Fig.2. Its duration has been fixed to τ/10 in
all our numerical simulations.

From an experimental point of view, there are various

FIG. 3. Three-dimensional surface plots of the trapping po-
tential and averaged atomic column density at the different
stages of the simulations. The upper row shows the ini-
tial harmonic trap (left) during the preparation of the initial
state. The corresponding atomic density at thermal equilib-
rium is shown on the right side. The second row shows the
double-well trap obtained by rising the barrier at the center
of the harmonic trap (left) and the corresponding equilib-
rium atomic density (right). The third row shows the den-
sity of atoms in the double-well trap at zero temperature
(left) and when the temperatures in each well are different
(right). In this example, the left well contains a pure con-
densate (T = 0) whereas the condensate fraction in the right
well is 20% (T = 100nK). The last row shows the two wells
connected through a thin channel (left). The corresponding
atomic density at some stage of the evolution is shown on the
right.

ways to create the channel potential Vc(r). For example,
starting from an harmonic trap, one could use two or-
thogonal sheets of blue-detuned laser light propagating in
the (Oy,Oz) plane. These two sheets build together the
barrier described earlier in this section and by putting
two obstacles along their direction of propagation, one
would create two shadows. Their intersection would open
the desired channel between the two wells but the min-
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Superfluid convection 

•  Lukas Gilz, James R. 
Anglin, Phys. Rev. Lett. 
107, 090601 (2011) 

•  1D Bose-Hubbard model 
•  Collisionless Bogoliubov 

approach using kinetic 
theory 

•  Observe superfluid 
convection from cold to 
hot reservoir. 
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Non-equilibrium steady states 

•  Make SGPE reservoir spatially dependent: µ(x), T(x), G(x). 
•  Classical field must find steady state between two 

reservoirs. 

•  Two species system 
–  One species acts as thermal reservoir. 
–  Second species is system. 

•  Opportunities for 
–  Superfluid turbulence at finite temperature 
–  Thermal counterflow 
–  Taylor-Couette flow (rotating cylinders) 
–  Non-equilibrium phase diagrams 
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, #cold! #hot!

dψ(x) = PC

�
− i

�LGPψ(x) dt+
G(x)

kBT (x)
(µ(x)− LGP)ψ(x) dt+ dWG(x, t)

�



Conclusions 

•  C-fields collectively describe 
–  Microcanoncial projected GPE (PGPE) 
–  Grand canonical stochastic projected GPE (SPGPE) 
–  Truncated Wigner approximation (TWA) 

•  Equilibrium thermodynamics  
–  Ergodicity -> can calculate equilibrium properties 

•  Non-equilibrium dynamics  
–  Manipulate reservoir: both temporally and spatially. 
–  Condensate formation 
–  Kibble Zurek mechanism – classical and quantum. 
–  Steady state flows 
–  Polariton condensates – see Michel Wouters talk. 
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UQ Quantum Gases - theory 

CRICOS Provider No 00025B 

Looking for PhDs – theory and experiment 


