Cosmodynamics

Quintessence and solution of cosmological constant problem should be related !

Cosmon and fundamental mass scales

Assume all mass parameters are proportional to scalar field χ (GUTs, superstrings,...)
 M_p~ χ, m_{proton}~ χ, Λ_{QCD}~ χ, M_W~ χ,...
 χ may evolve with time
 m_n/M : (almost) constant - *observation* !

Only ratios of mass scales are observable

Dirac's hypothesis

The very small dimensionless numbers in physics are due to huge age of the universe.

(A) may be true for ratio of dark energy over M⁴ (B) nucleon mass m_m / H_p ≈ 10⁻¹⁸
 | d/dt ln (mm/H) | < 3 · 10⁻¹⁵ yr⁻¹
 from Oklo + GUT
 less stringent direct bounds
 ⇒ today essentially settled !
 (perhaps more substantial evolution in very early cosmology)

Dilatation symmetry

Lagrange density:

$$L = \sqrt{g} \left(-\frac{1}{2}\chi^2 R + \frac{1}{2}(\delta - 6)\partial^{\mu}\chi\partial_{\mu}\chi + V(\chi) + h\chi\overline{\psi}\psi\right)$$

Dilatation symmetry for

$$V = \lambda \chi^4, \ \lambda = const., \delta = const., h = const.$$

■ Conformal symmetry for $\delta = 0$

Dilatation anomaly

- Quantum fluctuations responsible for dilatation anomaly
- Running couplings:

$$\partial\lambda/\partial\ln\chi=-A\lambda\,,\,\partial\delta/\partial\ln\chi=E\delta^2$$

V~χ^{4-A} , M_p(χ)~ χ
 V/M_p⁴ ~ χ^{-A} : decreases for increasing χ !!
 E>0 : crossover quintessence

Cosmology

- Cosmology : χ increases with time !
 (due to coupling of χ to curvature scalar)
 " late time cosmology explores the
 ultraviolet"
- for large χ the ratio V/M⁴ decreases to zero

Effective cosmological constant vanishes asymptotically for large t !

Weyl scaling

Weyl scaling :
$$g_{\mu\nu} \rightarrow (M/\chi)^2 g_{\mu\nu}$$
,
 $\phi/M = \ln (\chi^4/V(\chi))$

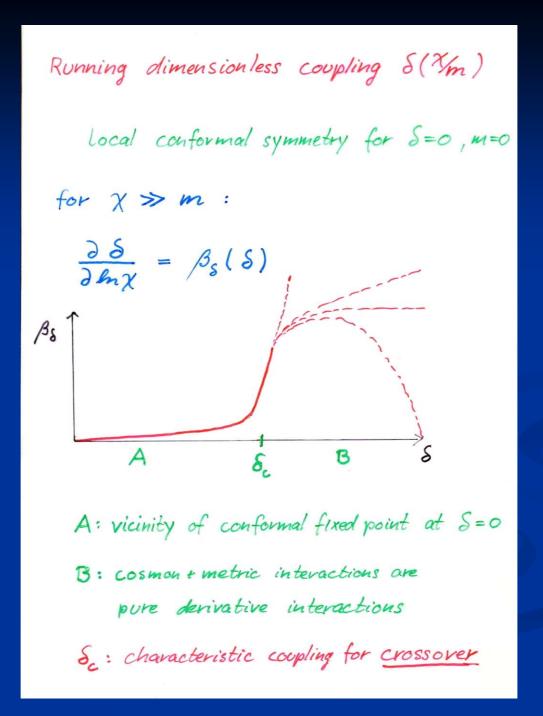
$$L = \sqrt{g} \left(-\frac{1}{2}M^2R + \frac{1}{2}k^2(\phi)\partial^{\mu}\phi\partial_{\mu}\phi + V(\phi) + m(\phi)\overline{\psi}\psi\right)$$

Exponential potential : $V = M^4 \exp(-\varphi/M)$ No additional constant !

Crossover Quintessence

$$\partial \delta / \partial \ln \chi = E \delta^2$$

(like QCD gauge coupling)


critical χ where δ grows large critical ϕ where k grows large

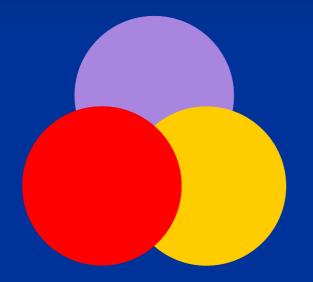
k²(φ)=δ(χ)/4

 $k^{2}(\phi) = (1/(2E(\phi_{c} - \phi)/M)))$

if $\phi_c \approx 276/M$ (tuning !)

Relative increase of dark energy in present cosmological epoch

example :


 $\beta_{S} = E S^{2} \qquad (\delta_{c} \approx 1/E)$ $\delta = \frac{1}{E \ln(\chi_{c}/\chi)}$

characteristic crossover scale Xc define $\delta_i = \delta(\chi = m)$ $\Rightarrow \frac{\chi_c}{m} = \exp \frac{1}{ES_i}$ ("Landau pole") $\frac{\chi_e}{m} \gg 1$ for $S_i \approx \frac{1}{138E}$: => realistic cosmology

scenario, where a) " cosmological constant" vanishes for too V~exp-q, not exp-q+c b) before present epoch: S varies slowly She small, but not tiny in the past ! c) " today" linked to small number in fundamental theory ES: ~ 1 / 138 One could hope for explanation of " cosmic coincidences" that relate Ho/Mp to fundamental parameters $\frac{H_0}{F_{12}} \approx \frac{1}{3} \exp -\frac{1}{S_i E}$

"Fundamental" Interactions

Strong, electromagnetic, weak interactions

On astronomical length scales:

graviton

cosmon

gravitation cosmodynamics

New long - range interaction

cosmon mass

for standard kinetic term $m_c^2 = V$ "

for standard exponential potential, k = const. $m_c^2 = V''/k^2 = V/(k^2 M^2)$ $= 3 \Omega_h (1 - w_h) H^2/(2 k^2)$

Are fundamental "constants" time dependent ?

Fine structure constant α (electric charge)

Ratio nucleon mass to Planck mass

"Fifth Force"

Mediated by scalar field

R.Peccei, J.Sola, C.Wetterich, Phys.Lett.B195, 183(1987)

Coupling strength: weaker than gravity (nonrenormalizable interactions $\sim M^{-2}$) Composition dependence \implies violation of equivalence principle Quintessence: connected to time variation of fundamental couplings C.Wetterich, Nucl.Phys.B302,645(1988) Quintessence and Time dependence of "fundamental constants"

Fine structure constant depends on value of cosmon field : α(φ)

(similar in standard model: couplings depend on value of Higgs scalar field)

Time evolution of φ Time evolution of α

Jordan,...

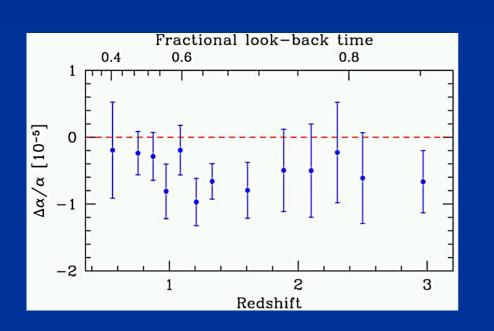
Field dependent gauge coupling (gauge invariance maintained)

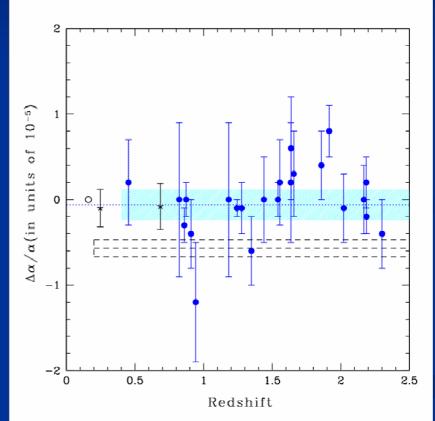
 $\mathcal{L}_{g} = \frac{1}{4} Z_{F}(\chi) F^{\mu\nu} F_{\mu\nu}$

renormalized gauge coupling

 $g^{2}(\chi) = \bar{g}^{2} Z_{F}^{-\prime}(\chi)$

for GUT : C.Hill; Q.Shafi, CW


GUT : running of electromagnetic and strong gauge coupling related


$$\begin{aligned} \alpha_{em}^{-1}(m_{e}) &= \frac{32\pi Z_{F}(\chi)}{3\overline{g}^{2}} + \frac{5}{3\pi} \ln \frac{M_{cur}}{M_{W}} \\ &+ \frac{10}{3\pi} \ln \frac{M_{W}}{m_{h}} + \frac{2}{\pi} \ln \frac{m_{h}}{m_{e}} \\ \frac{\Delta(m_{h}/M)}{(m_{h}/M)} &= 39.1 \frac{\Delta \alpha_{em}}{\alpha_{em}} \end{aligned}$$

strong effect from variation of nucleon mass for time dependent couplings ! X.Calme

X.Calmet, H.Fritzsch

Variation of fine structure constant as function of redshift

Webb et al

Srianand et al

Variation of fine structure constant

Three independent data sets from Keck/HIRES

 $\Delta \alpha / \alpha = -0.54 (12) 10^{-5}$ Murphy,Webb,Flammbaum, june 2003

VLT

 $\Delta \alpha / \alpha = -0.06 (6) 10^{-5}$

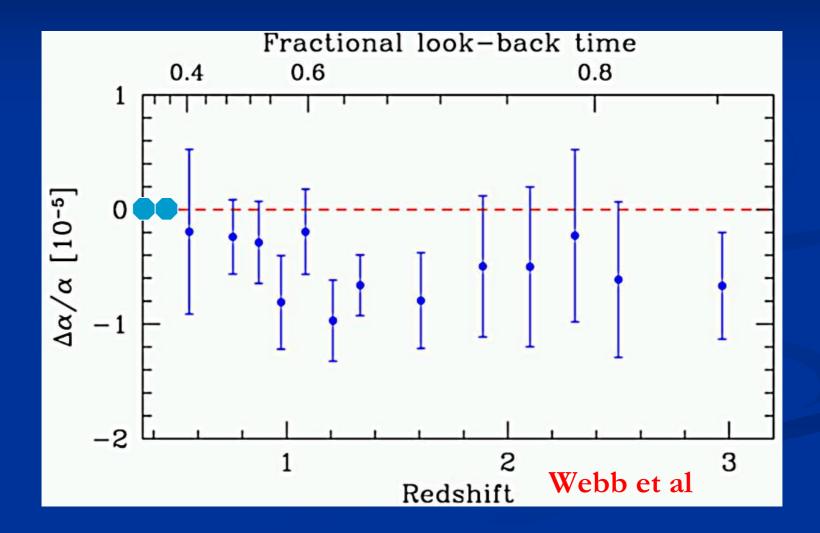
Srianand, Chand, Petitjean, Aracil, feb. 2004

 $z \approx 2$

Crossover quintessence and time variation of fundamental "constants"

Upper bounds for relative variation of the fine structure constant

■ Oklo natural reactor $\Delta \alpha / \alpha < 10^{-7}$ z=0.13 ■ Meteorites (Re-decay) $\Delta \alpha / \alpha < 3 \ 10^{-7}$ z=0.45


Crossover Quintessence leads to small variation of couplings at low z as compared to z ≈ 2 ! Time evolution of fundamental couplings traces time evolution of quintessence

today w_h close to -1:

Small kinetic energy
 Slow change of φ
 Slow change of α

Very small $\Delta \alpha / \alpha$ for low z !

Variation of fine structure constant as function of redshift

Cosmon and time variation of couplings

small coupling of cosmon to matter due to fixed points behavior

Dimensional transmutation

 α_{x} : Unified gauge coupling at Unification scale $M_{x} \sim \chi$

running $d_{\chi}(\chi)$: $\frac{\partial d_{\chi}}{\partial l_{\chi}\chi} = b_{\chi}d_{\chi} - b_{\chi}d_{\chi}^{2}$ $\frac{\partial l_{\chi}\chi}{\partial l_{\chi}\chi} = b_{\chi}d_{\chi} - b_{\chi}d_{\chi}^{2}$ IR - scale where α_{χ} grows large: \underline{m} UV - fixed point reached for $\chi \gg m$ $\alpha_{\chi_{\#}} = \frac{b_{Z}}{b_{\Psi}} \approx \frac{1}{40}$

close to fixed point : small time evolution of couplings coupling to matter weaker than gravitational strength

dependence of fixed point on δ could induce observable effect

$$\frac{\partial \alpha_{x}}{\partial l_{n\chi}} = 0.2 \alpha_{\chi} - 8 \alpha_{\chi}^{2} - b_{\zeta} \alpha_{\chi}^{3} \left(6 - \frac{\delta}{1+6\delta}\right)$$

adjusting b_6 to reproduce results by Webb et al:

$$\Delta d_{em} / d_{em} \text{ for various } Z$$

$$Z: \begin{bmatrix} 0.13 \\ 0.45 \end{bmatrix} = 2 \\ 10^{10} \\ \Delta x \\ -1.7 \cdot 10^{-7} \\ -8.2 \cdot 10^{-7} \\ -7 \cdot 10^{-6} \\ -7.8 \cdot 10^{-5} \end{bmatrix}$$

$$differential \ acceleration : y = 4.4 \cdot 10^{-14}$$

smaller for Srianand et al !

Realistic example, crossover quintessence
$E=5 \qquad \left(\frac{\partial S}{\partial h_{\chi}}=5S^{2}\right)$
$h = 0.66$, $\Omega_{R}^{(0)} = 0.7$
$w_{R}^{(0)} = -0.93$
t ⁽⁰⁾ = 13.7 · 10° yr
$l_3 = 796$, $G_8 / G_8^{(n)} = 0.7$

Time variation of coupling constants is tiny –

would be of very high significance !

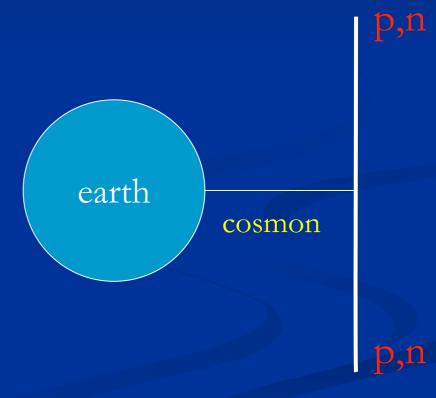
Possible signal for Quintessence

Cosmodynamics

Cosmon mediates new long-range interaction

Range : size of the Universe – horizon

Strength : weaker than gravity


photonelectrodynamicsgravitongravitycosmoncosmodynamicsSmall correction to Newton's law

Violation of equivalence principle

Different couplings of cosmon to proton and neutron

Differential acceleration

Violation of equivalence principle

Differential acceleration η

For unified theories (GUT):

 $\eta = -1.75 \ 10^{-2} \Delta R_z \left(\frac{\partial \ln \alpha}{\partial z}\right)^2 \frac{1+Q}{\Omega_h (1+w_h)}$

 $\Delta R_z = \frac{\Delta Z}{Z+N} \approx 0.1$

η=∆a/2a

Q : time dependence of other parameters

Link between time variation of α

and violation of equivalence principle

typically : $\eta = 10^{-14}$

if time variation of α near Oklo upper bound

to be tested by MICROSCOPE

 $(1) \quad \alpha_{\chi}(\varphi) \to \Lambda_{oco}(\varphi) \to m_{n}(\varphi)$

nucleon mass depends on value of the cosmon field (and therefore on time)

(2)expand around cosmological value $\varphi_o(t)$: $\varphi(\vec{x},t) = \varphi_0(t) + S\varphi(\vec{x},t)$ $m_m = m_m(q_0) + \frac{\partial m_m}{\partial \varphi} | q_0 \delta \varphi$ ⇒ cosmon - nucleon vertex ~ mm Sp n Sq =) earth is source for surrounding local cosmon field Sp(171)

(3) Test body carries effective
" cosmon charge"

$$Q_{c} = k^{-1} \frac{\partial m_{t}}{\partial \varphi}$$
to be compared with "gravitational charge"

$$Q_{g} = \frac{m_{t}}{\sqrt{2}} \frac{\partial q}{\partial \varphi}$$

$$\Rightarrow Correction to Newtonian potential
$$V_{N} = -\frac{G_{N}Mm_{t}}{T} (1 + \alpha_{t})$$

$$\alpha_{t} = \frac{2\overline{M}_{p}^{2}}{k^{2}} \frac{\partial lmM}{\partial \varphi} \frac{\partial lmm_{t}}{\partial \varphi}$$
(4) Protons and neutrons have different
cosmon charges, $\frac{\partial m_{p}}{\partial \varphi} \neq \frac{\partial m_{m}}{\partial \varphi}$$$

This leads to differential acceleration !

observation $191 < 3 \cdot 10^{-13}$ Baessler et al.

Atomic clocks and OKLO

Atomic clocks: $\frac{d_{em}}{d_{em}} = -5.4 \cdot 10^{-10} \frac{\Delta d_{em}}{d_{em}} (z = 0.13) \, \text{yr}^{-1}$ observation <u>dem</u> = (4.2±6.9).10 - 15 yr -1 Sortais et al.

assumes that both effects are dominated by change of fine structure constant

small change of couplings in space

Fine structure constant depends on location in space (satellites!) r=2R: Sdem = 3.10-19 k-2

 $_{\rm o} \ \Omega_{\rm h} = 0.7$

• Q/Λ : dynamical und static dark energy will be distinguishable

• Q : time varying fundamental coupling "constants"

violation of equivalence principle

SSSSSSSSSSSSSSSSSSSSSSSSS

Why becomes Quintessence dominant in the present cosmological epoch ?
Are dark energy and dark matter related ?
Can Quintessence be explained in a fundamental unified theory ?

Cosmon dark matter

Can the cosmon account for dark matter ?

Scalar field (cosmon) can vary in space

 $\varphi(\vec{x},t) = \varphi_{0}(t) + \chi(\vec{x},t)$

quintessence, homogeneous dark energy cosmon fluctuations, cosmon dark energy

 $\varphi_o(t) = \frac{1}{V} \int d^3x \ \varphi(\vec{x}, t)$

cosmological expectation value

* similar to gravety * different for gauge bosons, fermions energy density in cosmon fluctuations pe $g_{c} = \frac{1}{2} \int \frac{d^{3} k}{(2\pi)^{3}} \left\{ \left| \dot{\chi}_{k} \right|^{2} + \left(\frac{k}{q^{2}} + V''(q_{o}) \right) \left| \chi_{k} \right|^{2} \right\}$ + higher order terms } quintessence Sa

 $g_{q} = \frac{1}{2} q_{0}^{2} + V(q_{0}) = T + V$

Different equation of state for Sc, Sq ? w = p/gWell possible ! e.g. of pe dominated by modes inside the horizon, $\frac{k^2}{2^2} \gg H^2$ · neglect higher order terms a) $\frac{k^2}{a^2} \gg V'' \Rightarrow \frac{Pe}{f_2} = \frac{1}{3}$, vadiation $b) \frac{k^2}{a^2} \ll V'' \Longrightarrow \frac{p_2}{g_2} = 0, matter$ but $\frac{Pq}{Pq} = \frac{1-V}{T+V}$, can be negativ.

most quintessence models :

 $V'' \approx H^2$

 $\implies \frac{P_c}{P_c} = \frac{1}{3} \qquad OF$

nonlinear terms play a role

one can construct models with $V'' \gg H^2$ (Matos et al.)

=> cosmon dark matter

 $(H \approx 10^{-33} eV)$

Can nonlinear effects induce an effective dynamical mass term ?

Why has quintessence become

important now 2

d Sh $= - 3 w_R \, \Omega_R \left(1 - \Omega_R \right)$ dena (a>aeg)

a) properties of cosmon potential or kinetic term (i) Late quintessence $w_k \approx const$, $(w_k < -\frac{1}{3})$ She negligible in early cosmology needs tiny parameter like cosmological constant, V(ap)/Mp = 10 - many (ii)early quintessence -R changes only modestly Wh changes with time special feature in cosmon potential or kinetic term becomes important "now", "tuning" at % level

b) quintessence reacts to "special event" in cosmology * onset of Matter dominance k - essence Amendariz-Picon, Mukhanov, Steinhardt

needs higher derivative kinetic term

* appearance of non-linear structure

"back reaction effect"

scalar evolution equation

 $\langle \ddot{\varphi} + 3H\dot{\varphi} + V'(\varphi) \rangle = 0$ $\mathcal{O} = \hat{q}_{0} + 3H\hat{q}_{0} + V'(q_{0}) + V''(q_{0})(\chi) + \frac{1}{2}V'(q_{0})(\chi)$ fluctuation effect backreaction (In principle, same for metric, but small effect) * Needs large inhomogeneities in cosman field after structure has formed

* Local cosmon field participates in structure

Need for understanding of

fluctuations an nonlinear level

Non-equilibrium QFT

