

Instability in an expanding non-Abelian system

Kenji Fukushima

(Department of Physics, Keio University)

Why "expanding"?

Relativistic Heavy-Ion Collision

RHIC

LHC

$\underset{(\mathrm{Au}, \mathrm{Pb}, \ldots)}{\text { Heavy-ions collide }} \rightarrow \underset{\text { (Quark-gluon plasma) }}{\text { A new state of matter }}$

Relativistic Heavy-Ion Collision

LHC: $\sqrt{s_{N N}}=2.7 \mathrm{TeV} \rightarrow \gamma \sim 1400$
RHIC: $\sqrt{s_{N N}}=200 \mathrm{GeV} \rightarrow \gamma \sim 100$

Thermalization achieved (elliptic flow by a hydro-model)
Initial temperature $>200 \mathrm{MeV}$ (distribution of thermal photon)

Schematic View of Four Regimes

> Soft and coherent gluons Color Glass Condensate Initial (quantum) fluctuations

Instabilities \rightarrow (toward) Isotropization
Glass + Plasma = Glasma
Quantum fluctuations
Particle (entropy) production \rightarrow Thermalization

Hydrodynamic evolution + cascade Relativistic Hydrodynamics

$$
\begin{aligned}
& \tau<Q_{s} \\
\sim & 0.1 \mathrm{fm} / \mathrm{c}
\end{aligned}
$$

$0.1 \mathrm{fm} / \mathrm{c}$
$\sim 1 \mathrm{fm} / \mathrm{c}$
$1 \mathrm{fm} / \mathrm{c}$
$\sim 10 \mathrm{fm} / \mathrm{c}$

Hadronization \rightarrow Observation
 Particle yields, distributions

Missing Link

Soft and coherent gluons Color Glass Condensate (CGC) Initial (quantum) fluctuations

$$
\begin{gathered}
\tau<Q_{s} \\
\sim 0.1 \mathrm{fm} / \mathrm{c}
\end{gathered}
$$

If starting with the CGC what the "theory" predicts?

Instabilities \rightarrow Isotropization
Glass + Plasma = Glasma
Quantum fluctuations
Particle (entropy) production

$$
\rightarrow \text { Thermalization }
$$

$0.1 \mathrm{fm} / \mathrm{c}$
$\sim 1 \mathrm{fm} / \mathrm{c}$

Why "non-Abelian"?

Degrees of Freedom

QED

2 photons
4 electrons (positrons)

QCD

16 gluons How can we neglect quarks
$24 \sim 36$ quarks though there are more quarks than gluons in nature?
(c.f. QCD thermodynamics)

Parton Distribution Function

Valence and Sea Quarks and Gluons

proton
valence quark constituent
sea-quarks
gluons

$$
x q_{\text {valence }}(x)
$$

x : momentum fraction carried by a parton

Data from HERA

Quantum Evolution of PDFs at fixed Q^{2}

In the soft components of the nucleon wave-function, gluon is dominant.

Soft physics $<1 \mathrm{GeV}$

100 GeV
(RHIC)

Saturation

Gluons eventually cover the transverse area:

Nucleon moving at the speed of light

Naive condition for saturation:

$$
x g(x, Q) /\left(N_{c}^{2}-1\right) Q^{2} \pi R^{2} \sim \frac{1}{\alpha_{s} N_{c}} \sim 1
$$

Once it happens, only $Q_{s}(x)$ fixes the physical scale!

Scaling Behavior

Dipole Cross Section in a Saturation Model

$$
\begin{aligned}
& \sigma_{\gamma^{*} p}\left(x, Q^{2}\right) \rightarrow \sigma_{\gamma^{*} p}\left(Q^{2} / Q_{s}^{2}(x)\right) \\
& Q_{s}^{2}(x)=Q_{0}^{2}\left(x / x_{0}\right)^{-\lambda}
\end{aligned}
$$

Golec-Biernat-Wuesthoff
Stasto-Golec-Biernat-Kwiecinski Plot
Geometric Scaling
Q_{s} as a function of x is fixed

$$
\begin{aligned}
& Q_{0}=1 \mathrm{GeV} \\
& x_{0}=3.04 \times 10^{-4} \\
& \lambda=0.288
\end{aligned}
$$

Saturation is sufficient for scaling, but not necessary to it.

"Effective Theory" of Saturation

Wave-function $W_{x}[\rho] \rightarrow$ Classical sol. $\boldsymbol{A}[\rho] \rightarrow$ Observable

Kovner, McLerran, Weigert, Iancu, Jalilian-Marian, Leonidov, ...

McLerran-Venugopalan (MV) Model

Gaussian Approximation:

McLerran-Venugopalan (1993)

$$
\begin{aligned}
& W_{x}[\rho]=\exp \left[-\int d^{3} x \frac{|\rho(x)|^{2}}{2 g^{2} \mu_{x}^{2}}\right] \quad \mu_{x} \text { is related to } Q_{s}(x) \\
& \text { larger } \boldsymbol{\mu}_{\boldsymbol{x}}=\operatorname{larger} \boldsymbol{\rho}=\mathbf{d e n s e} \text { gluons }=\text { larger } \boldsymbol{Q}_{s}
\end{aligned}
$$

Now we know that fluctuations are important for v_{3}, v_{4}, etc, but in a zero-th order approximation, this description should make sense as a good starting point... but!?

Why "instability"?

Schematic Picture before Collision

Two nuclei do not talk to each other Just one color-source problem

No longitudinal fields but only transverse fields attached on the nucleus sheet

Initial Condition

Fields made by colliding two sources

Initial condition is known on the light-cone

$$
\begin{aligned}
& \mathcal{A}_{i}=\alpha_{i}^{(1)}+\alpha_{i}^{(2)} \\
& \mathcal{A}_{\eta}=0 \\
& E^{i}=0
\end{aligned}
$$

$$
E^{\eta}=i g\left[\alpha_{i}^{(1)}, \alpha_{i}^{(2)}\right]
$$

Kovner-McLerran-Weigert (1995)

Intuitive Picture of "Glasma"

McLerran-Lappi (2006)

Schematic Picture after Collision

What is the initial condition in the HIC?

Negative longitudinal pressure
Topological charge density \rightarrow Chiral magnetic effect
KF-Kharzeev-Warringa

Equations of Motion to be Solved

Coordinates

proper time $\quad \tau=\sqrt{t^{2}-z^{2}}$
rapidity $\quad \eta=\frac{1}{2} \ln [(t+z) /(t-z)]$

Equations to be solved

$$
D_{\mu} F^{\mu v}=j^{v}=0
$$

Formulations

Time Evolution

$$
\begin{aligned}
& E^{i}=\tau \partial_{\tau} A_{i}, \quad E^{\eta}=\tau^{-1} \partial_{\tau} A_{\eta} \\
& \partial_{\tau} E^{i}=\tau^{-1} D_{\eta} F_{\eta i}+\tau D_{j} F_{j i} \\
& \partial_{\tau} E^{\eta}=\tau^{-1} D_{j} F_{j \eta}
\end{aligned}
$$

Classical Equations of Motion in the Expanding System (c.f. Gross-Pitaevskii eq.)

Ensemble Average
$\langle\langle\mathcal{O}[A]\rangle\rangle_{\rho_{t}, \rho_{p}} \sim \int D \rho_{t} D \rho_{p} W_{x}\left[\rho_{t}\right] W_{x},\left[\rho_{p}\right] \mathcal{O}\left[\boldsymbol{A}\left[\rho_{t}, \rho_{p}\right]\right]$
Quantum fluctuations partially included in the initial state

Physical Degrees of Freedom

$$
\begin{array}{lc}
A_{x}^{a}(\tau, \nsupseteq, x, y) & A_{y}^{a}(\tau, \nsupseteq, x, y) \\
A_{\eta}^{a}(\tau, \nsupseteq, x, y) & A_{\tau}^{a}=0 \\
E_{x}^{a}(\tau, \nsupseteq, x, y) & E_{y}^{a}(\tau, \nsupseteq, x, y) \\
E_{\eta}^{a}(\tau, \not \chi, x, y) & \eta \text {-dep drops from the init. cond. } \\
a=8 \text { (adjoint with red, green, blue) } \quad 48 \text { fields }
\end{array}
$$

\rightarrow Simplify from 48 to 18 by assuming $a=3$ (2colors)

Initial Configurations

Solve the Poisson Eq
$\partial_{\perp}^{2} \Lambda^{(m)}\left(\boldsymbol{x}_{\perp}\right)=-\rho^{(m)}\left(\boldsymbol{x}_{\perp}\right)$

Transverse Distribution

nucleus

Gauge Configuration

$$
e^{-i g \Lambda\left(\boldsymbol{x}_{\perp}\right)} e^{i g \Lambda\left(\boldsymbol{x}_{\perp}+\hat{i}\right)}=\exp \left[-\mathrm{i} g \alpha_{i}\left(\boldsymbol{x}_{\perp}\right)\right]
$$

No structure because of the Gaussian wave-function (this part improvable)

Chromo-Electric and Magnetic Fields

Longitudinal and Transverse Fields

Lappi-McLerran (2006)
Fukushima-Gelis (2011)

Longitudinal and Transverse Pressure

$$
\begin{aligned}
& P_{T}=\frac{1}{2}\left\langle T^{x x}+T^{y y}\right\rangle=\left\langle\operatorname{tr}\left[E_{L}^{2}+B_{L}^{2}\right]\right\rangle, \\
& P_{L}=\left\langle\tau^{2} T^{\eta \prime \prime}\right\rangle=\left\langle\operatorname{tr}\left[E_{T}^{2}+B_{T}^{2}-E_{L}^{2}-B_{L}^{2}\right]\right\rangle
\end{aligned}
$$

(Almost)
free-streaming
Isotropization
$P_{T}=P_{L}$

Fukushima-Gelis (2011)

Negative Longitudinal Pressure

Flux tubes have a positive energy

How It should Look Like Later

What Is Missing

Boost Invariant \boldsymbol{E} and \boldsymbol{B}
 \sim QCD string

Instability

c.f. Plasma instability by

Rebhan
Simulations by Berges, Sexty, Kunihiro, Iida

String breaking \rightarrow Particle production (Schwinger mechanism)

Expectation

$$
\begin{aligned}
& P_{T}=\frac{1}{2}\left\langle T^{x x}+T^{y y}\right\rangle=\left\langle\operatorname{tr}\left[E_{L}^{2}+B_{L}^{2}\right]\right\rangle \\
& P_{L}=\left\langle\tau^{2} T^{\eta \eta}\right\rangle=\left\langle\operatorname{tr}\left[E_{T}^{2}+B_{T}^{2}-E_{L}^{2}-B_{L}^{2}\right]\right\rangle
\end{aligned}
$$

Classical Statistical Simulation

Boost Invariant \boldsymbol{E} and \boldsymbol{B}

Classical Dynamics $+$
 Small Fluctuations

What is the dynamics
 of the background E and B ?

How fluctuations grow?

Boost Invariant Background Again

Longitudinal and Transverse Fields

June 23, 2012 @ RETUNE in Heidelberg

Mode Analysis

Two Drawbacks

Wiggle by Hand (just for a test)

Nithto

Does this tell us anything?

Comments

— If a BEC-like content is seen (see a talk by J.-P. Blaizot), it should be in the transverse plane on which the gluon distribution is characterized by $Q s$.

- This means, even if a BEC-like behavior exists, it has nothing to do with the isotropization.
It may be on a path to thermalization, but it does not help the problem of negative longitudinal pressure.
- Zero-mode implies homogeneous background fields, which would lead to instabilities (such as one of the Nielsen-Olesen type).

Boost-Invariance Violation

Boost-invariant Glasma sits on the top of the

 potential maximum (seemingly stable without any perturbation)What is the "seed"? How it spreads?

η-dependent fluctuations
Complete isotropization may not be necessary, nevertheless the free-streaming should not be right.
(How much anisotropy is reasonably accepted?)

Schematic View of Instability

Time Evolution of Fluctuations under Instability

Stable
Potential

Gaussian Fluctuation

Unstable

Classical evolution is a good approximation unless the potential is flat.

Singularity
(Heavy-Ion Collision)

Physical Degrees of Freedom

$$
\begin{array}{ll}
A_{x}^{a}(\tau, \eta, x, y) & A_{y}^{a}(\tau, \eta, x, y) \\
A_{\eta}^{a}(\tau, \eta, x, y) & A_{\tau}^{a}=0 \\
E_{x}^{a}(\tau, \eta, x, y) & E_{y}^{a}(\tau, \eta, x, y) \\
E_{\eta}^{a}(\tau, \eta, x, y) & \begin{array}{l}
\delta E^{i}(\eta, x, y) \delta E^{\eta}(\eta, x, y) \\
\delta A^{i}(\eta, x, y) \delta A^{\eta}(\eta, x, y)
\end{array}
\end{array}
$$

Disturb the system by $\boldsymbol{\eta}$-dep fluctuations at $\tau=\tau_{0}$
Fluctuation patterns: Fukushima-Gelis-McLerran (2006)
Dusling-Gelis-Venugopalan (2011), Dusling-Epelbaum-Gelis-Venugopalan

Instabilities in the Classical Pure YM

Romatschke-Venugopalan (2005)

Kunihiro et al. (2010)
Berges-Boguslavski-Schlichting (2012)

Weibel instability Nielsen-Olesen instability

 Parametric resonance etc...Complementary to the plasma inst. (Rebhan) June 23, 2012 @ RETUNE in Heidelberg

Small (Minimal) Disturbance

Amplitudes spread from lower to higher wavenumber modes

Because the zero-mode background is so huge, it keeps supplying the energy (or particle) injection.

Fourier-mode of the longitudinal pressure
June 23, 2012 @ RETUNE in Heidelberg

Amplitude Decay from Zero-Mode

N

How this mode grows

Evolution of Longitudinal Spectrum

Some scaling seen at unphysical late time

Weak non-linearity remains even in a dilute system

Comments

Expanding systems are simpler at large time scale.

$$
\begin{aligned}
& E^{i}=\tau \partial_{\tau} A_{i}, \quad E^{\eta}=\tau^{-1} \partial_{\tau} A_{\eta} \\
& \partial_{\tau} E^{i}=\tau^{-1} D_{\eta} F_{\eta i}+\tau D_{j} F_{j i} \\
& \partial_{\tau} E^{\eta}=\tau^{-1} D_{j} F_{j \eta}
\end{aligned}
$$

Asymptotic Behavior

$$
\begin{array}{ll}
E^{i} \sim \tau^{1 / 2} & E^{\eta} \sim 1 / \tau^{1 / 2} \\
A_{i} \sim 1 / \tau^{1 / 2} & A_{\eta} \sim \tau^{1 / 2}
\end{array}
$$

Leading-order is "free" equations \rightarrow Bessel functions

Soft-modes dominant in non-linearity \rightarrow Zero-mode

Mode Decaying from IR to UV in 1D

Summary I

- Boost-invariant background fields should be a right description for the relativistic heavy-ion collision in the first approximation at infinitely high energy.
$■$ Only one characteristic scale Q_{s} in this limit.
- Background fields have a peculiar pattern - strong longitudinal E and B fields - which should be disturbed by fluctuations and particle productions.
- Transverse and longitudinal dynamics so different. Entangled to speed up isotropization.

Summary II

- There are (almost always) choices that lead to desired results. Need careful considerations.

Choice of the universal parameter
Choice of the fluctuation strength
Choice of the background fields

- Nevertheless, the (classical) pure YM system is a complicated non-linear system and it is still interesting to investigate long-time behavior.

Many types of instabilities
Strong-coupling limit (from a holographic dual)
Chaos, Topological defects, Turbulence

