BOSE-EINSTEIN CONDENSATION OF MAGNONS IN SUPERFLUID ³He-B and its applications to vortex studies

V.B. Eltsov, S. Autti, Yu.M. Bunkov, P.J. Heikkinen, J.J. Hosio, M. Krusius, M. Silaev, G.E. Volovik, V.V. Zavjalov

> Low Temperature Laboratory Aalto University

Aalto University

OVERVIEW

- 1. Superfluid ³He-B and traps for magnon quasiparticles.
- 2. Filling the ground and excited levels in the trap with magnons and spectroscopy of the trap levels.
- 3. Coherent precession of the ground- and excited-level condensates.
- 4. Interaction of the magnon condensates with the trapping potential (self-trapping).
- 5. Measurements of relaxation of magnon condensates in rotating ³He-B filled with vortex lines: A tool to observe vortex-core bound fermions.

SUPERFLUID ³He

Fermi system, which goes superfluid through Cooper pairing with S = 1 and L = 1.

SUPERFLUID ³He

Fermi system, which goes superfluid through Cooper pairing with S = 1 and L = 1.

Spin-orbit interaction:

Orbital momentum \Leftrightarrow spin precession

SUPERFLUID ³He

Fermi system, which goes superfluid through Cooper pairing with S = 1 and L = 1.

Spin-orbit interaction:

Orbital momentum \Leftrightarrow spin precession

In ³He-B in magnetic field net **L** and **S** = (χ/γ) **H** appear.

Connection $L \Leftrightarrow S$ is given by the *order parameter* \Rightarrow gradient energy

Magnon condensate in ³He-B: *coherently precessing* magnetization

$$\Psi(\mathbf{r}) \propto \sin \frac{\beta_M(\mathbf{r})}{2} e^{i\omega t + i\alpha(\mathbf{r})}$$

 $N_{\rm m}^{1/2} \propto M_{\perp}$

 $\omega \equiv \text{chemical potential}$

 $\alpha \equiv$ phase of wave function

Review: Bunkov and Volovik, arXiv:1003.4889

Magnon condensate in ³He-B: *coherently precessing* magnetization

$$\Psi(\mathbf{r}) \propto \sin \frac{\beta_M(\mathbf{r})}{2} e^{i\omega t + i\alpha(\mathbf{r})}$$
$$N_{\rm m}^{1/2} \propto M_{\perp}$$
$$\omega = \text{chemical potential}$$

 $\alpha \equiv$ phase of wave function

$$F_{\rm Z} = (\omega - \omega_{\rm L}) |\Psi|^2$$

Review: Bunkov and Volovik, arXiv:1003.4889

Magnon condensate in ³He-B: *coherently precessing* magnetization

$$\begin{split} \Psi(\mathbf{r}) &\propto \sin \frac{\beta_M(\mathbf{r})}{2} e^{i\omega t + i\alpha(\mathbf{r})} \\ N_m^{1/2} &\propto M_\perp \\ \omega &\equiv \text{chemical potential} \\ \alpha &\equiv \text{phase of wave function} \end{split}$$

$$\hat{\mathbf{l}} \text{ texture: radial trap} \\ F_{\text{so}} &\propto \sin^2 \frac{\beta_l}{2} |\Psi|^2 \qquad F_Z = (\omega - \omega_L) |\Psi|^2 \end{split}$$

Bunkov and Volovik, arXiv:1003.4889

"PERSISTENT" PRECESSION AT LOW TEMPERATURES

Discovered in Lancaster in pulsed NMR experiments at $T < 0.2T_c$

- \bullet Relaxation times up to $\sim 10^3$ s.
- Precession frequency increases during relaxation.
- Off-resonance excitation (even with noise) at higher frequencies.

"PERSISTENT" PRECESSION AT LOW TEMPERATURES

Discovered in Lancaster in pulsed NMR experiments at $T < 0.2T_c$

- Relaxation times up to $\sim 10^3$ s.
- Precession frequency increases during relaxation.
- Off-resonance excitation (even with noise) at higher frequencies.

These features (and more) find explanations in the picture of the magnon BEC in the magneto-textural trap.

(Bunkov and Volovik, PRL 98, 265302 (2007))

SELF-TRAPPING OF THE MAGNON BEC

SELF-TRAPPING OF THE MAGNON BEC

Texture is flexible, when β_M increases β_l tends to decrease: Magnon condensate forms a "bubble" with $\hat{\mathbf{l}} \parallel \mathbf{H}$.

SELF-TRAPPING OF THE MAGNON BEC

Texture is flexible, when β_M increases β_l tends to decrease: Magnon condensate forms a "bubble" with $\hat{\mathbf{l}} \parallel \mathbf{H}$.

- Harmonic trap transforms to a box with impenetrable walls.
 First example of BEC in a box.
- Texture-mediated interaction results in $d\mu/dN_m < 0$.
- Analog of the electron bubble in helium and of the MIT bag model of hadrons.

PRL 108, 145303 (2012)

FILLING TRAP WITH MAGNONS AT THE GROUND LEVEL

CW NMR: downward frequency (upward field) sweep.

Number of magnons $N_{\rm m} \propto M_{\perp}^2$ Chemical potential $\mu \propto f - f_{\rm L}$

$$d\mu/dN_{
m m} < 0$$

COHERENT PRECESSION OF THE MAGNON CONDENSATE

Condensation is demonstrated by long decay times of free precession.

COHERENT PRECESSION OF THE MAGNON CONDENSATE

Condensation is demonstrated by long decay times of free precession.

SCALING IN THE CYLINDRICAL BOX

Similar to electron bubble: $E(R_b) = N_m \frac{\hbar^2 \lambda_m^2}{2m_M R_b^2} + 2\pi R_b \sigma(R_b) \rightarrow \min$ β_M β_l kinetic energy of magnons surface energy \equiv orbital gradient $m_{\rm M}$ - magnon mass β_0 energy: - root of the Bessel λ_{m} $2\pi R_{\rm b}\xi_H \left(\frac{\beta_0}{\xi_H}\right)^2$ function ξ_H *r* → Scaling: $\sigma \propto \beta_0^2 \propto R_b^2 \Rightarrow R_b \propto N_m^{1/5}$ $R_{\rm b}$

SCALING IN THE CYLINDRICAL BOX

Similar to electron bubble: $E(R_b) = N_m \frac{\hbar^2 \lambda_m^2}{2m_M R_b^2} + 2\pi R_b \sigma(R_b) \rightarrow \min$ β_M β_l kinetic energy of magnons surface energy \equiv orbital gradient $m_{\rm M}$ - magnon mass β_0 energy: - root of the Bessel λ_{m} $2\pi R_{\rm b}\xi_H \left(\frac{\beta_0}{\xi_H}\right)^2$ function ξ_H r Scaling: $\sigma \propto \beta_0^2 \propto R_b^2 \Rightarrow R_b \propto N_m^{1/5}$ $R_{\rm b}$

For the magnetization:

$$f - f_{\rm L} \propto R_{\rm b}^{-2}$$

 $M_{\perp} \propto \int \sin \beta_M dV, \ N_{\rm m} \propto \int (1 - \cos \beta_M) dV$

$$\Rightarrow M_{\perp} \propto N_{\rm m}^{1/2} R_{\rm b} \propto R_{\rm b}^{7/2} \propto (f - f_{\rm L})^{-7/4}$$

• Relaxation time in the excited state is longer than in linear NMR (\sim 10 ms).

• Ground state is filled simultaneously – two coexsisting condensates.

MOTIVATION FOR RELAXATION STUDIES

Long life time of the magnon BEC in the $T \rightarrow 0$ limit (exceeding the life time of atomic condenstates) makes them a sensitive probe for extra relaxation sources.

We hope to find the contribution from the Majorana fermion zero modes bound to the surface of cores of quatized vortices by comparing relaxation of magnon condensates in different trap configurations.

BOUND FERMION STATES IN THE VORTEX CORE

Caroli, de Gennes, Matricon 1964

Andreev reflection

Radial quantum number n ($n_{max} \sim a/\xi$). Anomalous (crossing zero) branch n = 0.

Angular momentum $\mu = b \ p_{\perp}$, quantized. $\mu/\hbar = \begin{cases} m + 1/2, \text{ s-wave superconductors} \\ m, \text{ superfluid }^{3}\text{He} \end{cases}$ Minigap $\omega_{0} \sim \frac{\Delta}{a \ p_{F}} \sim \frac{1}{\hbar} \frac{\Delta^{2}}{E_{F}} \ll \frac{\Delta}{\hbar}.$ **RELAXATION IN THE VORTEX STATE**

Relaxation rate: $1/\tau = 1/\tau_0 + C \exp(-\Delta/T)$

RELAXATION IN THE VORTEX STATE

Relaxation rate: $1/\tau = 1/\tau_0(\Omega) + C(\Omega) \exp(-\Delta/T)$

TEMPERATURE DEPENDENCE OF RELAXATION

Spin diffusion via normal component (bulk thermal quasiparticles):

$$1/\tau \propto \rho_{\rm n} |\nabla \Psi|^2 \propto \rho_{\rm n} R_{\rm b}^{-2} \propto \exp(-\Delta/T) \omega_r$$

DEPENDENCE OF RELAXATION ON VORTEX DENSITY

Vortices definitely contribute to the relaxation of magnon condensates. Is the effect related to the fermions bound to vortex cores?

BROKEN SYMMETRY OF VORTEX CORES IN ³He-B

Broken symmetry core Axisymmetric core

Ikkala, Hakonen, Bunkov, Krusius et al 1982-Salomaa, Volovik, Thuneberg et al

BROKEN SYMMETRY OF VORTEX CORES IN ³He-B

Ikkala, Hakonen, Bunkov, Krusius et al 1982-Salomaa, Volovik, Thuneberg et al

DAMPING OF SPIN PRECESSION VIA VORTEX CORES

Torque from precessing magnetic moment puts vortex core in twisting motion (oscillations / precession)
↓
Transitions between the core-bound fermion states are triggered and the core gets overheated

Dissipation

(Kopnin and Volovik, 1998)

Core of the non-axisymmetric vortex

Μ

CONCLUSIONS

- For the coherently precessing magnon condensate in a magneto-textural trap in ³He-B the trap transforms with increasing magnon number from a harmonic well to a cylindrical box: bosonic analogue of the electron bubble in helium and of the MIT bag model of hadrons.
- Unlike cold-atom case, in the magnon trap different excited levels can be selectively populated with condensates.
- Relaxation rate of magnon condensates depends on temperature and the trap size as expected for the spin diffusion relaxation mechanism.
- In the vortex state relaxation rate has an additional contribution, which grows linearly with the density of vortices. Whether this contribution can be attributed to the Majorana fermions bound to vortex cores remains to be established.

PRL 108, 145303 (2012)