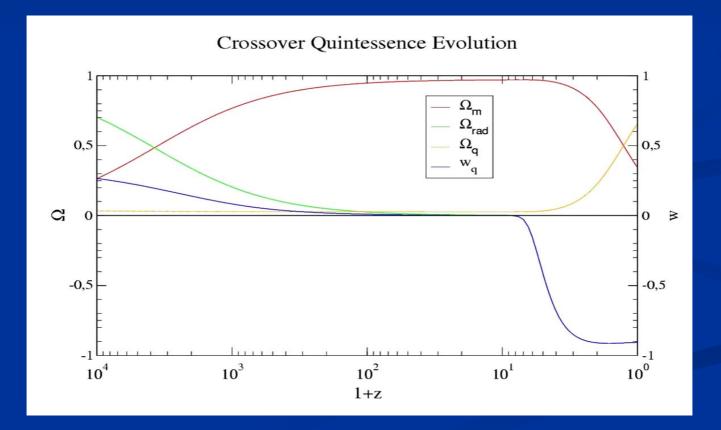
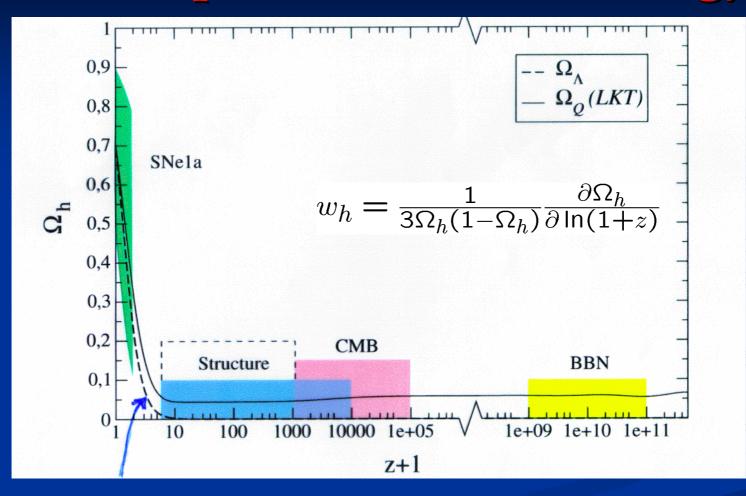
Quintessence – Phenomenology How can quintessence be distinguished from a cosmological constant ?

Early dark energy

...predicted in models where dark energy is naturally of the same order as matter



Time dependence of dark energy



cosmological constant : $\Omega_h \sim t^2 \sim (1+z)^{-3}$

M.Doran,...

Early dark energy

A few percent in the early Universe

Not possible for a cosmological constant

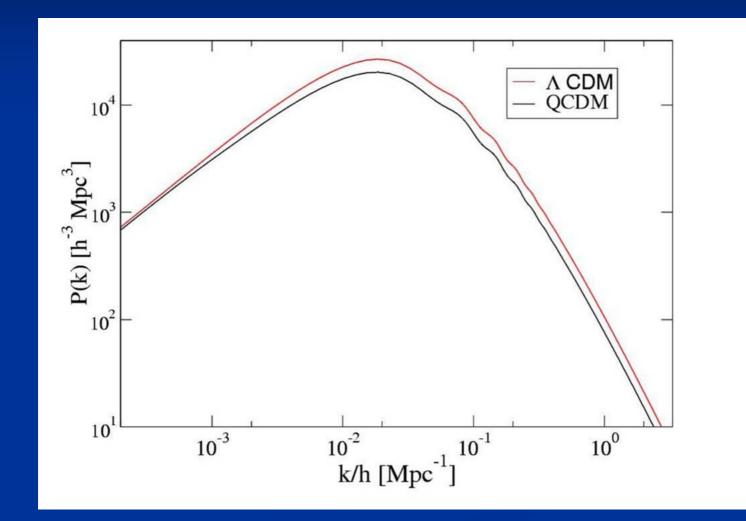
Structure formation

Structures in the Universe grow from tiny fluctuations in density distribution

stars, galaxies, clusters

One primordial fluctuation spectrum describes all correlation functions !

Early quintessence slows down the growth of structure



Growth of density fluctuations

■ Matter dominated universe with **constant** $\Omega_{\rm h}$:

$$\Delta
ho \sim a^{1-rac{\epsilon}{2}}, \ \epsilon = rac{5}{2}(1-\sqrt{1-rac{24}{25}\Omega_h})$$

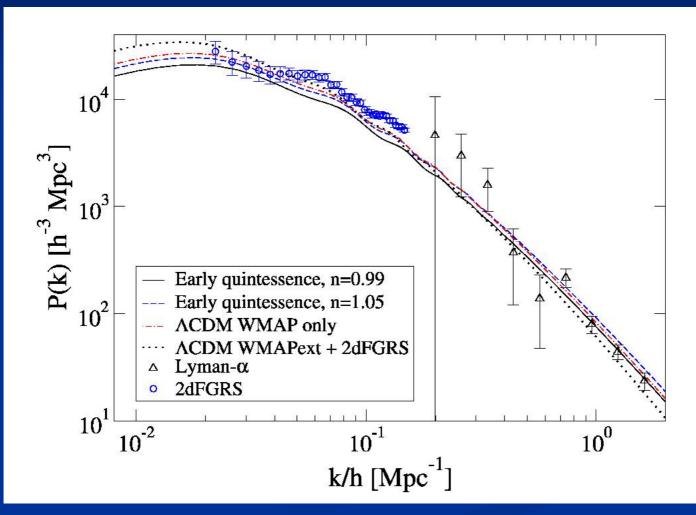
P.Ferreira,M.Joyce

 Dark energy slows down structure formation
 ⇒ Ω_h < 10% during structure formation

 Substantial increase of Ω_h(t) since structure has formed!
 → negative w_h

Question "why now" is back (in mild form)

Fluctuation spectrum



Caldwell, Doran, Müller, Schäfer,...

Models and Parameters

	А	В	С	D
$\Omega_{q}^{(sf)}$	0.03	0.05	0	0
$\Omega_q^{(ls)}$	0.03	0.05	0	0
$w_{q}^{(0)}$	-0.91	-0.95	-1	-1
n_s	0.99	1.05	0.97	0.93
h	0.65	0.70	0.68	0.71
$\Omega_m h^2$	0.15	0.16	0.15	0.135
$\Omega_b h^2$	0.024	0.025	0.023	0.0224
 au	0.17	0.26	0.1	0.17
σ_8	0.81	0.87	0.87	0.85
χ^2_{eff}/ u	$\frac{1432}{1342}$	$\frac{1432}{1342}$	$\frac{1430}{1342}$	$\frac{1432}{1342}$

T running ns(k)

normalization of matter fluctuations

rms density fluctuation averaged over 8h⁻¹ Mpc spheres

compare quintessence with cosmological constant

$$\frac{\sigma_8(Q)}{\sigma_8(\Lambda)} \approx (a_{\rm eq})^{3\bar{\Omega}_{\rm d}^{\rm sf}/5} \left(1 - \Omega_{\Lambda}^0\right)^{-\left(1 + \bar{w}^{-1}\right)/5} \sqrt{\frac{\tau_0(Q)}{\tau_0(\Lambda)}}$$

Doran, Schwindt,...

Early quintessence and growth of matter fluctuations

$$\frac{\sigma_8(Q)}{\sigma_8(\Lambda)} \approx (a_{\rm eq})^{3\bar{\Omega}_{\rm d}^{\rm sf}/5} \left(1 - \Omega_{\Lambda}^0\right)^{-\left(1 + \bar{w}^{-1}\right)/5} \sqrt{\frac{\tau_0(Q)}{\tau_0(\Lambda)}}$$
$$a_{\rm eq} = \frac{\Omega_{\rm r}^0}{\Omega_{\rm m}^0} = \frac{4.31 \times 10^{-5}}{h^2(1 - \Omega_{\rm d}^0)}$$
early quintessence

$$\Delta
ho\sim a^{1-rac{\epsilon}{2}}~,~\epsilon=rac{5}{2}(1-\sqrt{1-rac{24}{25}}\Omega_h)$$

for small $\Omega_{\rm h}$: $\epsilon/2 = 3/5$

$$\frac{\sigma_8(Q)}{\sigma_8(\Lambda)} \approx (a_{\rm eq})^{3\bar{\Omega}_{\rm d}^{\rm sf}/5} \left(1 - \Omega_{\Lambda}^0\right)^{-\left(1 + \bar{w}^{-1}\right)/5} \sqrt{\frac{\tau_0(Q)}{\tau_0(\Lambda)}}$$

for varying early dark energy : weighted average of Ω

$$\bar{\Omega}_{\rm d}^{\rm sf} \equiv [\ln a_{\rm tr} - \ln \ a_{\rm eq}]^{-1} \int_{\ln a_{\rm eq}}^{\ln a_{\rm tr}} \Omega_{\rm d}(a) \ {\rm d} \ln a$$

influence of late evolution of quintessence through conformal time τ_0 and averaged equation of state

$$\frac{1}{\bar{w}} = \frac{\int\limits_{\ln a_{\mathrm{tr}}}^{0} \Omega_{\mathrm{d}}(a) / w(a) \, d\ln a}{\int\limits_{\ln a_{\mathrm{tr}}}^{0} \Omega_{\mathrm{d}}(a) \, d\ln a}$$

 a_{tr} : transition from slow early evolution of Ω_h to more rapid late evolution at most a few percent dark energy in the early universe ! Jeans analysis for fluctuations inside the horizon

; $k_{phys} = \frac{k}{a}$ k phys » H

pressure effects (Pp)

vs : velocity of sound

- $v_s^2 = \partial p / \partial p$
- $p = \overline{p} + \delta p = \overline{p} + v_s^2 \delta p$
- $\vec{\nabla} p = \upsilon_s^2 \vec{\nabla} p = \upsilon_s^2 \vec{\nabla} s p$

photons + baryons + electrons (in equilibrium)

$$U_5^2 = \frac{1}{3} \frac{9\gamma}{9\gamma + 9\beta + 9\epsilon}$$

Small fluctuations in Fourier space & : comoving wave number kphys = k /a Se : density contrast Va : comoving pecular velocity 1/2: Newtonian potential $S_{k} + i\vec{k}\vec{v}_{k} = -i\int \frac{d^{3}k'}{(2\pi)^{3}}(\vec{k}\vec{v}) S_{k'}$ $\vec{U}_{k} + 2H\vec{U}_{k} + i\frac{U_{s}}{a^{2}}\vec{k}S_{k} + \frac{i}{a^{2}}\vec{k}Y_{k} =$ $-i\int \frac{d^{3}k'}{(2\pi)^{3}} \left(\vec{k}' \vec{\upsilon}_{k-k'}\right) \vec{\upsilon}_{k'}$ $-\vec{k}^2 \psi_{k} = 4\pi G \bar{g} a^2 \delta_{k}$

background cosmological solution H(t), $\bar{g}(t)$ $H(t) = \tilde{h} t^{-1}$ $4\pi G \bar{g}(t) = \tilde{g} t^{-2}$

matter domination $\tilde{h} = \frac{2}{3}$ radiation domination $\tilde{h} = \frac{1}{2}$

 $\overline{9}$ dominant component : $(\mathcal{I}=1)$

 $\frac{8\pi G}{3} \varphi = H^2 = \frac{2}{3} \tilde{\varphi} t^{-2} = \tilde{h}^2 t^{-2}$ $\tilde{\varphi} = \frac{3}{2} \tilde{h}^2$

matter domination $\tilde{\varphi} = \frac{2}{3}$ vaoliation domination $\tilde{\varphi} = \frac{3}{8}$

Linear analysis $S_{k} = -i\vec{k}\vec{v}_{s}$ $S_{B} = -i\vec{k}\vec{v}_{B}$ $=i\vec{k}\left\{\frac{2\vec{k}}{t}\vec{v}_{R}+i\frac{v_{s}^{2}}{\sigma^{2}}\vec{k}S_{R}+i\vec{k}\left(-\frac{1}{R}2\frac{\vec{k}}{t^{2}}S_{R}\right)\right\}$ $= -\frac{2\tilde{h}}{4} \tilde{s}_{2} - \frac{2\tilde{s}^{2}}{4^{2}} \tilde{s}_{2} + \tilde{p}_{2} \tilde{s}_{2}$ $S_{k} + \frac{2\tilde{k}}{4} S_{k} + \left(v_{s}^{2} \frac{\tilde{k}^{2}}{a^{2}} - \frac{\tilde{\varphi}}{4^{2}} \right) S_{s} = 0$ damping gravitational pressure attraction Jeans wave number ky separates pressure dominated from gravity dominated behavior $k_J^2 = \frac{\rho}{v_s^2} \frac{a^2}{t^2}$

effect of early quintessence

$$\frac{\ddot{S}_{k}}{S_{k}} + \frac{2\ddot{R}}{t}\dot{S}_{k} + (\frac{2}{v_{s}}\frac{\ddot{R}^{2}}{a^{2}} - \frac{\ddot{P}}{t})S_{k} = 0$$
damping pressure gravitational attraction

$$4\pi G \bar{g}(t) = \tilde{g} t^{-2}$$

presence of early dark energy decreases ϱ for given t slower growth of perturbation

Jeans wave number
$$k_{J}^{2} = \frac{\tilde{p}}{v_{s}^{2}} \frac{a^{2}}{t^{2}}$$

ks depends on time

$$\frac{k_{J}^{2}}{a^{2}} = \frac{\tilde{\rho}}{\tilde{h}^{2}} \quad \upsilon_{s}^{-2} \quad H^{2}$$

k > ky : oscillations

(pressure dominated)

k << k ; modes can grow (gravity dominated)

radiation dominated epoch $(\mathfrak{v}_{s}^{2} = \frac{1}{3})$ $\frac{k_{J}^{2}}{a^{2}} = \frac{g}{2}H^{2}$ no growing modes condition for growing modes inside horizon :

 $H^{2} \leq \frac{k^{2}}{a^{2}} \leq \frac{k^{2}}{a^{2}} = \frac{\tilde{\varphi}}{\tilde{h}^{2}} U_{s}^{-2} H^{2}$

 $v_s^2 \ll \frac{\tilde{k}^2}{\tilde{s}} \approx \frac{2}{3}$

 $v_s \ll 1$

not possible for radiation

possible for dark matter

(or baryons) where $v_s^2 \ll 1$

Oscillations

$$k^{2} \gg k_{j}^{2}$$
(CMB fluctuations inside horizon)

$$\tilde{S}_{k} + 2H \tilde{S}_{k} + \frac{V_{s}^{2}k^{2}}{a^{2}} S_{k} = 0$$
conformal time $d\tau = dt/a$
 $\partial_{t} = \frac{1}{a} \partial_{\tau} , \partial_{t}^{2} = -\frac{H}{a} \partial_{\tau} + \frac{1}{a^{2}} \partial_{\tau}^{2}$
 $\frac{1}{a^{2}} \left\{ \partial_{\tau}^{2} + aH \partial_{\tau} + v_{s}^{2}k^{2} \right\} S_{k} = 0$
 $S_{k} = A_{k} e^{i\omega_{k}\tau}$
 $\omega_{k} = v_{s}k$
Check: $aH \ll \omega_{k} \cong k \gg \frac{a}{v_{s}}H$
 $\equiv k \gg \frac{\tilde{K}}{18} k_{3}$

CMB - spectrum at last scattering

* photons decouple vapidely at time of last scattering Tes

* fluctuation spectrum in CMB $\stackrel{\frown}{=}$ fluctuation spectrum at τ_{es}

" snap shot"

 $P(k,\tau) = A_k \left\{ \sin^2(\upsilon_s k \tau + \varphi_k) + c_k \right\}$

 $P(k, \tau_{es})$: maxima at $k_m \approx \frac{m\pi}{v_s \tau_{es}}$

Rm can be calculated precisely .

How do we see peaks in $P(x, \tau_{es})$? after last scattering:

photons travel freely over distance to-tes a to

plane waves ~ e ik to (P(2, tes)) 1/2

multipole analysis :

Legendre expansion of e^{ite} => Bessel fors fe (200) - are peaked at l = k Te

Peaks for l = km to

lm = mt To Us The

To test geometry of late universe.

⇒ _2 ≈ 1

Equation of state

pressure energy density kinetic energy $T = \frac{1}{2}\dot{\phi}^2$

Equation of state

$$w = \frac{p}{\rho} = \frac{T - V}{T + V}$$

Depends on specific evolution of the scalar field

Negative pressure

\square w < 0

 Ω_h increases (with decreasing z)

late universe with small radiation component :

$$w_h = \frac{1}{3\Omega_h(1-\Omega_h)} \frac{\partial \Omega_h}{\partial \ln(1+z)}$$

-1/3

expansion of the Universe is accelerating

$$w \equiv -1$$

cosmological constant

small early and large present dark energy

 fraction in dark energy has substantially increased since end of structure formation
 expansion of universe accelerates in present epoch

$$w_h = \frac{1}{3\Omega_h(1-\Omega_h)} \frac{\partial \Omega_h}{\partial \ln(1+z)}$$

exact relation between w_h and change in Ω_h

 $\frac{d \Omega_{h}}{d \eta} = \Omega_{h} (1 - \Omega_{h}) \{3 w_{h} - (1 + \frac{e^{-y}}{a_{eq}})^{-1} \}$ small after matter-radiation equality

y = - lna

 $\Omega_{h} = \frac{S_{h}}{S_{cr}} = \frac{S_{h}}{S_{h} + S_{m} + S_{r}}$

 $P_{r} = \frac{a_{eq}}{a} P_m = \frac{a_{eq}}{a + a_{eq}} \left(P_m + P_r \right)$

$$= \left(1 + \frac{a}{a_{eq}}\right)^{-1} \left(p_m + p_r\right)$$
$$= \left(1 + \frac{e^{-y}}{a_{eq}}\right)^{-1} \left(p_m + p_r\right)$$

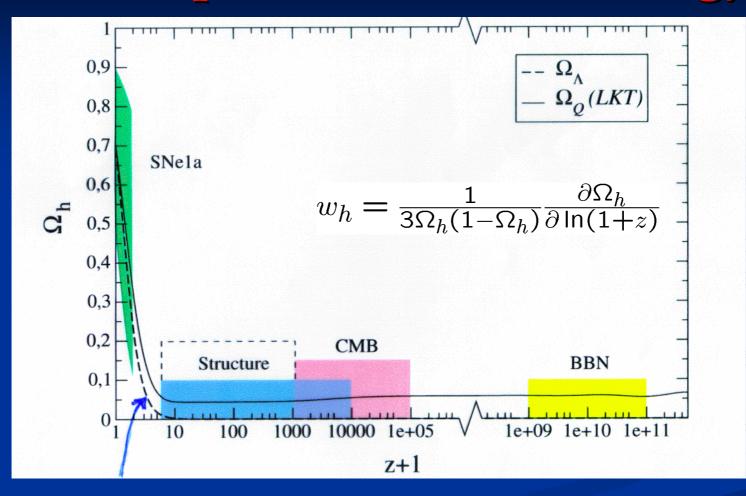
$$y = -lna$$

 $\frac{p_m + p_r}{p_{cr}} = (1 - SL_h)$

 $\frac{dSL_{h}}{dy} = \frac{d}{dy} \left(\frac{P_{h}}{P_{cr}} \right)$ = Par dy Ph - Ph Par dy Par $\partial_y g_h = 3(1+w_h)g_h$ $P_{ar}^{-1} \partial_{g} P_{ar} = 3 + 3 w_{h} S_{h}^{2} + (1 - S_{h})(1 + \frac{e^{-g}}{a_{eg}})^{-1}$ dJLA = 3RA + 3 WA Sh - 3 Jan - 3 wh Jan - Jan (1-Jan)(1+ e-y)-1 = 3 NA RA (1 - RA) - (1+ e-g) - Sh (1- Rh) = $S_{R}(1-S_{R})(3w_{h}-(1+\frac{e^{-2}}{a_{eq}})^{-1})$

 $S_{ar}^{-1} \partial_{y} S_{ar} = S_{ar}^{-1} \partial_{y} \left(S_{h} + S_{m} + S_{r} \right)$ $=9c_{r}^{-1}\left\{ 3(1+w_{h})g_{h}+3g_{m}+4g_{r}\right\}$ $= 3(1+w_h)S_h + \frac{3(p_m+p_r)}{p_{ar}}$ $+\left(1+\frac{e^{-y}}{a_{eq}}\right)^{-1}\frac{g_{m}+p_{r}}{g_{cr}}$ $= 3(1+w_{h})S_{h}^{2} + (3+(1+\frac{e^{-3}}{a_{eq}})^{-1})(1-S_{h}^{2})$ = 3 + 3 N/2 $S_{R} + (1 - S_{R})(1 + \frac{e^{-y}}{a_{eq}})^{-1}$

Time dependence of dark energy

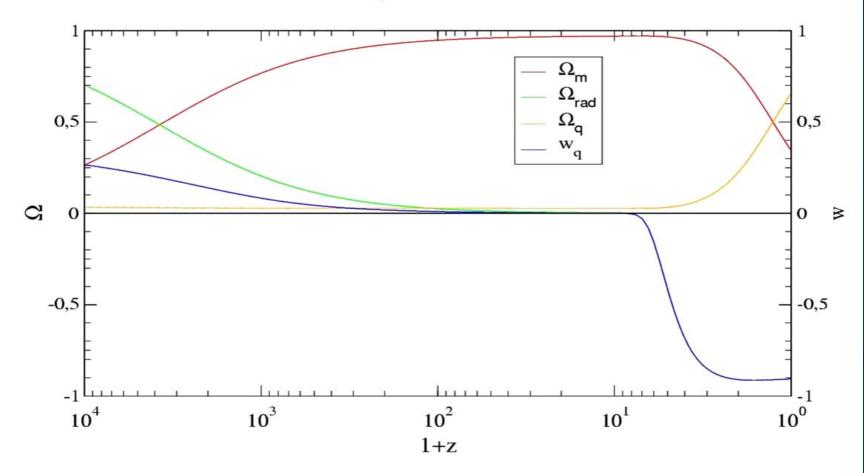


cosmological constant : $\Omega_h \sim t^2 \sim (1+z)^{-3}$

M.Doran,...

Quintessence becomes important "today"

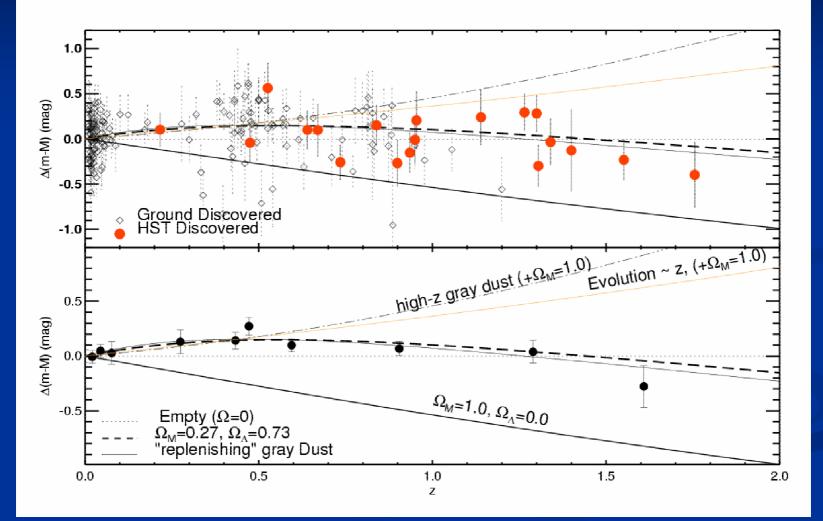
Crossover Quintessence Evolution



w_h close to -1

inferred from supernovae and WMAP

Supernova cosmology

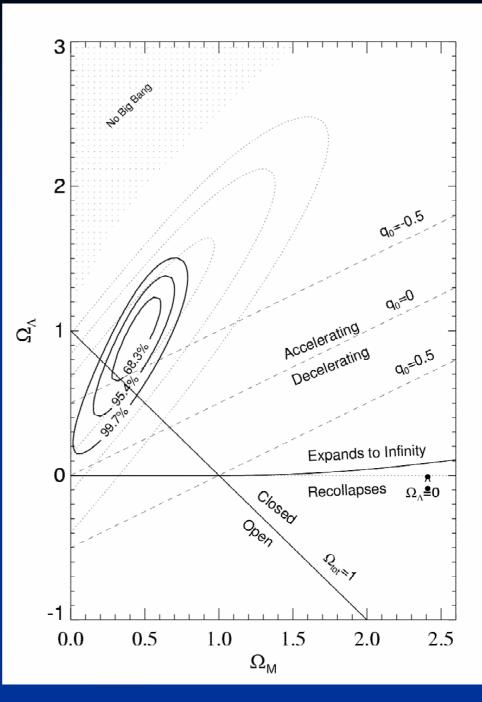


Riess et al. 2004

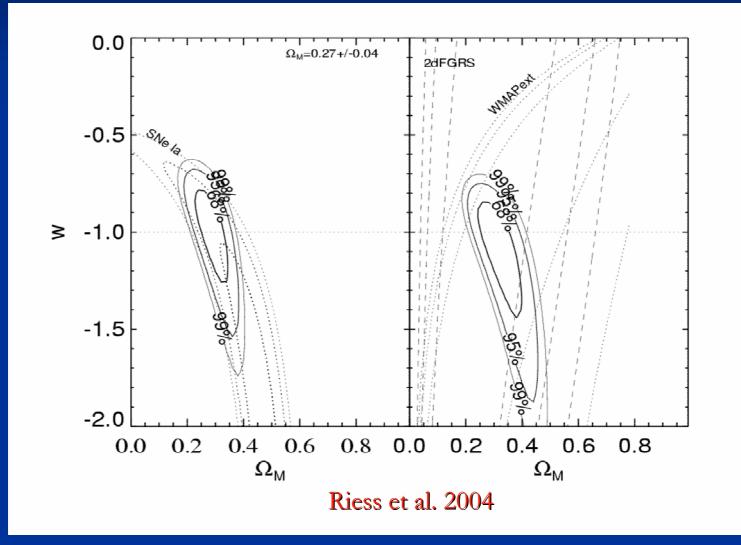
Dark energy and SN

$\Omega_{\rm M} = 0.29$ +0.05-0.03

(SN alone, for $\Omega_{tot}=1$)

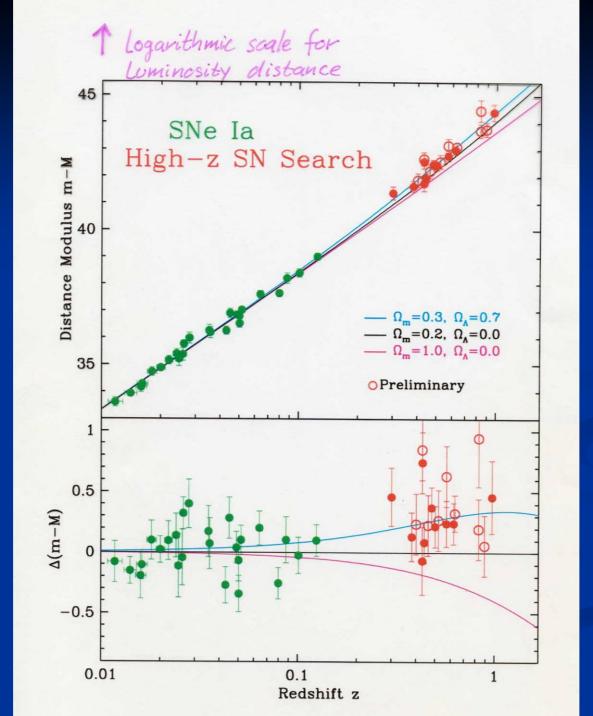


SN and equation of state



Hubble diagram

redshift vs. distance T Luminosity distance



Hubble diagram

Luminosity distance dL

Assume Luminosity & of object is known.

 $\mathcal{E}: \quad flux \equiv \frac{energy}{time \cdot area}$

as measured in detector

motivation for definition :

flat space : $E = \frac{\mathcal{L}}{4\pi d_1^2}$, $d_L = \Delta r$

astronomer's units : magnitudes $d_{L} = 10^{1 + \frac{m-M}{5}} pc$

pc = 3.2615 light years

Cosmological relation between de and Ar

earth: $\tau = 0$

light source: $r = r_1$

$$\mathcal{F} = \frac{\mathcal{L}}{4\pi a^{2}(t_{0})\tau_{1}^{2}(1+z)^{2}}$$

$$(\pi a^2 lt_0) r_1^2$$
: total surface of sphere
around light source at to

E ~ energy DA Dt

(isotropic and homogenous)

Expansion for small Z

$$H^{-1}(z) = H_0^{-1} + \frac{\partial H^{-1}}{\partial z}_{10} Z + \cdots$$

$$d_L = (1+z)(H_0^{-1}z + \frac{1}{2}\frac{\partial H^{-1}}{\partial z}_{10} Z^2 + \cdots)$$

$$= H_0^{-1} Z (1+z + \frac{1}{2}H_0\frac{\partial H^{-1}}{\partial z}_{10} Z + \cdots)$$

$$H_0 d_L = Z + \frac{1}{2}(1-q_0) Z^2 + \cdots$$

$$q_c = \frac{\partial Ln H}{\partial Z}_{10} - 1$$
Lowest order Hubble diagram :

$$d_L = H_0^{-1} Z \qquad "Hubble's Law"$$

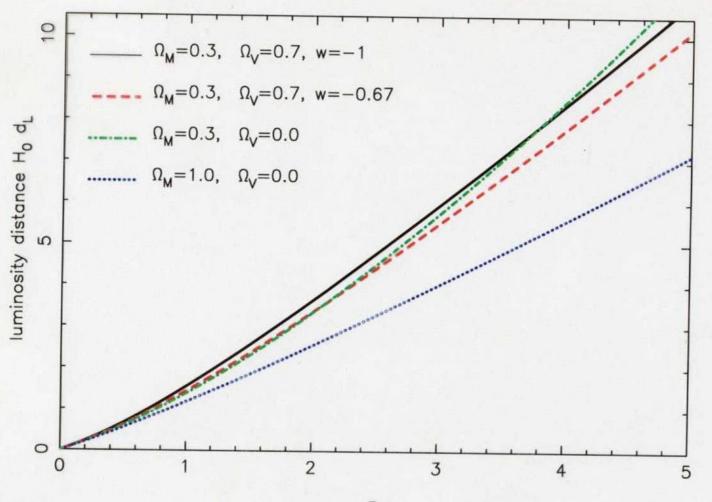
$$"$$

$$" distance vs. redshift plot"$$

determines Ho

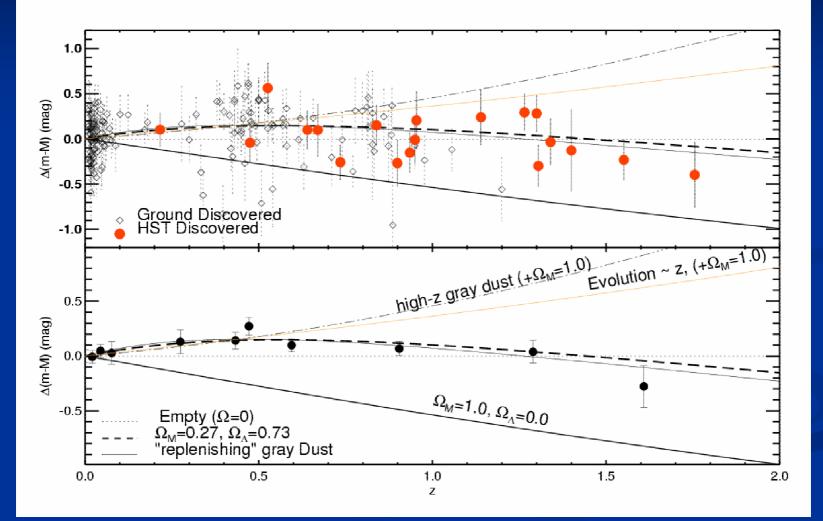
present observation $H_0 = \frac{100 \text{ km}}{s \text{ Mpc}} \cdot h$ h = 0.65 Ho" = 9.78 . 10 9 yr . h-1 $H_0 = 2.13 \cdot 10^{-33} eV \cdot h$ in practice : E is measured, not de ! $F(z) = (4\pi)^{-1} \mathscr{L}(z) (1+z)^{-2}$. $\left[\int_{a}^{b} dz' H^{-1}(z')\right]^{-2}$ to be extracted

L(2)?



z

Supernova cosmology

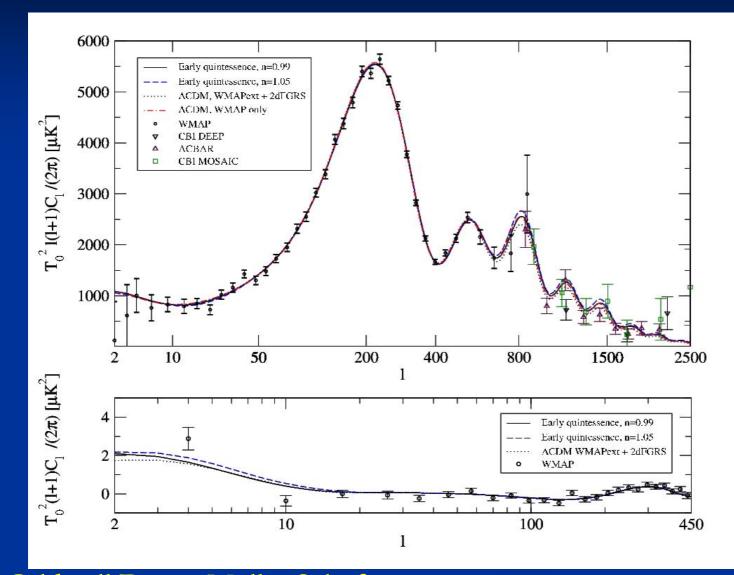


Riess et al. 2004

supernovae : negative equation of state and recent increase in fraction of dark energy are consistent ! quintessence and CMB anisotropies

influence by
early dark energy
present equation of state

Anisotropy of cosmic background radiation



Caldwell, Doran, Müller, Schäfer,...

separation of peaks depends on dark energy at last scattering

$$l_m \equiv l_A \left(m - \varphi_m\right)$$
 $l_A = \pi \frac{\tau_0 - \overline{c_s \tau}}{\overline{c_s \tau}}$

$$l_A = \pi \bar{c}_s^{-1} \Big[\frac{F(\Omega_d^0, \overline{w}_0)}{(1 - \overline{\Omega}_d^{\rm ls})^{1/2}} \Big\{ \left(a_{\rm ls} + \frac{\Omega_{\rm r}^0}{1 - \Omega_d^0} \right)^{1/2} - \left(\frac{\Omega_{\rm r}^0}{1 - \Omega_d^0} \right)^{1/2} \Big\}^{-1} - 1 \Big]$$

and on conformal time

involves the integral
(with weighted w)

$$\tau_0 = 2H_0^{-1}(1 - \Omega_d^0)^{-1/2} F(\Omega_d^0, \bar{w}_0)$$

 $\tau_{\rm ls}$

$$F(\Omega_d^0, \overline{w}_0) = \frac{1}{2} \int_0^1 \mathrm{d}a \left(a + \frac{\Omega_d^0}{1 - \Omega_d^0} a^{(1 - 3\overline{w}_0)} + \frac{\Omega_r^0 (1 - a)}{1 - \Omega_d^0}\right)^{-1/2}$$
$$\overline{w}_0 = \int_0^{\tau_0} \Omega_d(\tau) w_d(\tau) \mathrm{d}\tau \times \left(\int_0^{\tau_0} \Omega_d(\tau) \mathrm{d}\tau\right)^{-1}$$

Peak location in quintessence models for fixed cosmological parameters

$\overline{\Omega}^{\phi}_{ m ls}$	\overline{w}_0	lı	l_2	l_2/l_1	$\Delta l^{estim.}$	$\Delta l^{num.}$	σ8
	Leaping	kineti	c tern	1 (A),	$\Omega_0^{\phi} = 0.6$		
8.4×10^{-3}	-0.76	215	518	2.41	292	291	0.864
0.03	-0.69	214	520	2.43	294	293	0.782
0.13	-0.45	211	523	2.48	299	300	0.471
0.22	-0.32	207	524	2.53	302	307	0.286
	Inverse pow	er law	poter	ntial (E	$B), \ \Omega_0^{\phi} = 0$.6	
8.4×10^{-8}	-0.37	199	480	2.41	271	269	0.610
9.9×10^{-2}	-0.13	178	443	2.49	252	252	0.177
0.22	-8.1×10^{-2}	172	444	2.58	257	257	0.089
	Pure exp	onenti	al pot	ential,	$\Omega_0^{\phi} = 0.6$	100	
0.70	$7 imes 10^{-3}$	190	573	3.02	368	377	0.011
	Pure exp	onenti	ial po	tential,	$\Omega_0^{\phi} = 0.2$		
0.22	4.7×10^{-3}	194	490	2.53	282	281	0.375
	Cosmolog	gical co	onstar	nt (C),	$\Omega_{0}^{\phi} = 0.6$		
0	-1	219	527	2.41	296	295	0.965
	Cold Dark M	latter	- no c	lark en	ergy, $\Omega_0^{\phi} =$	= 0	
0	-	205	496	2.42	269	268	1.493

phenomenological parameterization of quintessence

... based on parameterization of Ω

natural "time" variable

$$y = \ln(1+z) = -\ln a$$

use relation

$$\frac{d\Omega_h}{dy} = 3\Omega_h (1 - \Omega_h) w_h$$

(matter domination)

define

$$egin{aligned} R(y) &= \ln\left(rac{\Omega_h(y)}{1-\Omega_h(y)}
ight) \ & rac{\partial R(y)}{\partial y} = 3w_h(y) \end{aligned}$$

three parameter family of models

$$R(y) = R_0 + \frac{3w_0y}{1+by}$$

$$R(y) = \ln\left(rac{\Omega_h(y)}{1 - \Omega_h(y)}
ight)$$

$$\frac{\partial R(y)}{\partial y} = 3 w_h(y)$$

$$R_0 = \ln\left(\frac{1-\Omega_M}{\Omega_M}\right)$$

fraction in matter present equation of state bending parameter

 $\Omega_{
m M}$ w₀ b

relation of b to early dark energy

$$\Omega_e = \Omega_h(y \to \infty) = \frac{\exp(R_0 + 3w_0/b)}{1 + \exp(R_0 + 3w_0/b)}$$

$$b = -\frac{3w_0}{\ln\left(\frac{1-\Omega_e}{\Omega_e}\right) + \ln\left(\frac{1-\Omega_M}{\Omega_M}\right)}$$

Taylor expansion

$$w_h(z)=w_0+w'z+\ldots$$
 $w'=-2w_0b$

does nor make much sense for large z

average equation of state

$$ar{w}_h(y) = rac{1}{y} \int\limits_0^y dy' w_h(y') = rac{R(y) - R_0}{3y}$$

yields simple formula for H

$$\frac{H^2(z)}{H_0^2} = (1 - \Omega_M)(1 + z)^{3 + 3\bar{w}_h(z)} + \Omega_M(1 + z)^3$$

simple relation with b

$$ar{w}_h(z) = rac{w_0}{1+b\ln(1+z)}$$
 $w_h(y) = rac{w_0}{(1+by)^2}$

equation of state changes between w_0 and 0

$$w_h(y)=rac{w_0}{(1+by)^2}$$

$$w_h = \frac{T - V}{T + V}$$

reconstruction of cosmon potential or kinetial

$$w_h = \frac{T-V}{T+V}$$

$$V = \frac{1-w_h}{2}\rho_h = \frac{3\bar{M}^2}{2}(1-w_h)\Omega_h H^2$$

$$T = \frac{3\bar{M}^2}{2}(1+w_h)\Omega_h H^2$$

= $\frac{1}{2}k^2(\varphi)\dot{\varphi}^2 = \frac{k^2}{2}\left(\frac{\partial\varphi}{\partial y}\right)^2\dot{y}^2 = \frac{k^2}{2}H^2\left(\frac{\partial\varphi}{\partial y}\right)^2$

Dynamics of quintessence

Cosmon φ : scalar singlet field

■ Lagrange density $L = V + \frac{1}{2} k(\phi) \partial \phi \partial \phi$ (units: reduced Planck mass M=1)

• Potential : $V = \exp[-\phi]$

• "Natural initial value" in Planck era $\varphi=0$

– today: **φ=276**

for "standard "exponential potential:

$$V = \bar{M}^4 \exp\left(-\frac{\phi}{\bar{M}}\right)$$

construction of kinetial from equation of state

$$k^{-1} = [3(1+w_h)\Omega_h]^{-1/2} \left\{ 3(1+w_h) - \frac{\partial w_h}{\partial y} \frac{1}{1-w_h} \right\}$$

$$\frac{\phi}{\bar{M}} = -\ln\left(\frac{3H^2}{2\bar{M}^2}(1-w_h)\Omega_h\right)$$

$$\begin{split} \frac{\partial w_h}{\partial y} &\neq 3(1-w_h^2) \\ \frac{\partial w_h}{\partial y}_{\mid y=0} &< 3(1-w_0^2) \end{split}$$

How to distinguish Q from Λ ? A) Measurement $\Omega_h(z) \iff H(z)$

i) Ω_h(z) at the time of structure formation , CMB - emission or nucleosynthesis
ii) equation of state w_h(today) > -1

B) Time variation of fundamental "constants"

end

cosmological equations

$${d \ln
ho_{arphi} \over d \ln a} = -3(1+w_{arphi}) \ , \qquad {d arphi \over d \ln a} = \sqrt{6 \Omega_T / k^2(arphi)}$$

$$\frac{d\ln\rho_m}{d\ln a} = -3\left(1+w_m\right) , \qquad \frac{d\ln\rho_r}{d\ln a} = -3\left(1+w_r\right) ,$$
$$\frac{d\ln\rho_\varphi}{d\ln a} = -6\left(1-\frac{V(\varphi)}{\rho_\varphi}\right) , \qquad \frac{d\varphi}{d\ln a} = \sqrt{\frac{6\left(\rho_\varphi - V(\varphi)\right)}{k^2\left(\varphi\right)(\rho_m + \rho_r + \rho_\varphi)}}$$

$$\frac{d\ln V}{d\ln a} = -\sqrt{\frac{6\left(\rho_{\varphi} - V\right)}{k^2\left(-\ln V\right)(\rho_m + \rho_r + \rho_{\varphi})}}$$